Infrared Responsive Patents (Class 250/338.1)
  • Patent number: 10811400
    Abstract: A method for manufacturing an optical wafer may include coating multiple optical components with a substrate. The multiple optical components may include a light emitting component and a light detecting component, and each of the optical components may include one or more electrical connections. The method may also include depositing a redistribution layer onto at least one of the electrical connections, wherein the redistribution layer routes the electrical connection within the optical wafer to an external connection. The method may also include depositing a passivation layer over the redistribution layer and depositing a dark photoresist layer on at least the passivation layer. The photoresist layer may operatively reduce optical interference between at least one light emitting component and at least one light detecting component.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 20, 2020
    Assignee: Apple Inc.
    Inventors: Yinjuan He, Karthik Shanmugam, Peter R. Harper, Tongbi Tom Jiang
  • Patent number: 10809190
    Abstract: The invention relates to a method for improving the screening of histological samples, especially samples that may include cancerous or precancerous cells, or cells having other disease states. The method involves analysing a sample obtained from a subject and comprises the steps of providing the spectra produced by scanning the sample using FTIR spectroscopy and identifying or sorting the cells in the sample according to the spectrum each produces.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: October 20, 2020
    Assignee: BEAMLINE DIAGNOSTICS LTD
    Inventors: Liberty Foreman, Katherine Oliver
  • Patent number: 10802181
    Abstract: Laser energy has a non-uniform energy distribution in its profile such that at least one first portion of the laser energy is more intense than at least one second portion of the laser energy. The laser energy is absorbed using a beam dump having an absorbing surface, which converts the laser energy into thermal energy. A shape of the absorbing surface is based on the profile. At least one first portion of the absorbing surface has one or more first angles of incidence with respect to the laser energy and receives the first portion(s) of the laser energy. At least one second portion of the absorbing surface has one or more second angles of incidence with respect to the laser energy and receives the second portion(s) of the laser energy. The one or more first angles of incidence are larger than the one or more second angles of incidence.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: October 13, 2020
    Assignee: Raytheon Company
    Inventor: Curtis Kyhl
  • Patent number: 10803285
    Abstract: A display device includes a base substrate, a pixel defining layer, a spacer layer and a photosensitive circuit. The pixel defining layer is on the substrate and includes a pixel region and a pixel gap region; the spacer layer is on the pixel gap region of the pixel defining layer and at a side of the pixel defining layer away from the base substrate; and the photosensitive circuit is at a side of the pixel defining layer away from the spacer layer. The spacer layer is lightproof, a first opening is in the spacer layer, the first opening and the photosensitive circuit are overlapped with each other in a direction perpendicular to the base substrate, and the photosensitive circuit is configured to detect light passing through the first opening.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: October 13, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Meng Zhao, Lei Wang
  • Patent number: 10802601
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: October 13, 2020
    Assignee: Neonode Inc.
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10796647
    Abstract: An object is to provide a display device with low power consumption and good display quality. A first substrate is provided with a terminal portion, a pixel electrode, a switching transistor including an oxide semiconductor, a first optical sensor having high optical sensitivity to visible light, and a second optical sensor having optical sensitivity to infrared light and having lower optical sensitivity to visible light than the first optical sensor. The illuminance or color temperature around a display device is detected using the first and second optical sensors, and the luminance or color tone of a display image is adjusted. A second substrate is provided so as to face the first substrate, and is provided with a counter electrode. In a period for displaying a still image, the switching transistor is turned off so that the counter electrode is brought into a floating state.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 6, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 10788372
    Abstract: The present specification generally relates to the field of imaging device and particularly discloses an imaging device for detecting infrared radiation. The imaging device comprises a first set of detectors responsive to infrared electromagnetic radiation in a first wavelength band, a second set of detectors and a filter disposed above the second set of detectors to prevent registration of electromagnetic radiation outside a second wavelength band at the second set of detectors. The second wavelength band is a subset of the first wavelength band. The imaging device is configured to detect a deviation from an expected value of a level of electromagnetic radiation in a third wavelength band based on signals obtained from the first set of detectors and the second set of detectors. The third wavelength band is within the first wavelength band and outside the second wavelength band.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: September 29, 2020
    Assignee: IRnova AB
    Inventor: Anders Gamfeldt
  • Patent number: 10760955
    Abstract: A dual sensor module includes a substrate, a light source, a first encapsulant, a second encapsulant, a photodetector, and an electrode. The light source is disposed on the substrate. The first encapsulant is formed over the light source. The photodetector is disposed on the substrate. The second encapsulant is formed over the photodetector. The electrode is electrically connected to the substrate and is entirely located between the light source and the photodetector. A dual sensing accessory and a dual sensing device having the dual sensor module for detecting optical and electrical properties are also provided.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10749054
    Abstract: A photodetector includes a Helmholtz resonator and a photosensitive structure that is placed in an electric-field-concentrating interval forming part of the Helmholtz resonator. Such a photodetector is in particular suitable for imaging applications. The wavelength of the radiation to be detected is determined by dimensions of the Helmholtz resonator, within a detection spectral interval of the photosensitive structure.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 18, 2020
    Assignees: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AÉROSPATIALES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Emilie Steveler, Paul Chevalier, Jean-Luc Pelouard, Fabrice Pardo, Patrick Bouchon, Riad Haidar, Michaël Verdun
  • Patent number: 10732041
    Abstract: A microelectromechanical (MEMS) Fabry-Perot interferometer includes a transparent substrate; a first metallic mirror structure on the transparent substrate, including a first metal layer and a first support layer; a second metallic mirror structure above the first metallic mirror structure on an opposite side of the first metallic mirror structure in view of the transparent substrate, the second metallic mirror structure including a second metal layer and a second support layer, wherein the first and the second support layer are parallel and including at least one of aluminum oxide or titanium dioxide; a Fabry-Perot cavity between the first and the second support layer, whereby the Fabry-Perot cavity is formed by providing an insulation layer on the first mirror structure, and at least partially removing the insulation layer after providing the second mirror structure; and electrodes for providing electrical contacts to the first and the second metal layer.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 4, 2020
    Assignee: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
    Inventors: Heikki Saari, Bin Guo, Anna Rissanen
  • Patent number: 10732266
    Abstract: A holographic waveguide LIDAR comprises a transmitter waveguide coupled to a beam deflector and a receiver waveguide coupled to a detector module. The transmitter waveguide contains an array of grating elements for diffracting a scanned laser beam into a predefined angular ranges. The receiver waveguide contains an array of grating elements for diffracting light reflected from external points within a predefined angular range towards the detector module.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 4, 2020
    Assignee: DigiLens Inc.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern, Alastair John Grant
  • Patent number: 10732048
    Abstract: The micromechanical photothermal spectroscopy system and method includes a cantilever assembly having at least one cantilever thermal sensor extending from a support. The sensors may be simple bimetallic sensors, or may include microchannels made from two materials having different thermal expansion coefficients for analysis of microfluids. A beam of infrared light is separated out from solar radiation by gratings and filters, and is at least partially projected on the cantilever sensor(s). Heat released from the analyte by absorbance of infrared light results in deflection of the cantilever sensor(s), which is measured by a deflection detector. A filter wheel permits tuning of the sunlight-based infrared light beam to plot a spectrum of absorbance as a function of wavelength or wave number characteristic of the analyte. The deflection detector may be optical (using a laser and position sensitive detector(s)), or may use piezo-resistive material embedded in the sensor(s).
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 4, 2020
    Assignee: King Saud University
    Inventor: Abdullah Nasser Alodhayb
  • Patent number: 10732049
    Abstract: An electronic device includes an outer case, a circuit substrate, a thermopile sensor chip, a filter structure, and a waterproof structure. The outer case has an opening. The circuit substrate is disposed inside the outer case. The thermopile sensor chip is disposed on the circuit substrate. The filter structure is disposed above the thermopile sensor chip. The waterproof structure is surroundingly connected between the filter structure and the outer case for sealing up the opening of the outer case, wherein the waterproof structure has a through hole for exposing the filter structure and communicated with the opening of the outer case.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: August 4, 2020
    Assignee: PIXART IMAGING INC.
    Inventors: Ming-Han Tsai, Chih-Ming Sun, Jian-Cheng Liao
  • Patent number: 10732336
    Abstract: According to some embodiments a method of assembling an optical system comprises steps of: measuring retardance profiles of a plurality of optical elements, relatively positioning the optical elements in relative orientations that enhance complementarity between the retardance profiles of the optical elements, and securing the combinations of relatively oriented optical elements together, to control or minimize the combined retardance of the stacked optical elements.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: August 4, 2020
    Assignee: Corning Incorporated
    Inventors: Paul Gerard Dewa, Robert Dennis Grejda, Stephen Karl Mack, Robert Louis Michaels, Paul Francis Michaloski, Duncan Christopher Spaulding
  • Patent number: 10725477
    Abstract: A mobile robot, comprising: a body and a drive system for driving a movement of the mobile robot, a light emitter for emitting light toward a surface to be detected, a photoelectric sensor responsive to light from an environment and/or emitted by the light emitter, a variable impedance unit connected to the photoelectric sensor and having a reduced impedance when the photoelectric sensor is responsive to light of a preset intensity, and a control unit, where the light emitter is controlled by the control unit to form at least two operating states in which light is emitted at different intensities, and in the operating state other than the last operating state, if a sampling difference value determined when the light emitter is in the OFF state and ON state does not satisfy a preset condition, an operating state of the light emitter is changed to prevent misjudgment.
    Type: Grant
    Filed: September 30, 2018
    Date of Patent: July 28, 2020
    Assignee: SHENZHEN SILVER STAR INTELLIGENT TECHNOLOGY CO., LTD.
    Inventors: Shuaishuai Nan, Huanqiang Li
  • Patent number: 10719685
    Abstract: A papillary print sensor comprising in superposition a contact surface to which the print to be imaged is intended to be applied, an array optical sensor and illuminating device. The illuminating device is arranged between the contact surface and a detecting surface of the array optical sensor, and consists of a plurality of organic light-emitting diodes, referred to as OLEDs. Each OLED extends uninterruptedly over more than a third of a width (L1) of the detecting surface, and the OLEDs extend together along one or two series of patterns that are parallel to one another and distributed along the length (L2) of the detecting surface. This configuration of the OLEDs allows in particular the transistors for controlling the OLEDs to be placed off the detecting surface (125).
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: July 21, 2020
    Assignees: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES, IDEMIA IDENTITY & SECURITY FRANCE
    Inventors: Jean-François Mainguet, Jérôme Boutet, Joël Yann Fourre, François Templier
  • Patent number: 10714531
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength in a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 14, 2020
    Assignee: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres
  • Patent number: 10704959
    Abstract: Microbolometer is a class of infrared detector whose resistance changes with temperature change. In this work, we deposited and characterized Germanium Silicon Oxide thin films mixed with Sn (Ge—Si—Sn—O) for uncooled infrared detection. Ge—Si—Sn—O were deposited by co-sputtering of Sn and Ge—Si targets in the Ar+O environment using a radio frequency sputtering system. Optical characterization shows that the absorption in Ge—Si—Sn—O was most sensitive in the wavelength ranges between 2.5-3.7 ?m. The transmission data was further used to determine the optical energy band gap (0.22 eV) of the thin-film using Tauc's equation. We also found the variations of absorption coefficient (6592305.87 m?1-11615736.95 m?1), refractive index (2.5-4.0), and the extinction coefficient (2.31-5.73) for the wavelength ranges between 2.5-5.5 ?m. The thin film's resistivity measured by the four-point probe was found to be 142.55 ?-cm and TCR was in the range of ?4.9-?3.1 (%/K) in the temperature range 289-325K.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: July 7, 2020
    Inventors: Mukti Rana, Larine Mbabit-Tebit, Nibir Dhar
  • Patent number: 10702218
    Abstract: The invention relates to a method for obtaining useful data about the angiogenesis in a patient's lower limbs, and particularly in the lower limbs of patients with diabetes subjected to treatment.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 7, 2020
    Assignees: Servicio Andaluz de Salud, Universidad de Córdoba
    Inventors: José García-revillo García, Miguel Canis López, Noelia Romero Mata
  • Patent number: 10690540
    Abstract: Various implementations relate generally to a multi-sensor device. Some implementations more particularly relate to a multi-sensor device including a ring of radially-oriented photosensors. Some implementations more particularly relate to a multi-sensor device that is orientation-independent with respect to a central axis of the ring. Some implementations of the multi-sensor devices described herein also include one or more additional sensors. For example, some implementations include an axially-directed photosensor. Some implementations also can include one or more temperature sensors configured to sense an exterior temperature, for example, an ambient temperature of an outdoors environment around the multi-sensor. Additionally or alternatively, some implementations can include a temperature sensor configured to sense an interior temperature within the multi-sensor device. Particular implementations provide, characterize, or enable a compact form factor.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 23, 2020
    Assignee: View, Inc.
    Inventors: Stephen Clark Brown, Dhairya Shrivastava, Jason Zedlitz, Trevor Frank, Jue Wang, Alexander Rumer, Dennis Mullins, Kevin Kaneshiro
  • Patent number: 10675926
    Abstract: An inspection system for use in measuring several vehicle conditions in a high volume vehicle inspection line. A plurality of sensors are installed on a vehicle for measuring a plurality of vehicle conditions to assist in the rapid evaluation of critical vehicle conditions or parameters. At least one tool is positioned along a vehicle path in a monitoring station. As the vehicle passes through the monitoring station, the tool received electronic data from the plurality of sensors and displays one or more signals to alert an inspector of acceptable or unacceptable vehicle conditions. In one example, the plurality of sensors includes tire pressure monitoring system (TPMS) data from the vehicle tires to rapidly assess the condition of the tire air pressure and other monitored tire conditions.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 9, 2020
    Assignee: ATEQ CORPORATION
    Inventor: Jacques Mouchet
  • Patent number: 10670466
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Michael J. Bishop, Robert Chen, David I. Simon, Harold L. Sontag, III, George Dee Skidmore
  • Patent number: 10670468
    Abstract: The present invention provides an infrared pixel structure and a hybrid imaging device which use comb-shaped top plates and bottom plates to form capacitors. The upper electrode has a non-fixed end such that the infrared sensitive element in the upper electrode generates thermal stress and deforms when absorbing the infrared light, which changes the capacitance of the capacitors formed by the top plates and the bottom plates to achieve infrared detection and increase the device sensitivity. Furthermore, the infrared pixel structure can be used in an infrared light and visible light hybrid imaging device to achieve visible light imaging and infrared imaging in a same silicon substrate, so as to increase the imaging quality.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: June 2, 2020
    Assignee: SHANGHAI R&D CENTER CO., LTD
    Inventors: Xiaoxu Kang, Shoumian Chen
  • Patent number: 10641702
    Abstract: A source (100) that includes a membrane, where the membrane includes: an emissive layer (130) including an emissive surface (131); an adaptor (121a, 121b, 121c, 121d), each adaptor (121a, 121b, 121c, 121d) facing a different section of the emissive section (131), called the emissive section (132a, 132b, 132c, 132d), and with which it forms an emissive assembly (134a, 134b, 134c, 134d) adapted to reduce the spectral extent of infrared radiation emitted by the emissive section; and a plurality of heaters (140a, 140b) for heating the emissive layer (130), the heaters (140a, 140b) being arranged so as to impose different relative temperature variations in different emissive sections (132a, 132b, 132c, 132d).
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 5, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Salim Boutami, Alain Gliere
  • Patent number: 10632459
    Abstract: Provided is a method for maintaining a preset air pressure of a low-pressure chamber. The method may comprise the steps of: measuring the inside air pressure of a low-pressure chamber; if the difference between the inside air pressure and a preset air pressure is the same or higher than a threshold value, adjusting the inside temperature of the low-pressure chamber by using a thermal conduction part disposed inside the low-pressure chamber; and by using a getter, making the difference to be below the threshold value by adsorbing or releasing molecules inside the low-pressure chamber according to the adjustment of the temperature.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 28, 2020
    Assignee: Korea Aerospace Research Institute
    Inventors: Hyok Jin Cho, Hee Jun Seo, Sung Wook Park, Guee Won Moon
  • Patent number: 10594261
    Abstract: Disclosed are various embodiments of a terahertz wave modulator. The wave modulator can include one or more layers of piezoelectric/ferroelectric single crystal or polycrystalline material. The crystalline material can be configured to resonate when a low-energy external excitation is applied. An incident terahertz waveform can be dynamically controlled when the incident terahertz waveform interacts with the at least one layer of piezoelectric crystalline material while the at least one layer of piezoelectric crystalline material is resonating. The dynamic control of the incident terahertz waveform can be with respect to at least one of a phase shift and an amplitude modulation of the waveform.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 17, 2020
    Assignee: Board of Regents, The University of Texas Systems
    Inventors: Moumita Dutta, Ruyan Guo, Amar Bhalla, Soutik Betal
  • Patent number: 10574813
    Abstract: To provide a private branch exchange system that can take appropriate measures for a user designated incoming call even when the user takes an unscheduled action. A user status determination part of the private branch exchange transmits, when receives a user designated incoming call, the position confirmation request to the mobile cellular apparatus identified by the mobile cellular apparatus information of the user information. The incoming call control part of the private branch exchange forwards, if the user current position received from the mobile cellular apparatus is different from the schedule information, an incoming call to a telephone set installed near the user and having an extension telephone number based on the user current position and the layout information.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: February 25, 2020
    Assignee: KYOCERA Document Solutions Inc.
    Inventor: Yasufumi Inoue
  • Patent number: 10574913
    Abstract: A HDR CTIA pixel which provides automatic gain selection, and spatial and temporal coherence. The pixel comprises an input node for connection to a photocurrent, and an output node. The pixel includes a CTIA which comprises a “high gain” integration capacitor and a first reset switch connected between the input and output nodes, a “low gain” integration capacitor connected between the input node and a first node, a second reset switch connected between the first node and the output node, and a first FET connected across the second reset switch. In operation, the first FET is off during the reset phase, and is conditionally turned on during or after the integration phase. The CTIA also includes an amplifier having an inverting input connected to the input node and an output connected to the output node. The pixel can be operated in “static low-gain control” and “dynamic low-gain control” modes.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 25, 2020
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Vincent Douence, Mihail Milkov
  • Patent number: 10568726
    Abstract: The invention provides a dental curing device comprising a light source having a wavelength capable of inducing polymerization of a photopolymer, and a noncontact thermal detector in alignment with said light source and capable of measuring the temperature or temperature change of the photopolymer upon polymerization.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: February 25, 2020
    Assignee: TRANSPARENT MATERIALS, LLC
    Inventor: Joseph F. Bringley
  • Patent number: 10555692
    Abstract: Disclosed herein are a method and a device for sensing sugars, using terahertz electromagnetic waves. By the method, even a trace amount of sugars in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, sugars even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto sugars through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a sugar of interest.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: February 11, 2020
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Ah Seo, Dong-Kyu Lee, Jae-Hun Kim, Chul-Ki Kim, Taik-Jin Lee, Young-Min Jhon
  • Patent number: 10553179
    Abstract: An electronic device may be provided with a display mounted in a housing. The display may have an array of pixels that form an active area and may have an inactive area that runs along an edge of the active area. An opaque layer may be formed on an inner surface of a display cover layer in the inactive area of the display or may be formed on another transparent layer in the electronic device. An optical component window may be formed from the opening and may be aligned with an ambient light sensor such as a color ambient light sensor. The color ambient light sensor may have an infrared-blocking filter to block infrared light such as infrared light emitted by an infrared-light-emitting diode in the device. A light diffuser layer, light guide, and other structures may also be included in the ambient light sensor.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 4, 2020
    Assignee: Apple Inc.
    Inventors: Prashanth S. Holenarsipur, Dong Zheng, Serhan O. Isikman
  • Patent number: 10533950
    Abstract: A method, a device, and a system for the automated determination of optical densities or of the change in optical densities of reaction mixtures in shaken reactors during shaking operation. The method uses a reaction mixture distribution, which periodically fluctuates because of the shaking action, to record measurement points (20/21) of transmission/scattered-light measurements. All measurement points (20/21) of a measurement operation are combined into a measurement series (34), from which the optical density and/or the change in the optical density, and other process parameters, can be determined with high reliability by means of suitable mathematical methods.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: January 14, 2020
    Assignee: Aquila Biolabs GmbH
    Inventors: Konrad Herzog, David Frank
  • Patent number: 10473764
    Abstract: A sensor package may include a source configured to emit a signal, a detector configured to receive a first reflection of the signal, and an isolator disposed between the source and the detector, where a surface of the isolator has one or more grooves configured to direct a second reflection of the signal away from the detector.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 12, 2019
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Christopher Townsend
  • Patent number: 10473828
    Abstract: An apparatus includes a housing defining a cavity configured to receive laser energy and an absorbing surface within the cavity configured to absorb and convert the laser energy into thermal energy. A shape of the absorbing surface is based on a profile of the laser energy. At least one first portion of the absorbing surface has one or more first angles of incidence with respect to the laser energy and is configured to receive at least one first portion of the laser energy. At least one second portion of the absorbing surface has one or more second angles of incidence with respect to the laser energy and is configured to receive at least one second portion of the laser energy. The first angle(s) is/are larger than the second angle(s). The first portion(s) of the laser energy is/are more intense than the second portion(s) of the laser energy.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 12, 2019
    Assignee: Raytheon Company
    Inventor: Curtis Kyhl
  • Patent number: 10475846
    Abstract: A residual Infrared (IR) image is calculated from IR images of valuable media having embedded IR security features and visible light images of the valuable media. Features of the IR residual image are extracted as a template for authenticating valuable media items. The template is applied against a presented valuable media item having an embedded IR security feature for assisting in determining whether the presented valuable media item is genuine and fit for further processing within a valuable media depository.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 12, 2019
    Assignee: NCR Corporation
    Inventors: Yun-Qian Miao, Gary Alexander Ross
  • Patent number: 10466359
    Abstract: An imaging system is disclosed. The system comprises: a first imaging device and a second imaging device being spaced apart and configured to provide partially overlapping field-of-views of a scene over a spectral range from infrared to visible light. The system comprises at least one infrared light source constituted for illuminating at least the overlap with patterned infrared light, and a computer system configured for receiving image data pertaining to infrared and visible light acquired by the imaging devices, and computing three-dimensional information of the scene based on the image data. The image data optionally and preferably comprises the patterned infrared light as acquired by both the imaging devices.
    Type: Grant
    Filed: January 1, 2014
    Date of Patent: November 5, 2019
    Assignee: Inuitive Ltd.
    Inventors: Noam Meir, David Ben-Bassat, Avraham Shimon, Arnon Tadmor, Eyal Naimi
  • Patent number: 10453977
    Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 22, 2019
    Assignee: The Governement of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
  • Patent number: 10453767
    Abstract: A control device for monitoring a functioning of a semiconductor component during its operation may comprise an input interface configured for receiving a sensor signal corresponding to a contact-less determined temperature distribution on a surface of the semiconductor component, and an evaluation device configured to determine, based on the sensor signal, whether the temperature distribution fulfills a predefined decision criterion corresponding to an operation of the semiconductor component outside a normal operating state. An output interface is designed to issue an emergency signal when the decision criterion is fulfilled, wherein the emergency signal triggers the execution of an emergency measure.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: October 22, 2019
    Assignee: ZF Friedricshafen AG
    Inventors: Heinz Weißmann, Bernhard Dömel
  • Patent number: 10446701
    Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 15, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
  • Patent number: 10446699
    Abstract: Embodiments herein describe photonic systems that include a germanium photodetector thermally coupled to a resistive element. Current flowing through the resistive element increases the temperature of the resistive element. Heat from the resistive element increases the temperature of the thermally coupled photodetector. Increasing the temperature of the photodetector increases the responsivity of the photodetector. The bias voltage of the photodetector can be increased to increase the bandwidth of the photodetector. In various embodiments, the photodetector includes at least one waveguide to receive light into the photodetector. Other embodiments include multiple resistive elements thermally coupled to the photodetector.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: October 15, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Igal I. Bayn, Sean P. Anderson
  • Patent number: 10444070
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 15, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10446728
    Abstract: A system and method are provided for repairing an emissive display. Following assembly, the emissive substrate is inspected to determine defective array sites, and defect items are removed using a pick-and-remove process. In one aspect, the emissive substrate includes an array of wells, with emissive elements located in the wells, but not electrically connected to the emissive substrate. If the emissive elements are light emitting diodes (LEDs), then the emissive substrate is exposed to ultraviolet illumination to photoexcite the array of LED, so that LED illumination can be measured to determine defective array sites. The defect items may be determined to be misaligned, mis-located, or non-functional emissive elements, or debris. Subsequent to determining these defect items, the robotic pick-and-remove process is used to remove them. The pick-and-remove process can also be repurposed to populate empty wells with replacement emissive elements.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: October 15, 2019
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Paul J. Schuele, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 10444076
    Abstract: An infrared device comprises a substrate (1), and arranged on or in the substrate (1) a configuration (3) for one of selectively emitting and selectively absorbing infrared radiation of a band, the configuration (3) comprising a pattern made from an electrically conducting material on a first level (L1), an electrically conducting film (33) on a second level (L2), and a dielectric layer (24) between the pattern and the film (33). One or more of a heater (4) for heating the configuration (3), and a thermal sensor (5) arranged for sensing the selective infrared radiation of the band absorbed by the configuration (3) on or in the substrate.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: October 15, 2019
    Assignee: Sensirion AG
    Inventors: Martin Winger, Marc Von Waldkirch, Matthias Streiff, Alexander Lochbaum, Jürg Leuthold
  • Patent number: 10444137
    Abstract: A method of detecting bioaerosols, including detecting particles and estimating a particle size for each detected particle and determining a fluorescence strength for each detected particle. Comparing particle size and fluorescence strength for each detected particle to arrive at a normalized fluorescence strength per particle and comparing normalized fluorescence strengths over a time period to a maximum threshold, to detect highly fluorescent manmade substances.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: October 15, 2019
    Assignee: CBRN INTERNATIONAL, LTD.
    Inventors: Elric Saaski, Dor Yacobi
  • Patent number: 10437024
    Abstract: A process for producing an optical element, which may be suitable for use in an infrared camera with sharp surface features and low emissivity surfaces, including the steps of casting the element in the desired shape in a zinc alloy, deburring the zinc alloy element with a thermal deburring operation, and coating the deburred zinc alloy element with an electrocoating operation.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: October 8, 2019
    Assignee: Seek Thermal, Inc.
    Inventors: Scott Dayton, William J. Parrish, Joseph G. Finegold
  • Patent number: 10429174
    Abstract: A method for evaluating a leadframe surface includes positioning a leadframe on a measurement apparatus at a first predetermined distance relative to an end portion of a light source of an optical sensor; irradiating a predetermined area on a surface of the leadframe with light having a single predetermined wavelength from the light source; receiving, with a light receiver of the optical sensor, reflected light from the predetermined area on the surface of the leadframe, and converting the reflected light into an electric signal; determining a reflection intensity value of the predetermined area on the surface of the leadframe based on the electric signal; and calculating a reflection ratio of the predetermined area on the surface of the leadframe based on the reflection intensity value and a predetermined reference reflection intensity value associated with the light source.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Hung-Yu Chou, Chien-Hao Wang, Tse-Tsun Chiu, Fu-Kang Lee, Liang-Kang Su
  • Patent number: 10422868
    Abstract: An apparatus for measuring at least one of pressure, temperature, and wind velocity of a volume of air includes a laser having a first frequency and a second frequency of radiation, a first waveguide coupled to the laser, a second waveguide, a narrowband filter coupled between the first waveguide and the second waveguide, wherein the narrowband filter is configured to redirect the first frequency to the second waveguide, and a photodetector coupled to the second waveguide, wherein the first frequency is transmitted by the first waveguide to the volume of air, scattered light is received from the volume of air, and the photodetector mixes the first frequency on the second waveguide with the received scattered light.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 24, 2019
    Assignee: HRL Laboratories, LLC
    Inventor: Oleg M. Efimov
  • Patent number: 10425178
    Abstract: Determining ambient noise in a device under test electromagnetic compatibility test environment is presented herein. A method can include determining, by a system comprising a processor via a radio frequency input port of the system, an ambient electromagnetic noise corresponding to the system; and in response to determining, by the system via the radio frequency input port, a radio frequency signature of a device under test, subtracting, by the system, the ambient electromagnetic noise from the radio frequency signature to obtain a normalized value representing an electromagnetic emission of the device under test. In an example, an antenna/coaxial cable has been connected to the radio frequency input port, the ambient electromagnetic noise can be determined using the antenna/coaxial cable, and a radiated/conducted electromagnetic characteristic of the device under test representing the radio frequency signature of the device under test can be determined using the antenna/coaxial cable.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: September 24, 2019
    Assignee: THE DIRECTV GROUP, INC.
    Inventor: William Kucheravy
  • Patent number: 10408676
    Abstract: A device for creating an optic pulse with different wavelengths separated by time. A pump laser is configured to output energy to a dye cell which, responsive to the energy, outputs an optic pulse. Mirrors direct the optic pulse away from the dye cell towards a spectrograph. The spectrograph has an input and two or more outputs. The spectrograph receives and converts the optic pulse to a wavelength separated optic signal presented on the two or more outputs. A first optic cable has an input end and an output end. The input end receives a first output from the spectrograph. A second optic cable has an input end and an output end. The input end receives a second output from the spectrograph. The second optic cable is a different length than the first optic cable to establish a time shift between the signals exiting the first and second cable.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: September 10, 2019
    Assignee: Mission Support and Test Services, LLC
    Inventors: Gene A. Capelle, Daniel K. Frayer
  • Patent number: 10386232
    Abstract: An optical instrument for spectroscopy applications includes a compact arrangement having a three-dimensional folded optical path. A plate configured as an optical reference plane is secured to a housing and is configured to secure optical components above or below the plate. A modular light source module may be secured within the housing without fasteners. A monochromator and spectrometer are secured below the plate. Mirrors disposed above the plate are configured to direct light from the monochromator passing through a first opening in the plate through a sample disposed above the plate, and to direct light from the sample through a second opening in the plate to the spectrometer. A controller is configured for communication with the monochromator and the spectrometer. The controller may control an entrance slit actuator for the spectrometer and positioning of an aperture upstream of the spectrometer to adjust resolution and throughput.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 20, 2019
    Assignee: Horiba Instruments Incorporated
    Inventors: Ronald Joseph Kovach, Salvatore Hauptmann Atzeni