Including Fourier Transform Infrared Spectrometry Patents (Class 250/339.08)
  • Patent number: 11965823
    Abstract: A method of correcting for an amplitude change in a spectrometric instrument output includes: exposing a sample in a sample holder to electromagnetic radiation at a plurality of wavenumbers; detecting electromagnetic absorption intensities in the sample at the plurality of wavenumbers; providing to a computer device the detected electromagnetic absorption intensities indexed against wavenumber as spectral data; applying in the computer device a mathematical transform (Icorr) to the spectral data to correct for an amplitude change in the spectrometric instrument's output and calculated by determining a difference (?(SBZ)/) between first derivatives of a logarithmic transformation of spectral data (SBZ) from the zero material sample at two different wavenumber ranges (log10(SBZ(x1))/ and log10(SBZ(x2))/); and calculating the mathematical transform (Icorr) as a function inversely dependent on the determined difference (?(SBZ)/).
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 23, 2024
    Assignee: FOSS Analytical A/S
    Inventors: Per Waaben Hansen, Jeppe Sandvik Clausen
  • Patent number: 11885822
    Abstract: Embodiments in accordance with the present disclosure are directed to apparatuses used for reaction screening and optimization purposes. An example apparatus includes a plurality of reaction vessels, a dispensing subsystem, at least one reactor module, an analysis subsystem, an automation subsystem, and control circuitry. The dispensing subsystem delivers reagents to the plurality of reaction vessels for a plurality of reaction mixtures having varied reaction conditions. The at least one reactor module drives a plurality of reactions within the plurality of reaction vessels. The analysis subsystem analyzes compositions contained in the plurality of reaction vessels. The automation subsystem selectively moves the plurality of reaction vessels from a location proximal to the dispensing subsystem to the at least one reactor module based on experimental design parameters. And, the control circuitry identifies optimum reaction conditions for a target end product based on the analysis.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 30, 2024
    Assignee: SRI International
    Inventors: Nathan Collins, Jeremiah Malerich, Jason D. White, Kevin Luebke, Kristina Rucker, Brian McCoy
  • Patent number: 11754482
    Abstract: This disclosure relates generally to a method and system for determining viscosity information of fluids. The present disclosure utilizes an intensity modulated continuous wave (CW) laser diode-based PA sensing method to obtain a continuous wave photoacoustic (CWPA) spectra. Through this CWPA spectra, a full width half maximum (FWHM) and a spectral area is determined to obtain the information about the viscosity of fluids. Although, the CWPA based sensing technique is used for distinguishing different types of abnormalities in tissues, so far it is not used for measuring viscosity which is an important thermo-physical property. The viscosity information of the fluids from the normalized Gaussian fitted CWPA spectra is based on a viscosity feature computed from a FWHM, and a spectral area. The viscosity feature improves the good of fit parameter (R2) significantly to 0.98 as compared to the traditional only FWHM based viscosity determination for which R2 is 0.91.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 12, 2023
    Assignee: Tata Consultancy Services Limited
    Inventors: Abhijeet Gorey, Arijit Sinharay, Chirabrata Bhaumik, Tapas Chakravarty, Arpan Pal
  • Patent number: 11754496
    Abstract: A gas analysis system with an FTIR spectrometer preferably utilizes a long path gas cell, a narrow band detector, and an optical filter that narrows the detection region to measure hydrogen sulfide.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: September 12, 2023
    Inventors: Martin L. Spartz, Anthony S. Bonanno, Kelly Renee McPartland
  • Patent number: 11680894
    Abstract: A process for identifying an unknown compound in a sample includes matching a peak in a primary Fourier Transform Infrared spectral region of the sample spectrum with reference spectra in the same spectral region to generate an initial list of potential candidates, based, for example on goodness of fit criteria. The initial list can be reduced by retention time information and/or global peak matching techniques that analyze the sample spectrum in regions outside the primary region.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: June 20, 2023
    Assignee: MLS ACQ, INC.
    Inventors: Eddie Dean Wyatt, Martin L. Spartz
  • Patent number: 11644416
    Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: May 9, 2023
    Assignee: NotCo Delaware, LLC
    Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
  • Patent number: 11619562
    Abstract: Systems and methods for efficiently identifying gas leak locations may include traversing, by an investigator and within a search area in which a gas leak has been indicated, a route defined according to at least one of a surge-cast algorithm or a surge-spiral algorithm. The systems and methods may also include sampling, with a gas detection device carried by the investigator, an environment along the route to identify a location of the gas leak.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: April 4, 2023
    Assignee: ABB Schweiz AG
    Inventors: J. Brian Leen, Douglas S. Baer, Susan Kasper, Zachary Plante
  • Patent number: 11573204
    Abstract: A photoacoustic sensor includes a first MEMS device and a second MEMS device. The first MEMS device includes a first MEMS component including an optical emitter, and a first optically transparent cover wafer-bonded to the first MEMS component, wherein the first MEMS component and the first optically transparent cover form a first closed cavity. The second MEMS device includes a second MEMS component including a pressure detector, and a second optically transparent cover wafer-bonded to the second MEMS component, wherein the second MEMS component and the second optically transparent cover form a second closed cavity.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: February 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Rainer Markus Schaller, Jochen Dangelmaier, Matthias Eberl, Simon Gassner, Franz Jost, Stefan Kolb, Horst Theuss
  • Patent number: 11513314
    Abstract: An optical setup, comprising one or more platforms having a plurality of fixation locations repeatedly arranged, and defining a discrete position coordinate system; and a plurality of modular optical units, each comprising an optical portion defining an optical axis fixedly attached to at least one mounting surface comprising complementary geometry to the fixation locations; wherein a releasable attachment of the plurality of modular optical units at the fixation locations defines a plurality of optical axes at least a portion of the optical axes overlapping across the discrete position coordinate system In some embodiments, the modular optical units include standard optical elements In some embodiments, the platform includes an attachment interface to an optical table and/or another platform In some embodiments, laser pulses are synchronized by fixing a discrete path length over the fixation locations In some embodiments the fixation locations are located on multiple planes in 3D space.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: November 29, 2022
    Assignee: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Haim Suchowski, Assaf Levanon
  • Patent number: 11467140
    Abstract: Methods and systems for measuring, in a gas stream, an analyte concentration level from a gas chromatography elution peak outputted by a gas chromatography system are provided. The method includes receiving an analyte signal representative of the gas chromatography elution peak in the time domain, converting the analyte signal from the time-domain to the frequency domain, in the frequency domain, preprocessing the analyte signal to distinguish frequencies of the analyte signal, integrating the analyte signal after preprocessing to obtain a redressed analyte signal in the time domain, the redressed analyte signal having a substantially Gaussian shape, and processing the redressed analyte signal to obtain the analyte concentration level.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 11, 2022
    Inventors: Yves Gamache, Andre Lamontagne
  • Patent number: 11300948
    Abstract: A process control method for manufacturing semiconductor devices, including determining a quality metric of a production semiconductor wafer by comparing production scatterometric spectra of a production structure of the production wafer with reference scatterometric spectra of a reference structure of reference semiconductor wafers, the production structure corresponding to the reference structure, the reference spectra linked by machine learning to a reference measurement value of the reference structure, determining a process control parameter value (PCPV) of a wafer processing step, the PCPV determined based on measurement of the production wafer and whose contribution to the PCPV is weighted with a first predefined weight based on the quality metric, and based on a measurement of a different wafer and whose contribution to the PCPV is weighted with a second predefined weight based on the quality metric, and controlling, with the PCPV, the processing step during fabrication.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 12, 2022
    Assignees: NOVA LTD, GLOBALFOUNDRIES INC.
    Inventors: Taher Kagalwala, Alok Vaid, Shay Yogev, Matthew Sendelbach, Paul Isbester, Yoav Etzioni
  • Patent number: 11259703
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 1, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 11255893
    Abstract: A method measures a characteristic of a SUT using a signal measurement device having multiple input channels. The method includes digitizing first and second copies of the SUT in first and second input channels to obtain first and second digitized waveforms; repeatedly determining measurement values of the SUT characteristic in the first and second digitized waveforms to obtain first and second measurement values, respectively, each second measurement value being paired with a first measurement value to obtain measurement value pairs; multiplying the first and second measurement values in each of the measurement value pairs to obtain measurement products; determining a mean-squared value (MSV) of the SUT characteristic measurement; and determining a square root of the MSV to obtain a root-mean-squared (RMS) value of the measured SUT characteristic, which substantially omits variations not in the SUT, which are introduced by only one of the first or second input channel.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 22, 2022
    Assignee: Keysight Technologies, Inc.
    Inventor: Steven D. Draving
  • Patent number: 11175212
    Abstract: An apparatus and method for analyzing particulates in a sample is disclosed. The method includes placing the sample on a moveable stage in an apparatus having a tunable MIR light scanner and a visible imaging system, the stage moving between the MIR light scanner and the visible imaging system, providing a visible image of the sample, and receiving user input as to a region of the sample that is to be analyzed. The sample is then moved to the MIR light scanner, the MIR light scanner generating an MIR light beam that is focused to a point on the specimen and measuring light reflected from the specimen. The specimen is then scanned at a first MIR wavelength by moving the specimen relative to the MIR light beam, and particles are identified that meet a selection criterion. The MIR absorption spectrum of each of the identified particle is then automatically measured.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 16, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: Christopher Ryan Moon, Andrew Ghetler, Matthew Kole
  • Patent number: 11085755
    Abstract: A method for determining the thickness of a plurality of coating layers, the method comprising: performing a calibration analysis on calibration data to determine initial values and search limits of optical parameters of said plurality of coating layers, irradiating the said plurality of layers with a pulse of THz radiation, said pulse comprising a plurality of frequencies in the range from 0.01 THz to 10 THz; detecting the reflected radiation to produce a sample response said sample response being derived from the reflected radiation; producing a synthesised waveform using the optical parameters and predetermined initial thicknesses of said layers; and varying said thicknesses and varying said optical parameters within the said search limits to minimise the error measured between the sample response and the synthesised waveform; and outputting the thicknesses of the layers.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 10, 2021
    Assignee: TeraView Limited
    Inventors: Ian Stephen Gregory, Robert May, Daniel James Farrell
  • Patent number: 11060914
    Abstract: An ATR scanner and method for calibrating the same are disclosed. The scanner includes an ATR objective having a reflecting face and an optical port adapted to receive a first light beam, and to focus the first light beam to a point, at a location on the reflecting face such that the first light beam is reflected by the reflecting face and no portion of the first light beam strikes the reflecting face at an angle greater than the critical angle. A detector measures an intensity of light reflected from the reflecting face. A controller controls the location of the focal point and determines an intensity of light that was incident on the reflecting face as a function of the position on the reflecting face and an intensity of light that was reflected from the reflecting face as a function of position on the reflecting face.
    Type: Grant
    Filed: September 30, 2018
    Date of Patent: July 13, 2021
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Christopher Ryan Moon, Charles Hoke
  • Patent number: 10948347
    Abstract: This far-infrared spectroscopy device is provided with: a variable wavelength far-infrared light source that generates first far-infrared light; an illuminating optical system that irradiates a sample with the first far-infrared light; a detecting nonlinear optical crystal that converts second far-infrared light into near-infrared light using pump light, said second far-infrared light having been transmitted from the sample; and a far-infrared image-forming optical system that forms an image of the sample in the detecting nonlinear optical crystal. The irradiation position of the first far-infrared light on the sample does not depend on the wavelength of the first far-infrared light.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: March 16, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Kei Shimura, Mizuki Oku, Kenji Aiko
  • Patent number: 10839503
    Abstract: A system and method for non-destructively determining characteristics of a vegetable or fruit may include processing an image of the vegetable or fruit to produce image analysis results; analyzing hyperspectral and/or Near Infrared (NIR) illumination reflected from the vegetable or fruit to produce reflection analysis results; and calculating at least one value that reflects at least one characteristic of the vegetable or fruit based on the image analysis results and based on the reflection analysis results.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 17, 2020
    Assignee: ClariFruit
    Inventors: Avi Schwartzer, Ruby Boyarski
  • Patent number: 10837900
    Abstract: A method for detecting notoginseng using terahertz technology. The notoginseng samples are pulverized in pulverizer. The pulverized samples are mixed with polyethylene powder in the ratio of 1:4 to 1:6. The powder mixture is pressed in a tablet press to obtain notoginseng tablet. Terahertz spectrograph is started. A peak is saved, and a background signal is measured. The time-domain graph of the background without sample is acquired. The time-domain graphs of the notoginseng tablets are acquired. The time-domain graphs are transformed into frequency-domain graphs by Fourier transform. The frequency-domain graphs are converted to obtain absorption spectrum of the notoginseng tablets. The absorption peak position of test tablet is compared with that of standard tablet to determine its authenticity. The concentration of key active substances of the notoginseng test sample is quantitatively analyzed by integrating the area under absorption peak curve of the notoginseng test sample.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 17, 2020
    Assignee: University of Shanghai for Science and Technology
    Inventors: Yan Peng, Yiming Zhu, Tianyi Kou, Zhaozhao Sun, Haicheng Xiao, Chenjun Shi, Liping Wang, Songlin Zhuang
  • Patent number: 10527545
    Abstract: To provide a total reflection measurement device that can improve a light utilization rate more than a Cassegrain type objective mirror, is capable of total reflection measurement at low magnification, and can maintain compatibility with a conventional objective mirror. The device (1) includes: a pair of plane mirrors (2a, 2b) disposed on a central axis (P1); a pair of intermediate mirrors (4a, 4b) opposing to the plane mirrors (2a, 2b), respectively; a pair of ellipsoidal mirrors (6a, 6b) opposing to the intermediate mirrors (4a, 4b), respectively; and an ATR crystal (8) provided at a position nearer to the sample side than the pair of plane mirrors (2a, 2b) on the central axis (P1).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: January 7, 2020
    Assignee: JASCO Corporation
    Inventors: Noriaki Soga, Hiroshi Sugiyama, Jun Koshobu
  • Patent number: 10416004
    Abstract: A resin impregnation detection device configured to detect resin impregnation in a resin impregnation process for a coil insulation layer. The resin impregnation detection device can be inserted in a narrow portion, is capable of detecting impregnation with a liquid resin, and does not leave metal foreign materials other than an optical fiber in a product even after the resin impregnation. The resin impregnation detection device includes an optical fiber including an FBG sensor, and a coating resin, which coats the FBG sensor. The coating resin includes a resin to be softened by contact with a detection target resin. The FBG sensor is applied with a compressive strain caused by cure shrinkage of the coating resin or heat shrinkage thereof from a curing temperature to a normal temperature.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 17, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Michihito Matsumoto, Kazushi Sekine, Ichiya Takahashi
  • Patent number: 10379194
    Abstract: The invention provides in one aspect a fast digital light source tracker aboard a moving ground-based or airborne platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers, making it a versatile tool to measure the absorption of trace gases using the light source's incoming radiation.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: August 13, 2019
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Rainer Volkamer, Sunil Baidar, David Thomson
  • Patent number: 10379056
    Abstract: A method is provided including obtaining an infrared (IR) spectrum of a blood plasma sample by analyzing the blood plasma sample by infrared spectroscopy, and based on the infrared spectrum, generating an output indicative of the presence of a solid tumor or a pre-malignant condition. Other applications are also described.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 13, 2019
    Assignee: TODOS MEDICAL LTD.
    Inventors: Joseph Kapelushnik, Shaul Mordechai, Ilana Nathan, Udi Zelig, Rami Zigdon
  • Patent number: 10229830
    Abstract: The present invention is aimed at providing a method of manufacturing a silicon carbide epitaxial wafer by which a plurality of silicon carbide epitaxial layers of a predetermined layer thickness can be precisely formed. In the present invention, a first n-type SiC epitaxial layer is formed on an n-type SiC substrate so that the rate of change in impurity concentration between the n-type SiC substrate and the first n-type SiC epitaxial layer will be greater than or equal to 20%. A second n-type SiC epitaxial layer is formed on the first n-type SiC epitaxial layer so that the rate of change in impurity concentration between the first n-type SiC epitaxial layer and the second n-type SiC epitaxial layer will be greater than or equal to 20%.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: March 12, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenichi Hamano, Ryo Hattori, Takuyo Nakamura
  • Patent number: 9962075
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: May 8, 2018
    Assignees: Northwestern University, Opticent INC
    Inventors: Ji Yi, Wenzhong Liu, Vadim Backman, Hao F. Zhang, Kieren J. Patel
  • Patent number: 9857323
    Abstract: A method for measuring the component and calorific value of goal gas. The method includes measuring a volume concentration of H2 (TH2) using a thermal conductivity detector (TCD), measuring a volume concentration of O2 using an electrochemical detector (ECD), measuring volume concentrations of CO, CO2, CH4, and CnHm in the coal gas, revising an interference of CH4 in CnHm, revising a measured volume concentration of H2, and calculating the calorific value of the coal gas.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: January 2, 2018
    Assignee: Wuhan Cubic Optoelectronics Co., Ltd.
    Inventors: Zhiqiang Liu, Youhui Xiong, Tao He, Pingjing Shi
  • Patent number: 9841373
    Abstract: A method and apparatus is provided for concentration determination of at least one component in an acid catalyst for hydrocarbon conversion containing an unknown concentration of an acid, an acid-soluble-oil (ASO), and water. An instrument configured for measuring a property of the acid catalyst, has responsivities to concentrations of one of the acid, ASO, and water, substantially independent of the concentrations of the others of the acid catalyst, ASO, and water. A temperature detector is configured to generate temperature data for the acid catalyst. A processor is configured to capture data generated by the temperature detector and the instrument, and to use the data in combination with a model to determine a temperature compensated concentration of the one of the acid, the ASO, and the water. Optionally, one or more other instruments configured for measuring other properties of the liquid mixture may also be used.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 12, 2017
    Assignee: Schneider Electric Systems USA, Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 9835553
    Abstract: Disclosed herein are a method and device for sensing pesticide residues, using terahertz electromagnetic waves. By the method, even a trace amount of pesticide residues on objects such as fruits can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, pesticide residues even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto pesticide residues through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a pesticide residue of interest.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 5, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Ah Seo, Dong-Kyu Lee, Chul-Ki Kim, Taik-Jin Lee, Jae-Hun Kim, Young-Min Jhon
  • Patent number: 9804028
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: February 7, 2015
    Date of Patent: October 31, 2017
    Assignee: Spectral Sciences, Inc.
    Inventor: Pajo Vukovic-Cvijin
  • Patent number: 9752935
    Abstract: Portable analytical equipment, systems, methods, and techniques related thereto is disclosed. Portable analytical equipment can comprise a controller and a probe. The probe can interrogate a sample and receive a response to the interrogation. The controller can select and/or initiate an analysis related to interrogating the sample via the probe. The analysis can be selected from a portfolio of analyses stored on the controller. The controller can analyze the response to the interrogation based on reference data stored on the controller. The controller can determine an indication based on the analyzing the response for presentation via a low-power interface, which can comprise an LED or electrophoretic element. The controller can further be connected to an external device, e.g., a smartphone or remote PC, to present collected data and the analyzing of the response to the interrogation. The disclosed subject matter can be employed in hand-held analytical equipment, e.g., a hand-held Raman spectrometer.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: September 5, 2017
    Assignee: MARQMETRIX, INC.
    Inventors: Brian James Marquardt, John Scott Van Vuren
  • Patent number: 9630348
    Abstract: A method including steps of providing at least one sensor; detecting a plurality of parameters in a thermoplastic using the at least one sensor; generating a plurality of outputs in response to the detecting; and characterizing a contaminant or a percentage of post-consumer recycled thermoplastic content in the thermoplastic as a function of the plurality of outputs having been generated and a thermoplastic pattern signature.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 25, 2017
    Assignee: Dialogr Systems, LLC
    Inventors: Jeffrey E. Danes, Keith L. Vorst
  • Patent number: 9619903
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: April 11, 2017
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Ji Yi, Wenzhong Liu, Vadim Backman, Hao F. Zhang
  • Patent number: 9612108
    Abstract: In accordance with an embodiment, a measurement apparatus includes a library creation unit, a spectral profile acquiring unit, and a measurement unit. The library creation unit creates a library in which a layer stack model is matched to a theoretical profile regarding a pattern of stacked layers. The spectral profile acquiring unit acquires an actual measured profile by applying light to a measurement target pattern obtained when the pattern is actually created. The measurement unit measures the sectional shape of the measurement target pattern by performing fitting of the theoretical profile to the actual measured profile. The layer stack model is created by calculating a feature value that reflects the intensity of reflected light from an interface for each of the layers, determining a priority order of analysis from the feature value, and sequentially performing fitting of the theoretical profile to the measured profile in the determined priority order.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 4, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Toru Mikami
  • Patent number: 9606057
    Abstract: A method is provided comprising, obtaining an infrared (IR) spectrum of a Peripheral Blood Mononuclear Cells (PBMC) sample by analyzing the sample by infrared spectroscopy; and based on the infrared spectrum, generating an output indicative of the presence of a solid tumor or a pre-malignant condition. Other embodiments are also provided.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 28, 2017
    Assignee: TODOS MEDICAL LTD.
    Inventors: Joseph Kapelushnik, Shaul Mordechai, Ilana Nathan, Udi Zelig, Rami Zigdon
  • Patent number: 9557220
    Abstract: Provided is a Fourier transform spectroscopy method that removes restrictions on spectral resolution and spectral accuracy in Fourier transform spectroscopy for observing a cyclic repeating phenomenon, that realizes, theoretically, infinitesimal spectral resolution accuracy. After accurately and sufficiently stabilizing the repetition period of a phenomenon, a temporal waveform is acquired by making a repetition period and a time width for observing the temporal waveform of a phenomenon strictly conform, and by performing a Fourier transform, acquired is a discrete separation spectrum in which the inverse number of the observation time window size T is made a frequency data gap. Measurement is repeated while causing the repetition period to change, and the gap of the discrete separation spectrum is supplemented.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: January 31, 2017
    Assignee: Osaka Univeristy
    Inventors: Takeshi Yasui, Mamoru Hashimoto, Tsutomu Araki, Yuki Iyonaga
  • Patent number: 9442280
    Abstract: An operation microscope includes: an ordinary light path that guides light from an observation target to an eyepiece; a first secondary light path branched off from the ordinary light path; a second secondary light path merging with the ordinary light path; an imaging unit that images the observation target using light from the first secondary path; a display unit that displays an image based on an image signal from the imaging unit toward the second secondary path; and a reflector provided at a branch point of the ordinary light path and the first secondary light path in such a manner as to be capable of pulling off the branch point, and that bends the ordinary light path by reflection. The first secondary light path extends from the branch point along an extension of the ordinary light path before being reflected.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: September 13, 2016
    Assignee: MITAKA KOHKI CO., LTD.
    Inventor: Toshio Yamazaki
  • Patent number: 9423236
    Abstract: An optical interferometric measurement apparatus includes an interference optical system to output a monitoring interference signal and a measurement interference signal in accordance with light emitted from a wavelength-swept light source, and a controller to measure a movement of an object to be measured. The controller has a storage to store monitoring data acquired by sampling the monitoring interference signal in each period of the light source and measurement data acquired by sampling the measurement interference signal in each period of the light source and Fourier transformation unit to apply Fourier transform to the measurement data. The controller determines a phase of the measurement interference signal based on the Fourier-transformed measurement data and measures the movement of the object based on the phase.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: August 23, 2016
    Assignee: Kabushiki Kaisha Topcon
    Inventor: Akira Takada
  • Patent number: 9395342
    Abstract: A mist-containing gas analysis device comprises a measuring instrument that measures a pressure, a temperature, a flow rate and water content of a combustion exhaust gas, a collection container, a sampling tube and a guide tube through which the combustion exhaust gas is suctioned by a suction blower, and is sampled and fed into a collection liquid in the collection container, an arithmetic and control device that controls the suction blower such that a suction velocity of the combustion exhaust gas being suctioned by the suction blower is within a predetermined ratio with respect to a combustion exhaust gas flow velocity which is calculated based on the measured values, liquid aliquot taking means for taking an aliquot of the liquid in the collection container, and a measuring device that measures a concentration of the measurement-target substance in the aliquot of the liquid taken by the liquid aliquot taking means.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 19, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shinichi Okamoto, Hiromitsu Nagayasu, Takuya Hirata, Masaru Chiyomaru, Hiroshi Tanaka
  • Patent number: 9367907
    Abstract: This flicker reducing apparatus (200) includes: a line integral value getting section (210) which gets, based on values of pixels included in ones selected from a plurality of horizontal lines that form an image, line integral values of the selected horizontal lines with respect to each image; a discrete Fourier transform section (230) which performs, between the newest image and a number of other images gotten earlier than the newest one, a discrete Fourier transform on a sequence of the line integral values of the respective images; a linear approximation section (250) which obtains an approximation line based on phase information that has been collected as a result of the discrete Fourier transform and which extracts information about the flicker from the approximation line; a flicker coefficient calculating section (260) which calculates a flicker coefficient by reference to the flicker information; and a correction arithmetic section (270) which performs flicker reduction processing on the image signal u
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: June 14, 2016
    Assignee: Panasonic Intellectual Property Corporation of America
    Inventor: Ikuo Fuchigami
  • Patent number: 9316628
    Abstract: A method and apparatus for field spectroscopic characterization of seafood is disclosed. A portable NIR spectrometer is connected to an analyzer configured for performing a multivariate analysis of reflection spectra to determine qualitatively the true identities or quantitatively the freshness of seafood samples.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 19, 2016
    Assignee: Viavi Solutions Inc.
    Inventors: Nada A. O'Brien, Charles A. Hulse, Heinz W. Siesler, Changmeng Hsiung
  • Patent number: 9310316
    Abstract: Computer-implemented methods, computer-readable media, and systems for selecting one or more parameters for a defect detection method are provided. One method includes selecting one or more parameters of a defect detection method using an optimization function and information for a set of classified defects, which includes defects of interest and nuisance defects, such that the one or more parameters satisfy an objective for the defect detection method.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: April 12, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Kenong Wu, Chris W. Lee, Michael J. Van Riet, Yi Liu
  • Patent number: 9218697
    Abstract: Systems and methods authenticate an object using IR. IR is projected at a first wavelength onto the object and a first image of the object is captured during the projection of the IR. The object is authenticated by processing the first image to detect IR fluorescence from an IR fluorescing material incorporated into the object in response to the projected IR, where presence of the IR fluorescence within the first image indicates authentication of the object.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 22, 2015
    Assignee: Waba Fun LLC
    Inventors: David C. McCloskey, Jeffrey L. Barnett, Bradley Matthew White, Stanley R. James, Mark Andrew Crouch
  • Patent number: 9128048
    Abstract: A method for assessing the cure status of a fibrous blanket manufactured with mineral fibers and binder is disclosed and comprises a using an online optical reflectance measurement as an assessment of cure status. The optical reflectance measurement may preferably be a color image taken of any surface, and in particular of a sectioned face, after which the image is optionally divided into multiple regions of interest (ROI) and analyzed for a color system variable that is representative of cure status. In some embodiments, the color system variable is the B value. Alternatively, the optical reflectance measurement may be UV or IR reflectance of a sectioned face. When two or more regions of interest are defined on a sectioned face, comparative information is valuable to assess cure at different levels, layers or portions of the interior of the fibrous product.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: September 8, 2015
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Samer T. Yousef, Michael D. Pietro, Wei Li, Elaina M. Carpino
  • Publication number: 20150144792
    Abstract: Methods and systems for diagnosing a chronic pain syndrome in a subject are provided. The methods and systems include approaches for identifying a diagnosis based on the vibrational spectra of biological samples.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventor: Joshua A. Gunn
  • Patent number: 9029775
    Abstract: An apparatus for analyzing, identifying or imaging an target including first and second laser beams coupled to a pair of photoconductive switches to produce CW signals in one or more bands in a range of frequencies greater than 100 GHz focused on, and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral heterodyne process to generate an electrical signal representative of some characteristics of the target. The lasers are tuned to different frequencies and a phase modulator in the path of one laser beam allows the constructive or destructive interference of the signals on the detector as the laser beams are swept in frequency to be adjusted to achieve greater resolution in one or more selected frequency bands.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 12, 2015
    Inventors: Joseph R. Demers, Ronald T. Logan, Jr.
  • Publication number: 20150083916
    Abstract: An interferometer includes a first assembly having a base, a beam splitter assembly to split light into first and second portions, and a fixed mirror for reflecting the first portion of light; and a second assembly movable with respect to the first assembly, and having first and second scan carriages, and a movable mirror connected to the second scan carriage for reflecting the second portion of light. The beam splitter assembly combines the reflected first and second portions of light into a recombined radiation beam. Inner bearing flexures enable movement of the first scan carriage relative to the base, and outer bearing flexures enable movement of the second scan carriage relative to the first scan carriage, such that a plane containing the movable mirror is maintained parallel to multiple planes containing the movable mirror at respective distances between the second and first assemblies during scan movement of the movable mirror.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Inventors: Gregg Ressler, Jeffrey H. Saller
  • Patent number: 8933404
    Abstract: A concentration measurement method by an absorptiometric method which measures a concentration of a first solute component dissolved in a solution, in which the first solute component interacts with a solvent, includes: referring to an absorption coefficient (?aw(?)) of the solvent; measuring an absorption coefficient (?a(?)) of a first sample material, after an interaction between the solvent and the first solute component has occurred; and obtaining an unknown volume fraction (vg) of the first solute component and a volume fraction (vw) of the solvent, based on the absorption coefficient (?aw(?)) of the solvent, a apparent absorption coefficient (??ag(?)) of the first solute component, and the absorption coefficient (?a(?)) of the first sample material.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: January 13, 2015
    Assignees: Seiko Epson Corporation, National University Corporation Hokkaido University
    Inventors: Kazuhiro Nishida, Kazuhiko Amano, Koichi Shimizu
  • Patent number: 8933406
    Abstract: An interferometer includes a fixed assembly including a base, a beam splitter assembly and a fixed mirror, and a movable assembly including an upper scan carriage, a lower scan carriage and a movable mirror connected to the lower scan carriage. The pair of inner bearing flexures is connected to the base and the upper scan carriage, enabling movement of the upper scan carriage relative to the base, and the pair of outer bearing flexures is connected to the upper and lower scan carriages, enabling movement of the lower scan carriage relative to the upper scan carriage. The movement of the upper and lower scan carriages enable a scan movement of the movable mirror in a scan direction restricted such that the scan movement maintains a plane containing the movable mirror parallel to planes containing the movable mirror at respective distances between the movable and fixed assemblies during the scan movement.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 13, 2015
    Assignee: Agilent Technologies, Inc.
    Inventors: Gregg Ressler, Jeffrey H. Saller
  • Patent number: 8916387
    Abstract: Methods are provided for the prevention, treatment and diagnosis of Alzheimer's disease, based on the glycosylation pattern of amyloid-beta peptides in body fluids and tissues.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 23, 2014
    Inventors: Jonas Nilsson, Adnan Halim, Göran Larson, Kaj Blennow, Gunnar Brinkmalm, Erik Portelius, Henrik Zetterberg
  • Patent number: 8915089
    Abstract: A system is provided for detecting and controlling flashback and flame holding in a combustor of a gas turbine. The system includes at least one flame indicator disposed in a combustor and at least one detector disposed downstream from the flame indicator. The flame indicator may be configured to produce light when exposed to a flame and the detector may be configured to detect the light produced by the flame indicator.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: December 23, 2014
    Assignee: General Electric Company
    Inventors: Geoffrey David Myers, Timothy Joseph Rehg, Timothy Andrew Healy, Anthony Wayne Krull