Magnetic Field Path-bending Means Patents (Class 250/298)
  • Patent number: 7772547
    Abstract: The disclosed apparatus includes a multi-reflecting time-of-flight mass spectrometer (MR-TOF MS) and an orthogonal accelerator. To improve the duty cycle of the ion injection at a low repetition rate dictated by a long flight in the MR-TOF MS, multiple measures may be taken. The incoming ion beam and the accelerator may be oriented substantially transverse to the ion path in the MR-TOF, while the initial velocity of the ion beam is compensated by tilting the accelerator and steering the beam for the same angle. To further improve the duty cycle of any multi-reflecting or multi-turn mass spectrometer, the beam may be time-compressed by modulating the axial ion velocity with an ion guide. The residence time of the ions in the accelerator may be improved by trapping the beam within an electrostatic trap. Apparatuses with a prolonged residence time in the accelerator provide improvements in both sensitivity and resolution.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: August 10, 2010
    Assignee: Leco Corporation
    Inventor: Anatoli N. Verentchikov
  • Patent number: 7755040
    Abstract: An electric field source for a mass spectrometer and a mass spectrometer are described.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: July 13, 2010
    Assignee: Agilent Technologies, Inc.
    Inventors: Gangqiang Li, Alexander Mordehai
  • Patent number: 7755036
    Abstract: A novel instrument and method for TOF/TOF mass spectrometry is offered. A spiral trajectory time-of-flight mass spectrometer satisfies the spatial focusing conditions for the direction of flight and a direction orthogonal to the direction of flight whenever ions make a turn in the spiral trajectory. An ion gate for selecting precursor ions is placed in the spiral trajectory of the spiral trajectory time-of-flight mass spectrometer. Electric sectors are placed downstream of the ion gate.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 13, 2010
    Assignee: Jeol Ltd.
    Inventor: Takaya Satoh
  • Publication number: 20100116983
    Abstract: A ribbon beam mass analyzer having a first and second solenoid coils and steel yoke arrangement. Each of the solenoid coils have a substantially “racetrack” configuration defining a space through which an ion ribbon beam travels. The solenoid coils are spaced apart along the direction of travel of the ribbon beam. Each of the solenoid coils generates a uniform magnetic field to accommodate mass resolution of wide ribbon beams to produce a desired image of ions generated from an ion source.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 13, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, James S. Buff, Frank Sinclair, Joseph C. Olson
  • Patent number: 7650268
    Abstract: A method and a computer software program for predicting and modeling ion flux colliding with an ion-propelled vehicle traversing a magnetic field predicts a colliding ion path based upon an ion exhaust velocity, an ion charge-to-mass ratio, and a localized magnetic field vector. An ion-propelled vehicle path is predicted based upon a selected trajectory and a vehicle velocity vector. An ion plume is transformed based upon the predicted colliding ion path. The ion-propelled vehicle is projected into the transformed ion plume. The flux is calculated at a silhouette of the projected vehicle.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: January 19, 2010
    Assignee: The Boeing Company
    Inventor: Brian J. Tillotson
  • Patent number: 7645985
    Abstract: The disclosed device is directed toward an apparatus for the separation of ions. The apparatus for the separation of ions comprises a vessel including an inlet fluidly coupled to an outlet. A magnetic field is applied substantially orthogonal to the flow of the fluid. The magnetic field applies a force that separates the oppositely charged ions.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: January 12, 2010
    Assignee: 6X7 Visioneering, Inc.
    Inventors: Charles E. Brokaw, Thomas E. Brokaw, Crystal D. Brokaw
  • Patent number: 7642512
    Abstract: A magnetic field gradient is generated in a space, and a microparticle is flied downward in the space, thereby applying a magnetic force from the magnetic field gradient onto the microparticle. Then, a velocity and an acceleration of the microparticle due to the magnetic force are measured, thereby measuring a mass of the microparticle on the measured velocity and a magnetic susceptibility of the microparticle.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: January 5, 2010
    Assignee: Osaka University
    Inventors: Hitoshi Watarai, Hideaki Monjushiro, Katsuya Watanabe, Masayori Suwa, Mariko Arase
  • Patent number: 7635850
    Abstract: An analyzing electromagnet constituting an ion implanter has a first inner coil, a second inner coil, three first outer coils, three second outer coils, and a yoke. The inner coils are saddle-shaped coils cooperating with each other to generate a main magnetic field which bends an ion beam in the X direction. Each of the outer coils is a saddle-shaped coil which generates a sub-magnetic field correcting the main magnetic field. Each of the coils has a configuration where a notched portion is disposed in a fan-shaped cylindrical stacked coil configured by: winding a laminations of an insulation sheet and a conductor sheet in multiple turn on an outer peripheral face of a laminated insulator; and forming a laminated insulator on an outer peripheral face.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 22, 2009
    Assignee: Nissin Ion Equipment Co., Ltd.
    Inventors: Takatoshi Yamashita, Tadashi Ikejiri, Kohei Tanaka, Weijiang Zhao, Hideyuki Tanaka
  • Patent number: 7612346
    Abstract: The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: November 3, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Ronak J. Bhatt, Chiping Chen, Jing Zhou
  • Publication number: 20090261248
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Application
    Filed: June 13, 2007
    Publication date: October 22, 2009
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Patent number: 7598499
    Abstract: In a particle-beam projection processing apparatus a target (41) is irradiated by means of a beam (pb) of energetic electrically charged particles, using a projection system (103) to image a pattern presented in a pattern definition means (102) onto the target (41) held at position by means of a target stage; no elements—other than the target itself—obstruct the path of the beam after the optical elements of the projection system. In order to reduce contaminations from the target space into the projection system, a protective diaphragm (15) is provided between the projection system and the target stage, having a central aperture surrounding the path of the patterned beam, wherein at least the portions of the diaphragm defining the central aperture are located within a field-free space after the projection system (103).
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 6, 2009
    Assignee: IMS Nanofabrications AG
    Inventor: Elmar Platzgummer
  • Patent number: 7550740
    Abstract: A focused ion beam apparatus enables an ion beam to be focused highly accurately on a sample at the beam spot position of the case of the absence of magnetic field without causing isotope separation of the ion beam on the sample, even when there is a magnetic field on the ion beam optical axis or the magnetic field fluctuates. The focused ion beam apparatus comprises a corrective magnetic field generating unit 10 disposed on the optical axis of the ion beam 3 for correcting the deflection of the ion beam 3 due to an external magnetic field. The corrective magnetic field generating unit 10 includes pole-piece pairs 26A and 26B, each of which having two pole pieces 26a and 26b or 26c and 26d that are adjacent to each other with a gap d. The pole-piece pairs 26A and 26B are disposed opposite to each other with a gap g (>d) across the optical axis of the ion beam 3.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 23, 2009
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Koichiro Takeuchi, Tohru Ishitani
  • Patent number: 7507978
    Abstract: A parallelizing component of an ion implantation system comprises two angled dipole magnets that mirror one another and serve to bend an ion beam traversing therethrough to have a substantially “s” shape. This s bend serves to filter out contaminants of the beam, while the dipoles also parallelize the beam to facilitate uniform implant properties across the wafer, such as implant angle, for example. Additionally, a deceleration stage is included toward the end of the implantation system so that the energy of the beam can be kept relatively high throughout the beamline to mitigate beam blowup.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 24, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, Patrick Splinter
  • Patent number: 7498572
    Abstract: A deflecting electromagnet has first and second magnetic poles that are opposed to each other via an inter-pole space through which an ion beam passes. The deflecting electromagnet further has: a pair of potential adjusting electrodes which are placed to sandwich a path of the ion beam in the same directions as the magnetic poles in the inter-pole space; and a DC potential adjusting power source which applies a positive voltage to the potential adjusting electrodes. The deflecting electromagnet further has a permanent-magnet group for, in the inter-pole space, forming a mirror magnetic field in which intensity is low in the vicinity of the middle in an ion beam passing direction, and intensities in locations which are respectively nearer to an inlet and an outlet are higher than the intensity in the vicinity of the middle.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: March 3, 2009
    Assignee: Nissin Ion Equipment Co., Ltd.
    Inventor: Hideki Fujita
  • Patent number: 7491953
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10<n<100 and 0?x?n+4. The use of such boron hydride clusters results in a dramatic increase in wafer throughput, as well as improved device yields through the reduction of wafer charging. A method of manufacturing a semiconductor device is further described, comprising the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 17, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 7482583
    Abstract: In a time of flight mass spectrometer (TOFMS) having a flight space in which ions fly in a loop orbit formed by a plurality of electric sector fields, the present invention provides a simple structure that creates a spiral path by deflecting the ions in the axial direction of the electric fields at every turn of the ions. In a mode of the present invention, the TOFMS has cylindrical electrodes 11 and 12 for creating electric sector fields E1 and E2, between which a parallel pair of planer magnetic poles 15a and 15b are provided. The planer magnetic poles 15a and 15b create a deflecting magnetic field B1 for shifting the ions in the axial direction (Y-direction) of the electric sector fields. The ions experience a Lorenz force once every turn when they pass through the deflecting magnetic field B1. This construction uses only one pair of magnetic poles facing each other across the ion path P to deflect every ion irrespective of its number of turns.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 27, 2009
    Assignee: Shimadzu Corporation
    Inventor: Yoshihiro Ueno
  • Patent number: 7476855
    Abstract: An ion implantation apparatus, system, and method for controlling an ion beam, wherein a mass analyzer generally positioned between an ion source and an end station is configured to selectively control a path of a desired ion beam. The mass analyzer comprises one or more of an entrance pole mechanism positionable proximate to an entrance of the mass analyzer and an exit pole mechanism positionable proximate to an exit of the mass analyzer, wherein the position of the entrance pole mechanism and exit pole mechanism generally determines the path and focal point of the desired ion beam. A controller is configured to selectively position one or more of the entrance pole mechanism and exit pole mechanism, therein generally controlling the path of the desired ion beam at the exit of the mass analyzer, wherein the control may be based on one or more detected characteristics of the desired ion beam.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 13, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventor: Yongzhang Huang
  • Patent number: 7427751
    Abstract: A mass spectrometer includes a main magnet having spaced-apart polepieces which define a gap, the main magnet producing a magnetic field in the gap, an ion source to generate ions and to accelerate the ions into the magnetic field in the gap, the ion source located outside the gap, and an ion detector to detect a selected species of the ions generated by the ion source and deflected by the magnetic field. The ion detector is located in the gap at a natural focus point of the selected species of ions. The mass spectrometer may be used in a trace gas leak detector.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: September 23, 2008
    Assignee: Varian, Inc.
    Inventors: J. Daniel Geist, Jeffrey Diep, Peter Williams, Charles W. Perkins
  • Patent number: 7385187
    Abstract: A multiple reflecting time-of-flight mass spectrometer (MR-TOF MS) and method of analysis are disclosed. The flight path of ions is folded along a trajectory by electrostatic mirrors. The longer flight path provides higher resolution while maintaining a moderate instrument size.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: June 10, 2008
    Assignee: Leco Corporation
    Inventors: Anatoli Verentchikov, Mikhail Yavor, Joel C. Mitchell, Viatcheslav Arteav
  • Patent number: 7381949
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: June 3, 2008
    Assignee: Coincident Bearns Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 7378651
    Abstract: Disclosed is an apparatus for separating ions including a plurality of first electrode portions, each first electrode portion of the plurality of first electrode portions having a first length and an outer surface that is at least partially curved in a direction transverse to the first length. The apparatus also includes a plurality of second electrode portions arranged in an alternating sequence with the plurality of first electrode portions, each second electrode portion of the plurality of second electrode portions having a second length and an outer surface that is curved in a direction transverse to the second length, a space between the outer surface of a first electrode portion and the outer surface of an adjacent second electrode portion defining a portion of an analytical gap for separating ions.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: May 27, 2008
    Assignee: Thermo Finnigan LLC
    Inventor: Roger Guevremont
  • Publication number: 20080067435
    Abstract: An ion implantation apparatus, system, and method for controlling an ion beam, wherein a mass analyzer generally positioned between an ion source and an end station is configured to selectively control a path of a desired ion beam. The mass analyzer comprises one or more of an entrance pole mechanism positionable proximate to an entrance of the mass analyzer and an exit pole mechanism positionable proximate to an exit of the mass analyzer, wherein the position of the entrance pole mechanism and exit pole mechanism generally determines the path and focal point of the desired ion beam. A controller is configured to selectively position one or more of the entrance pole mechanism and exit pole mechanism, therein generally controlling the path of the desired ion beam at the exit of the mass analyzer, wherein the control may be based on one or more detected characteristics of the desired ion beam.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Inventor: Yongzhang Huang
  • Publication number: 20080061228
    Abstract: An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
    Type: Application
    Filed: March 9, 2007
    Publication date: March 13, 2008
    Inventors: Bo H. Vanderberg, Edward C. Eisner
  • Patent number: 7326941
    Abstract: This invention discloses an ion implantation apparatus with multiple operating modes. It has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. The invention further discloses a two-path beamline in which a second path incorporates a deceleration system incorporating energy filtering. The invention discloses methods of ion implantation in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning, and from a simple path to an s-shaped path with deceleration.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: February 5, 2008
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Jiong Chen, Nicholas R. White
  • Patent number: 7317192
    Abstract: Devices and methods are provided for generating laser-accelerated high energy polyenergetic positive ion beams that are spatially separated and modulated based on energy level. The spatially separated and modulated high energy polyenergetic positive ion beams are used for radiation therapy. In addition, methods are provided for treating patients in radiation treatment centers using therapeutically suitable high energy polyenergetic positive ion beams that are provided by spatially separating and modulating positive ion beams. The production of radioisotopes using spatially separated and modulated laser-accelerated high energy polyenergetic positive ion beams is also provided.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: January 8, 2008
    Assignee: Fox Chase Cancer Center
    Inventor: Chang-Ming Charlie Ma
  • Patent number: 7223972
    Abstract: An analytical instrument, such as a mass spectrometer, the instrument having a magnetic section with a controllable electromagnetic field. Controlling the electromagnetic field is accomplished by controlling a temperature of a base plate within the magnetic section, by controlling a current passing through an electromagnetic coil disposed within the magnetic, by disposing a magnetic shunt across a portion of a yoke of the magnet, or by any of the above either independently or in combination. The magnetic shunt is configured to have a temperature coefficient of remnant flux density that is opposite the temperature coefficient of remnant flux density of a first pair of permanent magnets located within the magnetic section.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 29, 2007
    Assignee: OI Corporation
    Inventors: Eustathios Vassiliou, Gottfried P. Kibelka
  • Patent number: 7164139
    Abstract: One embodiment disclosed relates to a Wien filter for a charged-particle beam apparatus. The charged-particle beam is transmitted through the Wien filter in a first direction. A magnetic field generation mechanism is configured to generate a magnetic field in a second direction which is perpendicular to the first direction, and an electrostatic field generation mechanism is configured to generate an electrostatic field in a third direction which is perpendicular to the first and second directions. The field generation mechanisms are further configured so as to have an offset between the positions of the magnetic and electrostatic fields along the first direction. Another embodiment disclosed relates to a Wien filter type device wherein the magnetic force is approximately twice in strength compared to the electrostatic force. Other embodiments are also disclosed.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: January 16, 2007
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Gabor D. Toth, Douglas K. Masnaghetti, Jeffrey Keister, Eric Munro
  • Patent number: 7115861
    Abstract: A mass spectrometer is provided for identifying mass and velocity distributions in a continuous ion beam is configured with a circular dispersive system creating a rotating electromagnetic field, which is capable of deflecting the ion beam from an initial direction, and a circular position-sensitive detector intercepting the deflected ion beam and providing information from which the ion mass-per-charge ratio is determined
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: October 3, 2006
    Assignee: The Johns Hopkins University
    Inventor: Stefano A. Livi
  • Patent number: 7112789
    Abstract: The present invention provides a windowframe magnet having an aligned array of paired bedstead coils in mirror symmetry can bend a high aspect ratio ribbon ion beam through angle of not less than about 45 degrees and not more than about 110 degrees, and can focus it through a resolving slot for mass analysis. The long transverse axis of the beam, which can exceed 50% of the bend radius, is aligned with the generated magnetic field. The array of paired bedstead coils provide tight control of the fringing fields, present intrinsically good field uniformity, and enable a manufacture of much lighter construction than other magnet styles conventionally in use in the ion implantation industry. Within the system of the present invention, the ribbon beam is refocused with low aberration to achieve high resolving power, which is of significant value in the ion implantation industry. System size is further reduced by using a small ion source and a quadrupole lens to collimate the beam after expansion and analysis.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: September 26, 2006
    Inventors: Nicholas R. White, Jiong Chen
  • Patent number: 7105839
    Abstract: In system for implanting workpieces with an accurately parallel scanned ion beam, a fine-control collimator construct is used to reduce the deviation of the scanned ion beam from a specified axis of parallelism and thereby improve its collimation. The shape of the fine-control collimator matches the ribbon shape of the beam and correction of parallelism in two orthogonal directions is possible. Measurement of the non-parallelism is accomplished by sampling the scanned beam in two planes and comparing timing information; and such measurement is calibrated to the orientation of the workpiece in the plane where ion implantation occurs. Measurement of non-uniformity in the doping profile is accomplished using the same means; and the scan waveform is adjusted to substantially remove any non-uniformity in the doping profile.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 12, 2006
    Inventor: Nicholas R. White
  • Patent number: 7078852
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: July 18, 2006
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 7078713
    Abstract: An electromagnetic regulator assembly for the production of contiguous magnetic fields which are applied to a continuous ion beam is described. The assembly is structured for controlling the uniformity of traveling continuous ribbon-shaped beams; and allows for direct adjustment of the magnetic field gradient of the magnetic field as the parameter for increasing the current uniformity.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 18, 2006
    Inventor: Nicholas R. White
  • Patent number: 7019314
    Abstract: Systems and methods are provided for focusing a scanned ion beam in an ion implanter. A beam focusing system is provided, comprising first and second magnets providing corresponding magnetic fields that cooperatively provide a magnetic focusing field having a time-varying focusing field center generally corresponding to a time-varying beam position of a scanned ion beam along a scan direction. Methods are presented, comprising providing a focusing field having a focusing field center in the scan plane, and dynamically adjusting the focusing field such that the focusing field center is generally coincident with a time-varying beam position of the scanned ion beam along the scan direction.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: March 28, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Peter L. Kellerman
  • Patent number: 7012248
    Abstract: A CMOS time-of-flight “TOF” system-on-a-chip “SoC” for precise time interval measurement with low power consumption and high counting rate has been developed. The analog and digital TOF chip may include two Constant Fraction Discriminators “CFDs” and a Time-to-Digital Converter “TDC”. The CFDs can interface to start and stop anodes through two preamplifiers and perform signal processing for time walk compensation (110). The TDC digitizes the time difference with reference to an off-chip precise external clock (114). One TOF output is an 11-bit digital word and a valid event trigger output indicating a valid event on the 11-bit output bus (116).
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: March 14, 2006
    Assignee: The Johns Hopkins University
    Inventor: Nicholas P. Paschalidis
  • Patent number: 6984821
    Abstract: A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: January 10, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Anthony D. Appelhans, John E. Olson, James E. Delmore
  • Patent number: 6906333
    Abstract: A magnetic sector for charged particle beam transport that includes a magnetic field profile that achieves a linear dispersion from a collimated beam of charged particles proportional to their mass-energy-to-charge ratio. In one embodiment, the field profile necessary for the linear dispersion is obtained by the use of shaped, highly permeable poles powered by permanent magnets or electromagnetic coils.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: June 14, 2005
    Assignees: University of Washington, STI Optronics Inc.
    Inventors: Adi A. Scheidemann, Kem Robinson, Patrick L. Jones, Stephen C. Gottschalk
  • Patent number: 6906453
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: June 14, 2005
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 6906321
    Abstract: In a TOF-MS according to the present invention, ions fly a round orbit or a reciprocal path once or more than once to be separated by their mass to charge ratios before they are detected by a detector, The detector is movable at least in two positions, where the effective distances from the exit of the round orbit or the reciprocal path to the detector are different. The length of time of flight of ions in each position of detector is measured, and the mass to charge ratio of an ion is calculated based on the difference of the lengths of time of flight in at least two positions. Similarly, the ion source may be movable at least in two positions, and a similar method can be used to calculate or estimate the mass to charge ratio of ions.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: June 14, 2005
    Assignee: Shimadzu Corporation
    Inventor: Shinichi Yamaguchi
  • Patent number: 6900434
    Abstract: A hollow exciting current pathway in the form of a conductor is arranged outside of an ion deflection casing with a curved contour and having an inlet and an outlet. The conductor is composed of a widthwise spiral formation of conductors running through the inlet and outlet and along the curved contour with a result that a magnetic field which is uniform widthwise is formed in the ion deflection casing. An ion beam is introduced through between the conductors at the inlet into the hollow exciting current pathway. By the action of the magnetic field through the hollow exciting current pathway, the ion beam is bent depending upon mass of ions. The ion beam with desired mass is taken out through between the conductors at the outlet with a result that an ion beam greater in size can be ion mass separated uniformly.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: May 31, 2005
    Assignee: Ishikawajima-Harima Jukogyo Kabushiki Kaisha
    Inventor: Hajime Kuwabara
  • Patent number: 6881966
    Abstract: A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: April 19, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Robert D. Rathmell, Yongzhang Huang
  • Patent number: 6855939
    Abstract: The invention relates to a particle beam system comprising a particle source (1), a mirror corrector (9, 21 to 25), and an objective lens (16). The mirror corrector comprises an electrostatic mirror (9) and a magnetic beam deflector (21, 22, 23, 24, 25), which is arranged between the particle source (1) and the electrostatic mirror (9) as well as between the electrostatic mirror (9) and the objective lens (16). The magnetic beam deflector (21, 22, 23, 24, 25) is free from dispersion for each single pass. The magnetic beam deflector (21, 22, 23, 24, 25) also comprises quadrupoles and/or quadrupole components, which are provided in such a manner that a maximum of two planes, which are conjugated with regard to the diffraction plane (28) of the objective lens (16), occur on the entire path length between the first outlet from the magnetic beam deflector (21, 22, 23, 24, 25) and from the objective lens (16).
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: February 15, 2005
    Assignee: Leo Elektronenmikroskopie GmbH
    Inventors: Harald Rose, Dirk Preikszas, Peter Hartel
  • Patent number: 6843375
    Abstract: A magnetic sector for charged particle beam transport that includes a magnetic field profile that achieves a linear dispersion from a collimated beam of charged particles proportional to their mass-energy-to-charge ratio. In one embodiment, the field profile necessary for the linear dispersion is obtained by the use of shaped, highly permeable poles powered by permanent magnets or electromagnetic coils.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 18, 2005
    Assignees: The University of Washington, STI Optronics, Inc.
    Inventors: Adi A. Scheidemann, Kem Robinson, Patrick L. Jones, Stephen C. Gottschalk
  • Patent number: 6838676
    Abstract: A method for slowing and controlling a beam of charged particles includes the steps of superimposing at least one magnetic field on a mass and passing the beam through the mass and at least one magnetic field such that the beam and the mass slows but does not stop the particles. An apparatus for slowing and controlling a beam of charged particles includes a bending magnetic field superimposed on a focusing magnetic field within a mass.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: January 4, 2005
    Assignee: HBar Technologies, LLC
    Inventor: Gerald P. Jackson
  • Patent number: 6835930
    Abstract: A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: December 28, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Yongzhang Huang
  • Patent number: 6833545
    Abstract: The present invention relates to analysis devices having means (3, 5, 7) for producing a plurality of ion beams of samples substantially simultaneously; mass separating means for individually mass separating each ion beam in parallel and detecting means (131-13n) for detecting said mass separated ion beams substantially simultaneously, and to methods for using such devices.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: December 21, 2004
    Assignee: Amersham Biosciences AB
    Inventor: Jan Axelsson
  • Patent number: 6831276
    Abstract: A mass sensor, in an exemplary embodiment, includes a housing that includes a first plate, a second plate, and a center portion positioned between the first and second plates. The mass analyzer also includes an ionizer a double focusing mass spectrometer, and an ion detector. The ionizer, the double focusing mass spectrometer, and the ion detector are located in a cavity in the housing. The double focusing mass spectrometer includes an electric sector energy analyzer that includes a first element located on an inside surface of the first plate, and a second element located on an inside surface of the second plate. The first and second elements are substantially concentric and congruent and have a circular arc shape. Each first and second element include a first boundary electrode, a second boundary electrode, and a continuous resistive material extending between the first and second boundary electrodes.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: December 14, 2004
    Inventors: Philip S. Berger, W. Ronald Gentry, Henry W. Rohrs
  • Publication number: 20040227074
    Abstract: A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
    Type: Application
    Filed: January 8, 2004
    Publication date: November 18, 2004
    Inventors: Victor M. Benveniste, Yongzhang Huang
  • Patent number: 6815666
    Abstract: A negative ion source placed inside a negatively-charged high voltage electrode emits a beam which is accelerated to moderate energy, approximately 35,000 electron volts, and filtered by a momentum analyzer i.e. an analyzing bending magnet, to remove unwanted ions. Reference ions such as carbon-12 are deflected and measured in an off-axis Faraday cup. Ions of interest, such as carbon ions of mass 14, are accelerated through 300 kV to ground potential and passed through a gas stripper where the ions undergo charge exchange and molecular destruction. The desired isotope, carbon-14 along with fragments of the interfering molecular ions, emerge from the stripper into a momentum analyzer which removes undesirable isotope ions. The ions are further filtered by passing through an electrostatic spherical analyzer to remove ions which have undergone charge exchange. The ions remaining after the spherical analyzer are transmitted to a detector and counted.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: November 9, 2004
    Assignee: National Electrostatics Corp.
    Inventors: James B. Schroeder, James A. Ferry
  • Patent number: 6815880
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: November 9, 2004
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 6781117
    Abstract: An improved collison or reaction cell for collecting and focusing gas-phase ions in a mixture from an ion source or a mass analyzer into a gas-filled collision cell, inducing fragmentation or reaction of the ions by interaction with neutral or ionic gas-phase species, passing the resultant ionic products into another mass analyzer, determining the mass spectrum of the collision fragment ions to confirm the identity of the components in a mixture. The collision cell simultaneously provides collision gas confinements, precursor and product ion confinement, variability of collision energy, and variability of the DC drift field in the collision cell. Embodiments of this invention are methods and devices for improving the information content of chemical ionic species when coupled in tandem with mass analyzers.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: August 24, 2004
    Inventors: Ross C Willoughby, Edward W Sheehan