Ionic Separation Or Analysis Patents (Class 250/281)
  • Patent number: 11515139
    Abstract: A method for determining a compensation factor parameter, c, for controlling an amount of ions ionised that are injected from an ion storage unit into mass analyser, where c is an adjustment factor that is applied to optimized injection times that are based on an optimized visible charge of a reference sample, the method comprising: detecting at least one mass spectrum for at least one amount of injected ions; determining from the at least one detected mass spectrum, a slope, s(sample), of a linear correlation of a relative m/z shift with visible total charge Qv of detected mass spectra; determining the compensation factor c as c=s(reference)/s(sample) where s(reference) is the slope of a linear correlation between reference-sample relative m/z shift values and reference-sample visible charge values determined from a plurality of mass spectra detected from a plurality of respective pre-selected amounts of a clean reference sample.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: November 29, 2022
    Assignee: THERMO FISHER SCIENTIFIC (BREMEN) GMBH
    Inventor: Oliver Lange
  • Patent number: 11501960
    Abstract: A method of removing nuclear isobars from a mass spectrometric technique comprising directing ions, decelerating the ions, neutralizing a first portion of the ions, creating residual ions and a second portion of the ions, reionizing a selective portion of the ions, re-accelerating the selective reionized portion of ions, and directing the reionized portion of ions to a detector. An apparatus to remove nuclear isobars comprising a deceleration lens, an equipotential surface, an electron source to neutralize a portion of the ion beam, a deflector pair, a tunable resonance ionization laser for selective resonant reionization, and an acceleration lens.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: November 15, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Evan E. Groopman, David G. Willingham
  • Patent number: 11500352
    Abstract: A system and method is provided for monitoring a production process. In some aspects, the system may include an aseptic sampling device in fluidic connection with a process fluid, the aseptic sampling device operative to collect one or more samples from the process stream. A pretreatment device may be included to receive and pretreat the one or more samples. An analyzer is operative to analyze the pretreated samples and to produce one or more mass spectrometry (MS) spectra. A classifier receives and classifies the one or more MS spectra to provide a measure of product quality of the process fluid corresponding to the sampling location and time of sampling.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 15, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Stephen A. Tate
  • Patent number: 11488815
    Abstract: A method of mass and/or ion mobility spectrometry is disclosed that comprises accumulating ions for a first period of time (T1) one or more times so as to form one or more first groups of ions, accumulating ions for a second period of time (T2) one or more times so as to form one or more second groups of ions, wherein the second period of time (T2) is less that the first period of time (T1), analysing the one or more first groups of ions to generate one or more first data sets, analysing the one or more second groups of ions to generate one or more second data sets, and determining whether the one or more first data sets comprise saturated and/or distorted data. If it is determined that the one or more first data sets comprise saturated and/or distorted data, then the method further comprises replacing the saturated and/or distorted data from the one or more first data sets with corresponding data from the one or more second data sets.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: November 1, 2022
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Steven Derek Pringle, Kevin R. Howes
  • Patent number: 11488818
    Abstract: The present disclosure relates to a device for filtering at least one selected ion from an ion beam includes a unit for creating an electric field for accelerating the ions of the ion beam along a flight path of predefinable length, and a controllable ion optical system, which delimits the flight path in one direction, and which is used to deflect the selected ion from a flight path of the ion beam. The device is further designed to control the ion optical system subject to a flight time of the selected ion along the flight path. The present disclosure also relates to a mass spectrometer having a device according to the present disclosure, and to a method for filtering at least one selected ion from an ion beam.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 1, 2022
    Assignee: Analytik Jena AG
    Inventor: Roland Lehmann
  • Patent number: 11476106
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: October 18, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 11474117
    Abstract: A method of mass and/or ion mobility spectrometry is disclosed that includes ionising analyte from a sample so as to generate a plurality of ions, separating precursor ions from first fragment and/or other ions of the plurality of ions, fragmenting or reacting at least some of the precursor ions using a fragmentation, reaction or collision device so as to generate second fragment ions, and then analysing at least some ions that emerge from the fragmentation, reaction or collision device. The sample is classified and/or identified based on the analysis of the second fragment ions.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: October 18, 2022
    Assignee: Micromass UK Limited
    Inventors: Keith George Richardson, Steven Derek Pringle
  • Patent number: 11474072
    Abstract: An apparatus and a method of data independent combined ion mobility and mass spectroscopy analysis includes introducing precursor ions into an ion mobility spectrometer (IMS), sequentially releasing precursor ions from said IMS according to their ion mobility, introducing said released precursor ions into a mass filter, fragmenting the precursor ions transmitted through said mass filter to generate fragment ions, and carrying out a mass spectroscopy measurement on said fragment ions. The IMS and mass filter are controlled in a synchronized manner to carry out a plurality of IM scans, wherein adjacent mass windows in said IM scan that are associated with consecutive mass spectroscopy measurements of fragment ions overlap, such that precursor ions transmitted through said mass filter during said IM scan are located in at least one continuous scan region in an m/z-IM plane which extends in a generally diagonal direction in said m/z-IM plane.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: October 18, 2022
    Assignee: Bruker Daltonics GmbH & Co. KG
    Inventor: Stefan Tenzer
  • Patent number: 11474087
    Abstract: Systems and methods are disclosed for identifying actual XIC peaks of compounds of interest from samples so that more accurate expected retention times and more accurate expected retention time windows can be calculated. In one system, an actual XIC peak is identified using standard samples. The ratio of the quantity of the compound of interest in any two different samples is known, so this ratios is compared to the intensities of the XIC peak calculated in the two samples to identify an actual XIC peak. In another system, an actual XIC peak is identified using information about other compounds of interest in a plurality of samples. It is known that the XIC peaks of compounds of interest in the same samples have a similar distribution of retention times across those samples, so the distributions of retention times of XIC peaks are compared to identify actual XIC peaks.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: October 18, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Gordana Ivosev
  • Patent number: 11469073
    Abstract: The disclosure describes various aspects of a cryogenic trapped-ion system. In an aspect, a method is described that includes bringing a chain of ions in a trap at a cryogenic temperature, the trap being a micro-fabricated trap, and performing quantum computations, simulations, or both using the chain of ions in the trap at the cryogenic temperature. In another aspect, a method is described that includes establishing a zig-zag ion chain in the cryogenic trapped-ion system, detecting a change in a configuration of the zig-zag ion chain, and determining a measurement of the pressure based on the detection in the change in configuration. In another aspect, a method is described that includes measuring a low frequency vibration, generating a control signal based on the measurement to adjust one or more optical components, and controlling the one or more optical components using the control signal.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: October 11, 2022
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Christopher Monroe, Guido Pagano, Paul W. Hess, Harvey B. Kaplan, Wen Lin Tan, Philip J. Richerme
  • Patent number: 11460769
    Abstract: An actinic ray-sensitive or radiation-sensitive composition, and an actinic ray-sensitive or radiation-sensitive composition obtained by the method for producing an actinic ray-sensitive or radiation-sensitive composition each contain a cation having a metal atom, and a ligand, in which a value of ? represented by Equation (1) is 2.2 or less. A pattern forming method and the method for manufacturing an electronic device each use the actinic ray-sensitive or radiation-sensitive composition.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: October 4, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Wataru Nihashi, Hideaki Tsubaki
  • Patent number: 11454611
    Abstract: A method of analysis using mass spectrometry and/or ion mobility spectrometry is disclosed comprising: (a) using a first device to generate smoke, aerosol or vapour from a target plant material; (b) mass analysing and/or ion mobility analysing said smoke, aerosol or vapour, or ions derived therefrom, in order to obtain spectrometric data; and (c) analysing said spectrometric data in order to identify and/or characterise said plant material.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 27, 2022
    Assignee: Micromass UK Limited
    Inventors: Emrys Jones, Sara Stead, Julia Balog, Richard Schafer
  • Patent number: 11454636
    Abstract: A prediction of type 2 diabetes development through quantitative analysis of N-glycans attached to the plasma proteins of a healthy person, which enables determination of whether the investigated person belongs to a risk group for type 2 diabetes development in the future. Using obtained quantitative percentages of all analyzed N-glycans as input variables of a model F: F(GP1, GP2, . . . , GPX; D, S), where X, D and S are parameters of the model F: X=total number of analyzed N-glycans; D=age of the investigated person; S=sex of the investigated person; male=1, female=0. Obtaining constants of the model F (GP1, GP2, . . . , GPX; D, S) by statistical data processing and modelling from analyzed population. Comparing obtained result F for the investigated person with a statistically determined threshold T, which defines the threshold of increased risk for type 2 diabetes (T2D) development in the future.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 27, 2022
    Assignee: GENOS d.o.o.
    Inventors: Olga Gornik, Gordan Lauc, Frano Vuckovic, Ivan Gornik
  • Patent number: 11456167
    Abstract: A display area 60 of a display unit of a mass spectrometer shows a result of tuning. The display area 60 includes: a tuning-item displaying section 62 configured to display all tuning items and a result of whether each tuning item has been tuned; and an analyzable-condition displaying section 63 configured to display a condition under which an analysis is possible based on the result. The tuning items may be displayed respectively and individually. Alternatively, the tuning items may be displayed in a grouped manner with a plurality of tuning items in a group. Consequently, a user knows, at a glance, whether the tuning necessary for an analysis that the user intends to perform has been performed. If a necessary tuning item has not been tuned, the user immediately starts to tune (only) the tuning item. Further, a user immediately knows in a current state of tuning whether the analysis that the user intends to perform is possible. Therefore, when the analysis is possible, the user can start the analysis.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: September 27, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Maki Saito, Yuko Kobayashi, Tohru Shiohama
  • Patent number: 11450520
    Abstract: Apparatus and methods for performing charge detection mass spectrometry are disclosed. An analyte ion is injected into an electrostatic trap, which has electrodes shaped and arranged to establish a trapping field that causes the analyte ion to undergo harmonic motion along a longitudinal axis. A time-varying signal is generated by a detector representative of the harmonic motion. A data system processes the time-varying signal to derive the frequency of ion motion and the amplitude at the harmonic motion frequency, and determines the mass-to-charge ratio (m/z) of the ion based on the derived frequency and the charge from the derived amplitude. The product of the experimentally determined m/z and charge yields the mass of the analyte ion. The electrodes preferably include an elongated inner electrode surrounded by an outer electrode, forming an orbital or non-orbital electrostatic trap.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 20, 2022
    Assignee: Thermo Finnigan LLC
    Inventors: Michael W. Senko, Jesse D. Canterbury
  • Patent number: 11430643
    Abstract: A plasma processing system includes a plasma chamber configured to contain a plasma, a shutter chamber fluidically coupled to the plasma chamber via a first orifice, a mass spectrometer fluidically coupled to the shutter chamber, and a shutter disposed in the shutter chamber between the first orifice and the mass spectrometer in the path of a particle beam. The first orifice is configured to generate the particle beam from the plasma using a pressure differential between the shutter chamber and the plasma chamber. The mass spectrometer includes an ionizer configured to ionize species of the particle beam by sweeping through a range of electron energies in a plurality of energy steps. The shutter is configured to open and close during each of the plurality of energy steps.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 30, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Jianping Zhao, Peter Ventzek, Charles Schlechte, Michael Hummel
  • Patent number: 11428666
    Abstract: A device for performing field asymmetric waveform ion mobility spectrometry, “FAIMS” including first and second segmented planar electrodes, each electrode including three or more segments and extending in a direction parallel to an analytical axis of the device, the first and second segmented electrodes are separated from each other to provide an analytical gap therebetween; and propelling means for propelling ions through the analytical gap in a direction parallel to the analytical axis. The device is configured to operate in: a FAIMS mode in which a power supply applies voltage waveforms to the segments to produce an asymmetric time dependent electric field in the analytical gap for FAIMS analysis of ions propelled through the analytical gap; and a transparent mode in which the power supply applies voltage waveforms to the to produce a confining electric field in the analytical gap for focussing ions towards the longitudinal axis.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 30, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Roger Giles, Roch Andrzejewski
  • Patent number: 11430650
    Abstract: A quadrupole mass spectrometer includes: a quadrupole mass filter with four rod electrodes arranged so as to surround a central axis; and a magnet that forms a magnetic field in at least a part of an inside of the quadrupole mass filter in a direction intersecting the central axis.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 30, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Masaru Nishiguchi
  • Patent number: 11408853
    Abstract: In DM-SWATH a plurality of CoVs and a precursor ion mass range are received. A processor performs an iterative series of steps for each CoV of the plurality of CoVs. For each CoV of the plurality of CoVs, the CoV is applied to the DMS device to select a group of precursor ions. A mass filter is instructed to select precursor ions of the group that are within the precursor ion mass range, producing a subgroup of precursor ions. A fragmentation device is instructed to fragment the subgroup of precursor ions, producing a group of product ions. A mass analyzer is instructed to measure the intensity and m/z of the group of product ions, producing a product ion spectrum for each CoV of the plurality of CoVs. DM-SWATH is further used to validate if a known compound is in a sample.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: August 9, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Yves Le Blanc, Brendon Seale
  • Patent number: 11410841
    Abstract: An accelerator mass spectrometry measuring system is disclosed, including: an ECR high-current positive ion source subsystem; an injector subsystem; a high-current accelerator subsystem; a high-energy analysis subsystem; and a high-resolution detector subsystem; of which, the ECR high-current positive ion source subsystem, the injector subsystem, the high-current accelerator subsystem, high-energy analysis subsystem and a high-resolution detector subsystem are connected sequentially; the ECR high-current positive ion source subsystem is configured for generating high-current positive ions of multi-charge states; the high-current accelerator subsystem is configured for accelerating the high-current positive ions. The AMS system is high in beam, high in overall efficiency, and strong in how-down capability, and can greatly improve the abundance sensitivity of measurement.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 9, 2022
    Assignee: Qixianhe (Beijing) Technology Co., Ltd.
    Inventor: Shan Jiang
  • Patent number: 11402350
    Abstract: There is provided a method comprising separating a first population of ions according to a first physico-chemical property in a first separation device, and separating one or more groups of ions emerging from the first separation device in a drift tube and sampling each group of ions using the drift tube to determine the collision cross section of ions in each group of ions, wherein each group of ions corresponds to a range of the first physico-chemical property. The drift tube is configured such that multiple groups of ions in the first population of ions can be sampled by the drift tube in a single cycle of separation of the first separation device. The step of sampling each group of ions comprises determining the mobility of ions in each group of ions by measuring their drift time through the drift tube, and determining the collision cross section of the ions in each group of ions using the determined mobility.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 2, 2022
    Assignee: Micromass UK Limited
    Inventors: Jason Lee Wildgoose, Kevin Giles
  • Patent number: 11404257
    Abstract: A method for measuring the chirality of molecules in a sample of chiral molecules, the sample including at least one chemical species, the method including the steps of: introducing the sample of chiral molecules into an ionisation area; ionising the molecules by electromagnetic radiation in the ionisation area; and detecting a distribution of electrons produced by ionisation and emitted at the front and back of the ionisation area relative to the axis, z, of propagation of the electromagnetic radiation; wherein the electromagnetic radiation is elliptically polarised, the ellipticity varying continuously and periodically as a function of time, the method further including a step of: determining the chirality of the molecules from the electron distribution detected continuously as a function of time. A system is also provided for measuring the chirality of molecules using such a method.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 2, 2022
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE BORDEAUX
    Inventors: Yann Mairesse, Antoine Comby
  • Patent number: 11404179
    Abstract: An ionic optical cavity coupling system and method are described. The system includes a first optical cavity, a second optical cavity, and an ion trap system including a direct current electrode pair, a grounding electrode pair, and a radio frequency electrode pair. At least one ion is arranged in the ion trap system. Furthermore, the first optical cavity is used for obtaining a quantum optical signal and sending the quantum optical signal to the ion trap system, so that quantum information of the quantum optical signal is transferred to a single ion in the ion trap system. The second optical cavity is used for obtaining quantum information in the single ion in the ion trap system.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 2, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Dongyang Cao
  • Patent number: 11404258
    Abstract: A method of mass spectrometry is disclosed comprising mass analysing an eluent from a chromatography device and obtaining parent ion data sets and corresponding product ion data sets, and determining whether, in a first product ion data set, one or more product ions are present that are related to one or more parent ions in a corresponding first parent ion data set, based on the mass or mass to charge ratio and/or intensity of the one or more product ions and the one or more parent ions. If it is determined that the one or more product ions are present, the method further comprises removing the one or more product ions from one or more second product ion data sets to produce one or more second modified product ion data sets and/or removing ions other than the one or more product ions from the first product ion data set to produce a first modified product ion data set.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 2, 2022
    Assignee: Water Technologies Corporation
    Inventors: Daniel Golick, Scott Geromanos, Marc V Gorenstein, Steven J Ciavarini, Keith Fadgen
  • Patent number: 11397165
    Abstract: An analyzer according to the present invention includes an electron emission element, a detector, an electric field generator, an electrostatic gate electrode, and a controller, in which the electron emission element includes a lower electrode, a surface electrode, and an intermediate layer, and directly or indirectly generates anions by electrons emitted in an ionization region between the electron emission element and the electrostatic gate electrode, the electrostatic gate electrode controls injection of the anions into a drift region between the electrostatic gate electrode and the detector, the detector detects the anions move through the drift region by a potential gradient, and the controller applies a pulse voltage between the lower electrode and the surface electrode, and applies a voltage to the electrostatic gate electrode such that the electrostatic gate electrode injects the anions into the drift region during a time when the pulse voltage is on.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: July 26, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Chika Hirakawa, Tadashi Iwamatsu
  • Patent number: 11397166
    Abstract: The invention generally relates to high-throughput label-free enzymatic bioassays using desorption electrospray ionization-mass spectrometry (DESI-MS).
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: July 26, 2022
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Nicolás M. Morato, Dylan T. Holden
  • Patent number: 11393668
    Abstract: The invention generally relates to methods for analyzing an analyte in a sample that involve providing a capture module, the module configured to capture an analyte from a sample in an ambient environment and generate ions of the analyte, wherein the capture module comprises a cartridge and a porous substrate within the cartridge that is connected to a voltage source; and generating ions of the analyte from the capture module that are analyzed in a mass analyzer operably coupled to the capture module, thereby analyzing the analyte in the sample.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: July 19, 2022
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Ahmed Mohamed Hamid, Alan Keith Jarmusch, Zheng Ouyang
  • Patent number: 11393667
    Abstract: A sample support body includes: a substrate having a first surface and a second surface opposite to each other; and a conductive layer provided on at least the first surface. A plurality of through-holes, which open to the second surface and to a third surface of the conductive layer which is locate at a side opposite to the substrate, are provided in the substrate and the conductive layer. A protective film having a higher affinity with water than the substrate is provided on the second surface, the third surface, and each inner surface of the plurality of through-holes.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 19, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasuhide Naito, Takayuki Ohmura, Masahiro Kotani
  • Patent number: 11385239
    Abstract: Methods and system for identifying and/or quantifying a protein are provided herein.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 12, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Yuetian Yan, Shunhai Wang
  • Patent number: 11387093
    Abstract: The present invention provides an electrode arrangement 10, 10? for an ion trap, ion filter, an ion guide, a reaction cell or an ion analyser. The electrode arrangement 10, 10? comprises an RF electrode 12a, 12b, 12a?, 12b? mechanically coupled to a dielectric material 11. The RF electrode 12a, 12b, 12a?, 12b? is mechanically coupled to the dielectric material 11 by a plurality of separators 13 that are spaced apart and configured to define a gap between the RF electrode 12a, 12b, 12a?, 12b? and the dielectric material 11. Each of the plurality of separators 13 comprises a projecting portion 13b and the dielectric material 11 comprises corresponding receiving portions 11a such that on coupling of the RF electrode 12a, 12b, 12a?, 12b? to the dielectric material 11, the projecting portion 13b of each separator 13 is received within the corresponding receiving portion 11a of the dielectric material 11.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: July 12, 2022
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Wilko Balschun, Jan-Peter Hauschild, Denis Chernyshev, Eduard V. Denisov
  • Patent number: 11380533
    Abstract: An analyzer apparatus (1) includes: an ionization unit (11) that ionizes molecules to analyze; a filter unit (13) that forms a field for selectively passing ions generated by the ionization unit; a detector unit (14) that detects ions that have passed through the filter unit; an ion drive circuitry (61) that electrically drives the ionization unit; a field drive circuitry (62) that electrically drives the filter unit; and a control unit (22) that controls outputs of the ion drive circuitry and the field drive circuitry, wherein the control unit controls the ion drive circuitry to ramp up and down a filament voltage supplied to a filament of the ionization unit when the analyzer apparatus starts and stops.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: July 5, 2022
    Assignee: ATONARP INC.
    Inventors: Prakash Sreedhar Murthy, Anoop R. Hegde, Takeshi Sato
  • Patent number: 11361958
    Abstract: A method of operating a quadrupole device is disclosed. The method comprises operating the quadrupole device in a first mode of operation, wherein ions within a first mass to charge ratio range are selected and/or transmitted by the quadrupole device, and operating the quadrupole device in a second mode of operation, wherein ions within a second different mass to charge ratio range are selected and/or transmitted by the quadrupole device. In the first mode of operation, the quadrupole device is operated in a normal mode of operation wherein a main drive voltage is applied to the quadrupole device, or in a first X-band or Y-band mode of operation wherein a main drive voltage and two or more auxiliary drive voltages are applied to the quadrupole device. In the second mode of operation, the quadrupole device is operated in a second X-band or Y-band mode of operation wherein a main drive voltage and two or more auxiliary drive voltages are applied to the quadrupole device.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 14, 2022
    Assignee: Micromass UK Limited
    Inventors: David Gordon, David Langridge, Martin Raymond Green, Richard Moulds, Daniel J. Kenny, Kenneth Worthington
  • Patent number: 11361957
    Abstract: A time-of-flight mass spectrometer includes a flight tube, an ion introduction unit that is connected to the flight tube, an ion detector that detects an ion flown in the flight tube, and a control unit that controls the ion introduction unit and the flight tube, wherein: the control unit sequentially changes an accumulation state of the ion to be introduced into the flight tube by the ion introduction unit, for a plurality of measurement processes performed repeatedly.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 14, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Hideaki Izumi
  • Patent number: 11355328
    Abstract: The invention generally relates to systems and methods for isolating a target ion in an ion trap. In certain aspects, the invention provides a system that includes a mass spectrometer having an ion trap, and a central processing unit (CPU). The CPU includes storage coupled to the CPU for storing instructions that when executed by the CPU cause the system to apply a dual frequency waveform to the ion trap that ejects non-target ions from the ion trap while retaining a target ion in the ion trap.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 7, 2022
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Dalton Snyder
  • Patent number: 11355335
    Abstract: The invention provides hybrid mass spectrometric systems which comprise an ion source, a first trapped ion mobility spectrometry (TIMS) analyzer and a mass analyzer, wherein the TIMS analyzer is located and operated in a first vacuum chamber at an elevated pressure above 500 Pa, and methods for operating the hybrid mass spectrometric systems.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 7, 2022
    Inventor: Melvin Andrew Park
  • Patent number: 11355329
    Abstract: Provided is a mass spectrometer including: a measurement condition setter (42) configured to set a plurality of measurement conditions which are different from each other in terms of the set value of at least one measurement parameter; a measurement executer (43) configured to acquire a plurality of sets of mass spectrometric data respectively corresponding to the plurality of measurement conditions; a product ion extractor (44) configured to extract product ions detected with intensities exceeding a previously determined reference value; an MRM spectrum element information creator (45) configured to determine the mass-to-charge ratios and measured intensities of the extracted product ions, the mass-to-charge ratio of the precursor ion, as well as the measurement condition, and to create a plurality of pieces of MRM spectrum element information; an MRM spectrum composer (46) configured to compose an MRM spectrum from the mass-to-charge ratios and the measured intensities of the product ions included in the pl
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 7, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Kazuya Ukai, Yuji Katsuyama
  • Patent number: 11355333
    Abstract: Provided is a sample support body that includes a substrate and an ionization substrate. The ionization substrate has a measurement region for dropping a sample on a second surface. A plurality of through-holes that open in a first surface and the second surface are formed in at least the measurement region of the ionization substrate. A conductive layer is provided on peripheral edges of the through-holes on at least the second surface. At least a part of the substrate which is adjacent to the ionization substrate is formed to enable the sample to move to the inside of the substrate.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: June 7, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takayuki Ohmura, Masahiro Kotani
  • Patent number: 11348771
    Abstract: The invention relates to the identification and visualization of the spatial distribution of particular tissue states in histological tissue sections from mass spectrometric signals acquired with spatial resolution. The invention proposes a method by means of which regions of the tissue with similar mass spectra are found automatically, and it is further proposed that mass spectra of these regions are summed in order to improve the spectral quality to such an extent that known markers for tissue degenerations can be identified with increased certainty. Regions of similar mass spectra can be interconnected on a large scale, but can also be isolated from each other on a small scale.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 31, 2022
    Inventors: Sören-Oliver Deininger, Martin Schürenberg
  • Patent number: 11348774
    Abstract: A method and system for injecting a sample into a receiving LC/MS/MS system that is configured to determine a concentration of GenX within the sample, wherein the LC/MS/MS includes ESI. The sample is subjected to one or more of the following ESI conditions: i) a probe gas temperature of approximately 120° C. to approximately 160° C.; ii) a sheath gas heater setting of approximately 150° C. to approximately 275° C.; and iii) a sheath gas flow of approximately 6 L/min to approximately 11 L/min. The concentration of GenX within the sample may have a minimum reporting level of approximately 0.010 ?g/L.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 31, 2022
    Assignee: Suffolk County Water Authority
    Inventor: Amanda Comando
  • Patent number: 11348776
    Abstract: A disease diagnostic system where a sample preparation unit and/or a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) data generation unit may be integrated in one system or a set of a system to improve the user-friendliness of the system. The system may include a sample preparation unit with processing modules and/or a handler to move samples in an autonomous manner to enhance reproducibility of measurement data and/or user-friendliness. A different set of processing modules may be selected for a particular disease type (e.g. such as cancer) to be diagnosed. The system may be used to identify biomaterials such as bacteria, virus, and fungi from body fluids like blood, urine, and saliva and other cells.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: May 31, 2022
    Assignee: ASTA, CO. LTD.
    Inventor: Eung Joon Jo
  • Patent number: 11346808
    Abstract: The present disclosure provides a trace detection device. The trace detection device includes: a box body comprising a main body frame and a top plate, the top plate and the main body frame forming a fully enclosed cavity; an ion migration tube assembly in the cavity and on a first side of the cavity; and a preamplifier and high voltage circuit board in the cavity and on a second side of the cavity, the second side being opposite to the first side.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: May 31, 2022
    Assignees: Nuctech Company Limited, Tsinghua University
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Jianmin Li, Yinong Liu, Yaohong Liu, Yanqin Zhao, Lili Yan, Biao Cao, Qiufeng Ma, Ge Li
  • Patent number: 11339366
    Abstract: Methods are provided for the stabilization and separation of nucleic acids from a sample via contact of the sample with a lysis and stabilization reagent that includes a cationic detergent. The cationic detergent lyses cells in the sample and stabilizes the released nucleic acids via the formation of nucleic acid-surfactant (NAS) complexes. The NAS complexes are centrifugally precipitated, washed, the resuspended in an aqueous resuspension liquid, forming a NAS complex suspension. The suspension is thermally processed to disintegrate the NAS complexes, thereby releasing the nucleic acids and forming a nucleic acid solution. In some example embodiments, the aqueous resuspension liquid is selected to be suitable for performing molecular amplification assays, such that the nucleic acid solution may be employed for performing a molecular amplification assay in the absence of further nucleic acid extraction.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: May 24, 2022
    Assignee: QVELLA CORPORATION
    Inventors: Samad Talebpour, Aye Aye Khine
  • Patent number: 11342171
    Abstract: Method for obtaining gaseous ammonium (NH4+) from an ion source, the ion source comprising a first area (1) and a second area (2) in a fluidly conductive connection, comprising the steps of a) introducing N2 and H2O into the first area (1) and second area (2) of the ion source; b) applying an ionization method to the mixture of N2 and H2O in the first area (1); c) applying at least one electric field or adjusting pressure conditions or a combination of applying at least one electric field and adjusting pressure conditions promoting flow of ions from the first area (1) to the second area (2) and inducing reactions of the ions in the second area (2); d) conducting NH4+ out of the ion source. Ion Molecule Reaction-Mass Spectrometry instrument implementing this method for producing NH4+ and then conducting NH4+ to the reaction region.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: May 24, 2022
    Assignee: IONICON ANALYTIK GESELLSCHAFT. M.B.H.
    Inventor: Eugen Hartungen
  • Patent number: 11342175
    Abstract: A mass spectrometer comprising: a multi-reflecting time of flight (MRTOF) mass analyser or mass separator having two gridless ion mirrors 2 that are elongated in a first dimension (Z-dimension) and configured to reflect ions multiple times in a second orthogonal dimension (X-dimension) as the ions travel in the first dimension; the spectrometer configured to operate in: (i) a first mode for ions having a first rate of interaction with background gas molecules in the mass analyser or separator, such that the ions are reflected a first number of times between the ion mirrors 2; and (ii) a second mode for ions having a second, higher rate of interaction with background gas molecules in the mass analyser or separator, such that ions are reflected a second, lower number of times between the ion mirrors 2.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 24, 2022
    Assignee: Micromass UK Limited
    Inventors: Jeffery Mark Brown, Boris Kozlov
  • Patent number: 11340201
    Abstract: A cloud server platform end is used to construct a mass spectrum species classification model, extract a mass spectrum data feature, and construct a training model of the convolutional neural network; a user platform end is used to upload the mass spectrum, experiment condition and device data, directly screen and identify the type of the mass spectrum based on the mass spectrum species classification model or the mass spectrum information base, automatically compare and identify the species and name of the pesticides based on the neural network model trained by the cloud server platform end, and feedback the comparison result to the user. The disclosure solves the restriction on the purchase of standards for user, the use of the system is not limited by the location, and the pesticide residues could be detected automatically, quickly and accurately.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 24, 2022
    Inventors: Guofang Pang, Qiaoying Chang, Chunlin Fan, Hui Chen, Xingqiang Wu, Ruobin Bai, Zijuan Zhang
  • Patent number: 11333629
    Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the radius of the rod is at least 20.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 17, 2022
    Assignee: ION DX, INC.
    Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
  • Patent number: 11328920
    Abstract: A Time of Flight mass analyser is disclosed comprising: at least one ion mirror ((34) for reflecting ions; an ion detector (36) arranged for detecting the reflected ions; a first pulsed ion accelerator (30) for accelerating an ion packet in a first dimension (Y-dimension) towards the ion detector (36) so that the ion packet spatially converges in the first dimension as it travels to the detector (36); and a pulsed orthogonal accelerator (32) for orthogonally accelerating the ion packet in a second, orthogonal dimension (X-dimension) into one of said at least one ion mirrors (34).
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: May 10, 2022
    Assignee: Micromass UK Limited
    Inventors: John Brian Hoyes, Boris Kozlov
  • Patent number: 11328922
    Abstract: Ions are injected into an orbital electrostatic trap. An ejection potential is applied to an ion storage device, to cause ions stored in the ion storage device to be ejected towards the orbital electrostatic trap. Synchronous injection potentials are applied to a central electrode of the orbital electrostatic trap and a deflector electrode associated with the orbital electrostatic trap, to cause the ions ejected from the ion storage device to be captured by the electrostatic trap such that they orbit the central electrode. Application of the ejection potential and application of the synchronous injection potentials are each started at respective different times, the difference in times being selected based on desired values of mass-to-charge ratios of ions to be captured by the orbital electrostatic trap.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 10, 2022
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Mikhail Belov, Eduard Denisov, Gregor Quiring, Dmitry Grinfeld
  • Patent number: 11328917
    Abstract: A MALDI ion source is disclosed comprising: a target plate (2) having a front surface (4), a rear surface (6), and at least one sample receiving well (9) for receiving a liquid sample or at least one sample receiving channel (8) extending from an opening (12) in the rear surface (6) to an opening (14) in the front surface (4) for receiving a liquid sample (10), wherein each well (9) or channel (8) has a volume of ?1 ?L. The ion source also comprise a laser (16) for ionising a liquid sample (10) on or in the target plate (2), wherein the laser (16) is a pulsed laser set up and configured to have a pulsed repetition rate of ?20 Hz, or is a continuous laser.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: May 10, 2022
    Assignee: Micromass UK Limited
    Inventor: Jeffery Mark Brown
  • Patent number: 11320413
    Abstract: A system and computer program product are provided for calculating one or more indicative properties, e.g., one or more of the cetane number, octane number, pour point, cloud point, octane number, and aniline point of oil fractions, from the density and time of flight mass spectrometry (TOF-MS) of a sample of an oil sample.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: May 3, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Hendrik Muller