Circular Ion Path Patents (Class 250/291)
  • Patent number: 10763072
    Abstract: An apparatus may include a housing including an entrance aperture, to receive an ion beam. The apparatus may include an exit aperture, disposed in the housing, downstream to the entrance aperture, the entrance aperture and the exit aperture defining a beam axis, extending therebetween. The apparatus may include an electrodynamic mass analysis assembly disposed in the housing and comprising an upper electrode assembly, disposed above the beam axis, and a lower electrode assembly, disposed below the beam axis. The apparatus may include an AC voltage assembly, electrically coupled to the upper electrode assembly and the lower electrode assembly, wherein the upper electrode assembly is arranged to receive an AC signal from the AC voltage assembly at a first phase angle, and wherein the lower electrode assembly is arranged to receive the AC signal at a second phase angle, the second phase angle 180 degrees shifted from the first phase angle.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Joseph C. Olson, Alexandre Likhanskii
  • Patent number: 9427599
    Abstract: A multi-resolution detector includes a high-resolution pixelated electrode and a low-resolution pixelated electrode. The high-resolution pixelated electrode includes a plurality of sub-arrays of first pixels. Each respective first pixel at each relative position in each sub-array is electrically connected in parallel with one another. The low-resolution pixelated electrode includes a plurality of second pixels. A control system receives as inputs an output from each pixelated detector. The control system uses the inputs to determine a physical position and a transverse intensity distribution of an incident charged particle pencil beam at the resolution of the high-resolution pixelated electrode.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: August 30, 2016
    Assignee: Pyramid Technical Consultants Inc.
    Inventors: R. Paul Boisseau, Andrew Dart, John Gordon, Kan Ota
  • Patent number: 9299546
    Abstract: The invention provides a method for acquiring a mass spectrum with a Fourier transform mass spectrometer, wherein analyte ions and additional reporter ions oscillate at mass specific frequencies in a measuring cell of the frequency mass spectrometer and interact by Coulomb forces; the image current signal induced by the reporter ion is measured; and mass signals of the analyte ions are determined from a sideband signal of the reporter ions in the frequency domain or from the instantaneous frequency of the reporter ions in the time domain.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: March 29, 2016
    Inventor: Evgeny Nikolaev
  • Patent number: 9082604
    Abstract: Electrostatic trap mass spectrometers are disclosed that may comprise at least two parallel sets of electrodes separated by a field-free space, wherein said at least two parallel electrode sets extend along a curved Z-direction locally orthogonal to said X-Y plane such that each of said two electrode sets define a volume with a two-dimensional electrostatic field in an X-Y plane and define either planar or torroidal field regions; means for adjusting the torroidal field regions to provide both (i) stable trapping of ions passing between said fields within said X-Y plane and (ii) isochronous repetitive ion oscillations within said X-Y plane such that the stable ion motion does not require any orbital or side motion; and an ion bounding means in the curved Z-direction configured to compensate time-of-flight distortions at Z-edges of the trap.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 14, 2015
    Assignee: LECO Corporation
    Inventor: Anatoly Verenchikov
  • Patent number: 9053919
    Abstract: A scaled down version of a toroidal radio frequency (RF) ion trap mass analyzer operating with RF trapping voltages on the order of 1 kVp-p yet despite the reduced dimensions, retains roughly the same ion trapping volume as conventional 3D quadrupole ion traps, wherein the curved geometry enables construction of a compact mass analyzer and easy interface with conventional electron multipliers.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 9, 2015
    Assignee: BRIGHAM YOUNG UNIVERSITY
    Inventors: Stephen A. Lammert, Samuel E. Tolley, Jeffrey L. Jones, Randall W. Waite, Edgar D. Lee, Milton L. Lee
  • Patent number: 9052371
    Abstract: A structure or method for detecting a substance using conductive surfaces. Segments of conductive wire are disposed adjacent each of the surfaces and multi-turn coils are also disposed between the two surfaces, typically such that the windings of the coils are disposed between the respective conductive wires and the surfaces. A linear chirp signal, is applied to the wire segments. With the coils deactivated, emissions from the wire induce the Nuclear Quadrupole Resonance (NQR). With the coils activated to generate a static magnetic field, emissions from the wire induce Nuclear Magnetic Resonance (NMR). As a result, the characteristics of a substance located between the conductive surfaces may be determined using either or both resonant modalties.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: June 9, 2015
    Assignee: AMI Research & Development, LLC
    Inventors: John T. Apostolos, Judy Feng, William Mouyos
  • Patent number: 9035245
    Abstract: A device for mass selective determination of at least one ion or of a plurality of ions is used, for example, in a measuring apparatus having an ion trap. The ion trap has a ring electrode having a first opening. A first electrode is arranged at the first opening. Furthermore, an amplifier for providing a radio-frequency storage signal for the ion trap and a first transformer are provided, said first transformer being connected to the amplifier and the first electrode in such a way that the radio-frequency storage signal is coupled into the first electrode via the first transformer.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: May 19, 2015
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Albrecht Glasmachers, Michel Aliman
  • Publication number: 20150102217
    Abstract: The invention relates to a method and a device for introducing ions into an ICR cell of Fourier transform ion cyclotron resonance mass spectrometers, in particular with a reduced the magnetron orbit. The invention is based on applying at least one gated DC voltage to a mantle electrode of the ICR cell prior to the excitation of the cyclotron motion such that injected ions are deflected inside the ICR cell in at least one radial direction.
    Type: Application
    Filed: September 18, 2014
    Publication date: April 16, 2015
    Inventors: Gökhan BAYKUT, Roland JERTZ
  • Patent number: 8987661
    Abstract: A mass spectrometer is disclosed comprising a quadrupole rod set ion trap wherein a potential field is created at the exit of the ion trap which decreases with increasing radius in one radial direction. Ions within the on trap are mass selectively excited in a radial direction. Ions which have been excited in the radial direction experience a potential field which no longer confines the ions axially within the ion trap but which instead acts to extract the ions and hence causes the ions to be ejected axially from the ion trap.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 24, 2015
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Daniel James Kenny, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8981287
    Abstract: The present invention is concerned with an ion analysis apparatus comprising an ion guide having an ion optical axis extending from an ion inlet to an ion outlet, the ion guide being configured to guide ions from the ion inlet to the ion outlet along the ion optical axis, wherein the ion guide comprises at least one extraction region located between the ion inlet and the ion outlet, the at least one extraction region being configured to extract ions moving along the ion optical axis of the ion guide in an extraction direction, the extraction direction being substantially orthogonal to the ion optical axis of the ion guide, wherein the apparatus includes ion radial confinement means that in use confine the ions in the radial direction within the ion guide.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 17, 2015
    Assignee: Shimadzu Corporation
    Inventors: Roger Giles, Matthew Clive Gill
  • Publication number: 20150028200
    Abstract: An ion mobility separator or spectrometer is disclosed comprising an inner cylinder and an outer cylinder defining an annular volume through which ions are transmitted. Spiral electrodes a-f are arranged on a surface of the inner cylinder and/or on a surface of the outer cylinder. A first device is arranged and adapted to maintain a DC electric field and/or a pseudo-potential force which acts to urge ions from a first end of the ion mobility separator or spectrometer to a second end of the ion mobility separator or spectrometer. A second device is arranged and adapted to apply transient DC voltages to the one or more spiral electrodes in order to urge ions towards the first end of the ion mobility separator or spectrometer. The net effect is to extend the effective path length of the ion mobility separator.
    Type: Application
    Filed: September 8, 2014
    Publication date: January 29, 2015
    Inventors: Martin Raymond Green, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8941056
    Abstract: A mass spectrometer is disclosed wherein an ion signal is split into a first and second signal. The first and second signals are multiplied by different gains and are digitized. Arrival time and intensity pairs are calculated for both digitized signals and the resulting time and intensity pairs are combined to form a high dynamic range spectrum. The spectrum is then combined with other corresponding spectra to form a summed spectrum.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 27, 2015
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Steven Derek Pringle, Jason Lee Wildgoose
  • Patent number: 8927926
    Abstract: A mass spectrometry method of the present invention is such that a sample is heated to generate a gas and an ion that is produced from the gas is introduced into a mass spectrometer by using DART so that mass spectrometry is conducted.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: January 6, 2015
    Assignees: Shiseido Company, Ltd., Bio Chromato, Inc.
    Inventors: Haruo Shimada, Yoshimasa Nakatani, Yuka Noritake, Kazumasa Kinoshita, Yasuo Shida
  • Patent number: 8921772
    Abstract: A method and apparatus are disclosed for improving ion mobility spectrometry by using a fast and spatially wide ion gate based on local RF field barrier opposed to a switching DC field. The improvement accelerates the ion mobility analysis and improves charge throughput and dynamic range of the IMS. The invention is particularly suited for rapid dual gas chromatography. In one important embodiment, the accelerated IMS is coupled to a multi-reflecting time-of-flight mass spectrometer with a fast encoded orthogonal acceleration. There are described methods of comprehensive and orthogonal separation in multiple analytical dimensions.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 30, 2014
    Assignee: LECO Corporation
    Inventor: Anatoly N. Verenchikov
  • Patent number: 8907271
    Abstract: Ions are introduced into a Kingdon ion trap in which the ions can oscillate harmonically in a potential well in the longitudinal direction, essentially decoupled from their transverse motion by a Kingdon ion guide, which can consist of a drill-hole through the wall of the ion trap housing electrodes and a central wire. An injection potential is first applied to the wire, but once the heaviest ions of interest have been injected into the trap, the potential of the wire is switched to the potential of the housing electrodes, to trap the ions in the trap. The ions introduced into the Kingdon ion trap may come from a small ion cloud, located in a Paul trap.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 9, 2014
    Assignee: Bruker Daltonik, GmbH
    Inventor: Claus Köster
  • Publication number: 20140353487
    Abstract: An ion mobility separator 4 and a method of separating ions according to their ion mobility are disclosed. An RF ion guide is provided having a plurality of electrodes that are arranged to form an ion guiding path that extends in a closed loop. RF voltages are supplied to at least some of the electrodes in order to confine ions within said ion guiding path. A DC voltage gradient is maintained along at least a portion of a longitudinal axis of the ion guide, wherein the voltage gradient urges ions to undergo one or more cycles around the ion guide and thus causes the ions to separate according to their ion mobility as the ions pass along the ion guide. The closed loop ion guide enables the resolution of the ion mobility separator to be increased without necessitating a large device, since the drift length through the device can be increased by causing the ions to undergo multiple cycles around the device.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 4, 2014
    Inventors: Kevin Giles, Jason Lee Wildgoose
  • Patent number: 8901489
    Abstract: Looped ionization sources for ion mobility spectrometers are described. The ionization sources can be used to ionize molecules from a sample of interest in order to identify the molecules based on the ions. In an implementation, an electrical ionization source includes a wire that is looped between electrical contacts. The wire is used to form a corona responsive to application of voltage between the wire and the walls of an ionization chamber. The corona can form when a sufficient voltage is applied between the wire and the walls. A difference in electrical potential between the wire and a wall forming an ionization chamber, in which wire is contained, can be used to draw the ions away from the wire. In embodiments, the wire can be heated to reduce the voltage used to strike the corona. The ions, subsequently, may ionize the molecules from the sample of interest. The looped corona source can also be used in mass spectrometers (MS).
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Daniel Levin, Vlad Sergeyev, Volodimir Bondarenko, Bohdan Atamanchuk, Qunzhou Bian, Henryk Zaleski, Mark Piniarski, Simon Feldberg, Ronald Jackson
  • Patent number: 8901486
    Abstract: A RF only quadrupole rod set mass filter or mass analyzer and a linear quadrupole ion trap with axial ejection are disclosed comprising a first pair of rod electrodes, a second pair of rod electrodes and an energy filter. The first pair of rod electrodes is longer than the second pair of rod electrodes. Ions having desired mass to charge ratios experience fringing fields at an exit region which results in the ions possessing sufficient axial kinetic energy to be transmitted by the energy filter. Other ions possess insufficient axial kinetic energy to be transmitted by the energy filter and are attenuated.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 2, 2014
    Assignee: Micromass UK Limited
    Inventors: David J. Langridge, Daniel James Kenny
  • Patent number: 8872104
    Abstract: An ion detector system for a mass spectrometer is disclosed comprising an ion detector comprising an array of detector elements. The ion detector system is arranged to correct for tilt and non-linear aberrations in an isochronous plane of ions. The ion detector system generates separate first mass spectral data sets for each detector element and then applies a calibration coefficient to each of the first mass spectral data sets to produce a plurality of second calibrated mass spectral data sets. The plurality of second calibrated mass spectral data sets are then combined to form a composite mass spectral data set.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: October 28, 2014
    Assignee: Micromass UK Limited
    Inventors: David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8859953
    Abstract: The invention relates to a method and a device for optimization of electric fields in measurement cells of Fourier transform ion cyclotron resonance mass spectrometers. The invention is based on the rationale that asymmetric electric fields with uniformly or non-uniformly perturbed field axes can appear in ion cyclotron resonance cells and therefore the axis of the magnetron orbit can become radially displaced. Shifted magnetron orbits negatively affect the cyclotron excitation, deteriorate the FT-ICR signal, increase the intensity of an even-numbered harmonics peak, lead to stronger side bands of the FT-ICR signal, and in extreme cases, cause loss of ions. The present invention helps in probing the shift of the magnetron motion, detecting parameters indicative of the offset of the electric field axis and/or correcting it by trimming it back to the geometric axis of the cell.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Bruker Daltonik GmbH
    Inventors: Goekhan Baykut, Jochen Friedrich, Roland Jertz, Claudia Kriete
  • Patent number: 8859960
    Abstract: A method for transmitting ions entrained in a flowing carrier gas into and through a gap defined by a pair of mutually facing curved electrodes comprises: inputting the ions and flowing gas into the gap through an ion inlet orifice of a first one of the pair of electrodes, the ion inlet orifice comprising an orifice wall, an orifice inlet end and an orifice outlet end, the orifice wall being smoothly convexly curved between the inlet end and the outlet end, wherein a width of the gap and a flow rate of the carrier gas through the ion inlet orifice and gap are such that the gas flow is laminar within the ion inlet orifice and gap.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: October 14, 2014
    Assignee: Thermo Finnigan LLC
    Inventors: Satendra Prasad, Michael W. Belford, Jean Jacques Dunyach
  • Patent number: 8853620
    Abstract: The invention provides a method of producing a mass spectrum, comprising: obtaining a transient from the oscillation of ions in a mass analyser; Fourier transforming the transient to obtain a complex spectrum having a real component and an imaginary component; and calculating an enhanced spectrum which comprises a combination of (i) and (ii) wherein (i) comprises a Positive spectrum; and (ii) comprises an Absorption spectrum. Also provided are an apparatus for producing a mass spectrum suitable for carrying out the method as well as a method of determining a phase correction for a complex spectrum obtained by Fourier transformation from a detected transient obtained from a mass analyser.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 7, 2014
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Oliver Lange
  • Patent number: 8835834
    Abstract: An object is to measure both cations and anions with high duty cycle. In a mass spectrometer comprising an ion source (1), an ion guide part (31), and an ion trap (32), while ions are being mass-selectively ejected from the ion trap, ions having a polarity reverse to that of the ions trapped in the ion trap are introduced into the ion guide part.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masuyuki Sugiyama, Yuichiro Hashimoto, Hisashi Nagano, Hideki Hasegawa, Yasuaki Takada, Masuyoshi Yamada
  • Patent number: 8835840
    Abstract: Micromachined holes in stacks of silicon wafers can be used to define high aspect ratio charged particle storage volumes. Each wafer can define a section of a tubular trap, and electric fields in each wafer can be controlled independently so that charged particles can be stored and shuttled among the sections.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: September 16, 2014
    Assignee: Washington State University
    Inventors: Kelvin G. Lynn, Marc H. Weber
  • Patent number: 8829432
    Abstract: The present invention generally relates to mass spectrometry and related techniques, and in some cases, to determining single species using mass spectrometry. In certain instances, polymers such as DNA or RNA can also be sequenced. Certain embodiments of the invention relate to passing a polymer, such as DNA, RNA, a protein, a polypeptide, a polysaccharide, etc., through a pore and cleaving the polymer in sequence. For instance, the polymer may be cleaved using a laser or an electric field. In some embodiments, a property of at least one subunit of a polymer is determined using mass spectrometry. In some embodiments, a single ion (which may be a subunit of a polymer, or an ion based on another species) can be isolated in a mass spectrometer and a signal generated from the single ion.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: September 9, 2014
    Assignee: Brown University
    Inventor: Derek M. Stein
  • Patent number: 8829433
    Abstract: An ion mobility separator or spectrometer is disclosed comprising an inner cylinder and an outer cylinder defining an annular volume through which ions are transmitted. Spiral electrodes a-f are arranged on a surface of the inner cylinder and/or on a surface of the outer cylinder. A first device is arranged and adapted to maintain a DC electric field or a pseudo-potential force which acts to urge ions from a first end of the ion mobility separator or spectrometer to a second end of the ion mobility separator or spectrometer. A second device is arranged and adapted to apply one or more transient DC voltages to the spiral electrodes in order to urge ions towards the first end of the ion mobility separator or spectrometer. The net effect is to extend the effective path length of the ion mobility separator.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8822917
    Abstract: In order to provide an analysis method that is capable of determining a glycan structure with high detection sensitivity, a method of the present invention includes the steps of: carrying out triple quadrupole mass spectrometry at various values of CID energy; creating an energy-resolved profile including yield curves representing relationships between (i) a value of the CID energy and (ii) measured amounts of specific types of product ions; preparing a reference profile, and identifying a glycan structure of a test material by comparing the energy-resolved profile with the reference profile.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: September 2, 2014
    Assignees: Riken, Shimadzu Corporation
    Inventors: Koji Ueda, Atsuhiko Toyama
  • Patent number: 8796615
    Abstract: A mass spectrometer is disclosed comprising a quadrupole rod set ion trap wherein a potential field is created at the exit of the ion trap which decreases with increasing radius in one radial direction. Ions within the ion trap are mass selectively excited in a radial direction. Ions which have been excited in the radial direction experience a potential field which no longer confines the ions axially within the ion trap but which instead acts to extract the ions and hence causes the ions to be ejected axially from the ion trap.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: August 5, 2014
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Daniel James Kenny, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8796618
    Abstract: The present invention relates to an apparatus and method for controlling a pipeline-type ion cyclotron resonance mass spectrometer, in which an ion trap unit of the ion cyclotron resonance mass spectrometer is capable of using two digitizers at the same time, thus enabling a measurement process for detecting an electrical signal which indicates the mass of ions corresponding to a specific purpose, and another measurement process for detecting another electrical signal which indicates the mass of ions corresponding to another specific purpose, to be simultaneously performed. Accordingly, it is an aim of the present invention to provide an apparatus and method for controlling a pipeline-type ion cyclotron resonance mass spectrometer, which can overcome the problems of time delay among control procedures, and can present a signal detection step wherein an excitation electrode is utilized to improve the sensitivity and speed of signal detection.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 5, 2014
    Assignee: Korea Basic Science Institute
    Inventors: Seung Yong Kim, Hyun Sik Kim, Jong Shin Yoo
  • Patent number: 8779356
    Abstract: A system and method for mass spectrometry including a curtain gas chamber defined by a curtain plate having an aperture for receiving ions from an ion source and an orifice plate having an inlet into a mass spectrometer. At least one barrier separates the curtain chamber into a first curtain gas chamber region and a second curtain gas chamber region. At least one gas source provides a gas inflow into the second curtain gas chamber region and a gas outflow into the first curtain gas chamber region, a portion of the gas outflow directed out of the aperture. A heating element heats the gas inflow, a portion of the heated gas inflow directed into the inlet of the mass spectrometer wherein the portion of the heated gas inflow can be at a substantially higher temperature than the portion of the gas outflow.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 15, 2014
    Assignee: DH Technologies Development Ptd. Ltd.
    Inventors: Thomas R. Covey, Stanislaw Potyrala, Bradley B. Schneider
  • Patent number: 8754364
    Abstract: A mass spectrometer is disclosed wherein an ion signal is split into a first and second signal. The first and second signals are multiplied by different gains and are digitised. Arrival time and intensity pairs are calculated for both digitised signals and the resulting time and intensity pairs are combined to form a high dynamic range spectrum. The spectrum is then combined with other corresponding spectra to form a summed spectrum.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 17, 2014
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Steven Derek Pringle, Jason Lee Wildgoose
  • Patent number: 8729461
    Abstract: A mass spectrometer is disclosed comprising a first storage ion trap arranged upstream of a high performance analytical ion trap. According to an embodiment ions are simultaneously scanned from both the first and second ion trap. At any instant in time the quantity of charge present within the second ion trap is limited or restricted so that the second ion trap does not suffer from space charge saturation effects and hence the performance of the second ion trap is not degraded.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 20, 2014
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose
  • Patent number: 8723112
    Abstract: Provided are a controller and a control method for improving signal performance of an ion cyclotron resonance mass spectrometer. The controller and control method apply electric signals for causing ions injected into an ion trap of the ion cyclotron resonance mass spectrometer to be injected to the center of the trap as close as possible to trap electrodes, and adjust biased ion motion by appropriately adjusting signals of trap electrodes for causing the injected ions to make ion motion, thereby improving the fidelity of ion signals. The control method for improving signal performance of an ion cyclotron resonance mass spectrometer includes an ion position adjustment process and an ion signal detection process.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: May 13, 2014
    Assignee: Korea Basic Science Institute
    Inventors: Seung Yong Kim, Hyun Sik Kim, Myoung Choul Choi, Jong Shin Yoo
  • Patent number: 8716654
    Abstract: An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U? (r, ?, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U?(r, ?, z) is the result of a perturbation W to an ideal field U(r, ?, z) which, for example, is hypologarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ?, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 ? radians over an ion detection period Tm.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: May 6, 2014
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Gerhard Jung, Wilko Balschun, Stevan R. Horning
  • Patent number: 8704168
    Abstract: An ion trap for a mass spectrometer has a conductive central electrode with an aperture extending from a first open end to a second open end. A conductive first electrode end cap is disposed proximate to the first open end thereby forming a first intrinsic capacitance between the first end cap and the central electrode. A conductive second electrode end cap is disposed proximate to the second open end thereby forming a second intrinsic capacitance between the second end cap and the central electrode. A first circuit couples the second end cap to a reference potential. A signal source generating an AC trap signal is coupled to the central electrode. An excitation signal is impressed on the second end cap in response to a voltage division of the trap signal by the first intrinsic capacitance and the first circuit.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 22, 2014
    Assignee: 1st Detect Corporation
    Inventor: David Rafferty
  • Patent number: 8704172
    Abstract: In an ion cyclotron resonance cell, which is enclosed at its ends by electrode structure elements with DC voltages of alternating polarity, longitudinal electrodes are divided so that the ICR measurement cell between the electrode structure elements consists of at least three sections. An excitation of ion cyclotron motions can be performed by applying additional trapping voltages to longitudinal electrodes located closest to the electrode structure elements and introducing ions into the center set of longitudinal electrodes. The ions are then excited into cyclotron orbits by applying radiofrequency excitation pulses to at least two rows of longitudinal electrodes to produce orbiting ion clouds. Subsequently, the additional trapping voltages are removed and an ion-attracting DC voltage is superimposed on the DC voltages. Ions excited to circular orbits can be detected using detection electrodes in the outer ICR cell sections.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: April 22, 2014
    Assignee: Bruker Daltonik GmbH
    Inventor: Gökhan Baykut
  • Patent number: 8704173
    Abstract: Devices and methods for the acquisition of mass spectra with very high mass resolution in ion cyclotron resonance mass spectrometers include cylindrical ICR measuring cells with special electrode geometries to generate harmonic trapping potentials for orbiting ions. The sheath of the cylindrical cell is divided by longitudinal gaps into a multitude of sheath electrodes, which either have to carry layers with resistance profiles able to generate parabolic voltage profiles along the sheath electrodes, or which form sheath electrodes of varying width by parabolic gaps. Orbiting ions of a given mass m/z oscillate harmonically in an axial direction with the same frequency, independent of the radius of their orbit and their oscillation amplitude. Ideally, the cylinders are closed by endcaps with rotationally hyperbolic form, divided into partial electrodes. The ions are excited by dipolar excitation fields. The orbiting ion clouds are kept together for much longer periods than was possible hitherto.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: April 22, 2014
    Assignee: Bruker Daltonik GmbH
    Inventors: Evgenij Nikolaev, Ivan Boldin, Jochen Franzen
  • Patent number: 8674299
    Abstract: A mass spectrometric device of the present invention includes a quadrupole filter (12) located upstream of a quadrupole ion trap (13) and configured to transmit ions in a predetermined filter range, and determines the filter range of the quadrupole filter (12) such that accumulation time for the ions in the quadrupole ion trap (13) is maximized. The accumulation time for the ions is determined based on mass spectrometry data information. With this configuration, the present invention produces advantageous effects of improving analysis throughput and an S/N ratio in an analysis of a minor sample component mixed in various accompanying components by using the mass spectrometric device using the quadrupole ion trap.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: March 18, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsumu Hirabayashi, Hiroyuki Satake
  • Publication number: 20140070090
    Abstract: A method and apparatus of compensating a magnetic field inhomogeneity in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell, the extra electrodes being shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field on the cycling ions.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 13, 2014
    Inventors: Yury Kostyukevich, Evgeny Nikolaev, Gleb Vladimirov
  • Patent number: 8669518
    Abstract: An object of the present invention is to provide means for solving troubles. Examples of the troubles include sensitivity degradation and resolution degradation of a mass spectrometer, which are caused by an axis deviation of a component, particularly at least one orifice located between an ion source and a detector, to decrease the number of ions reaching the detector, and a variation in performance caused by exchange of components such as the orifice. For example, the invention has the following configuration in order to solve the troubles. A mass spectrometer includes: an ion source; a detector that detects an ion; an orifice and a mass separator that are disposed between the ion source and the detector; and an axis adjusting mechanism that adjusts axis positions of the orifice and/or the mass separator such that an opening of the orifice and/or an incident port of the mass separator is disposed on a line connecting the ion source and an incident port of the detector.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 11, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kouji Ishiguro, Hidetoshi Morokuma
  • Patent number: 8664593
    Abstract: A High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) apparatus comprises (a) a first and a second gas inlet; (b) an expansion chamber receiving ions from an ion source and the first and second gas flows from the first and second gas inlets, respectively; (c) an outer electrode having a generally concave inner surface and comprising: (i) an ion inlet operable to receive, from the expansion chamber, the ions and a combined gas flow comprising portions of the first and second gas flows; and (ii) an ion outlet; and (d) an inner electrode having a generally convex outer surface that is disposed in a spaced-apart and facing arrangement relative to the inner surface of the outer electrode for defining an ion separation region therebetween, wherein the combined gas flow and a portion of the ions travel through the ion separation region from the ion inlet to the ion outlet.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 4, 2014
    Assignee: Thermo Finnigan LLC
    Inventors: Satendra Prasad, Michael W. Belford, Jean Jacques Dunyach
  • Patent number: 8653448
    Abstract: In order to provide an analysis method that is capable of determining a glycan structure with high detection sensitivity, a method of the present invention includes the steps of: carrying out triple quadrupole mass spectrometry at various values of CID energy; creating an energy-resolved profile including yield curves representing relationships between (i) a value of the CID energy and (ii) measured amounts of specific types of product ions; preparing a reference profile, and identifying a glycan structure of a test material by comparing the energy-resolved profile with the reference profile.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: February 18, 2014
    Assignees: Riken, Shimadzu Corporation
    Inventors: Koji Ueda, Atsuhiko Toyama
  • Patent number: 8653447
    Abstract: When an SIM measurement for ions originating from a target component separated by a chromatograph is performed, the measurement is performed while the mass-resolving power is switched among a plurality of levels of resolving power, with the mass-to-charge ratio fixed at a target value (S2), and an extracted ion chromatogram is created based on each of data obtained corresponding to respective mass-resolving powers (S3). After the extracted ion chromatograms are obtained, an S/N ratio is calculated for a peak of the target component on each of the chromatograms (S4), and a mass-resolving power which yields the highest S/N ratio is selected (S5). The selected mass-resolving power is set as the mass-resolving power in the subsequent measurements of the same target component in the same kind of sample (S6), and the quantitative determination of the target component is performed using the extracted ion chromatogram obtained with the selected mass-resolving power (S7).
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: February 18, 2014
    Assignee: Shimadzu Corporation
    Inventor: Kazuo Mukaibatake
  • Patent number: 8642955
    Abstract: A combination of electrodes that are cylindrical and an asymmetric arrangement of cylindrical and planar electrodes are used to create electric fields that compensate for toroidal curvature in a toroidal ion trap, the design lending itself to high precision manufacturing and miniaturization, converging ion paths that enhance detection, higher pressure operation, and optimization of the shape of the electric fields by careful arrangement of the electrodes.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 4, 2014
    Assignee: Brigham Young University
    Inventors: Daniel E. Austin, Nicholas R. Taylor
  • Patent number: 8642945
    Abstract: A device for use in a mass spectrometer allows an ion-optical assembly to be removed, cleaned and reinserted with relatively high positioning accuracy. In particular, the device obviates the need for complex adjustments requiring special knowledge after the reinsertion. The objective is achieved by an arrangement comprising a receptacle and a mount for a removable ion-optical assembly in a mass spectrometer. Favorable implementations provide a mount and a receptacle with three pairs of complementary support elements, the three support elements on the receptacle form a support plane, and, when the mount is inserted into the receptacle, at least two pairs of support elements are engaged and the mount is aligned with respect to the support plane with the aid of the third pair of support elements.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 4, 2014
    Assignee: Bruker Daltonik GmbH
    Inventors: Ewgenij Kern, Jens Rebettge
  • Patent number: 8642950
    Abstract: A mass spectrometer is disclosed comprising a quadrupole rod set ion trap wherein a potential field is created at the exit of the ion trap which decreases with increasing radius in one radial direction. Ions within the ion trap are mass selectively excited in a radial direction. Ions which have been excited in the radial direction experience a potential field which no longer confines the ions axially within the ion trap but which instead acts to extract the ions and hence causes the ions to be ejected axially from the ion trap.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: February 4, 2014
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Daniel James Kenny, David J. Langridge, Jason Lee Wildgoose
  • Patent number: 8610053
    Abstract: An inductively coupled plasma MS/MS mass analyzer (ICP-MS/MS) may include a first vacuum chamber which draws plasma containing an ionized sample into vacuum, a second vacuum chamber which includes a device or means which extracts and guides ions as an ion beam from the ions output from the first vacuum chamber, a third vacuum chamber which has a first ion optical separation device or means, a fourth vacuum chamber which has a cell into which reaction gas is introduced, and a fifth vacuum chamber which has a second optical separation device or means and a detector, wherein the second vacuum chamber and third vacuum chamber are individually evacuated.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 17, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: Noriyuki Yamada, Jun Kitamoto, Takeo Kuwabara
  • Patent number: 8598516
    Abstract: The present invention relates to the analytical electronics used to identify compositions and structures of substances, in particular, to the analyzers comprising at least one mass-spectrometer (MS) and may be applied in such fields as medicine, biology, gas and oil industry, metallurgy, energy, geochemistry, hydrology, ecology. Technical result provides the increase in MS resolution, gain in sensitivity, precision and measurement rates of substances compositions and structures concurrently with enhancement of analyzer functional capabilities, downsizing and mass reduction. In claimed invention the ion flux generation and its guiding are performed in off-axis single-flow mode; parallel multi-stage mode; through use of three-dimensional field with mean meridian surface including without limitation three-dimensional reflecting and dual-zoned reflecting modes or by method of multi-reflection arrays. Devices to implement the claimed method are embodied.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: December 3, 2013
    Inventors: Yerbol Aldanovich Sapargaliyev, Aldan Asanovich Sapargaliyev
  • Patent number: 8592750
    Abstract: This invention relates generally to multi-reflection electrostatic systems, and more particularly to improvements in and relating to the Orbitrap electrostatic ion trap. A method of operating an electrostatic ion trapping device having an array of electrodes operable to mimic a single electrode is proposed, the method comprising determining three or more different voltages that, when applied to respective electrodes of the plurality of electrodes, generate an electrostatic trapping field that approximates the field that would be generated by applying a voltage to the single electrode, and applying the three or more so determined voltages to the respective electrodes. Further improvements lie in measuring a plurality of features from peaks with different intensities from one or more collected mass spectra to derive characteristics, and using the measured characteristics to improve the voltages to be applied to the plurality of electrodes.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 26, 2013
    Assignee: Thermo Finnigan LLC
    Inventor: Alexander Alekseevich Makarov
  • Patent number: 8586917
    Abstract: An ion guide or mass analyzer is disclosed comprising a plurality of electrodes having apertures through which ions are transmitted in use. A pseudo-potential barrier is created at the exit of the ion guide or mass analyzer. The amplitude or depth of the pseudo-potential barrier is inversely proportional to the mass to charge ratio of an ion. One or more transient DC voltages are applied to the electrodes of the ion guide or mass analyzer in order to urge ions along the length of the ion guides or mass analyzer. The amplitude of the transient DC voltage applied to the electrode may be increased with time so that ions are caused to be emitted from the ion guide or mass analyzer in reverse order of their mass to charge ratio.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: November 19, 2013
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Steven Derek Pringle, Daniel James Kenny