Body Scanner Or Camera Patents (Class 250/363.02)
  • Patent number: 9445774
    Abstract: An energy application apparatus applies energy to an object. The object (2), such as a tumor which has absorbed a radioisotope tracer, defines a location (3) of radioactive material. A location detection unit detects the location with the radioactive material. An x-ray unit applies x-rays to the detected location of the object. Since the location, to which energy should be applied, includes radioactive material, this location can be accurately detected by using the location detection unit. Moreover, since the application of the x-rays can be well controlled by controlling, for example, the intensity and the energy spectrum of the x-rays, energy can be accurately applied to the accurately detected location. The overall process of applying energy to the object can therefore be performed with increased accuracy.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 20, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Torsten Solf, Carolina Ribbing, Petrus Wilhelmus Helena Van Loon
  • Patent number: 9405020
    Abstract: Provided is a method of manufacturing a scintillator panel configured to convert radiation into scintillation light, the method including a first process of forming a plurality of convex sections that protrude from a rear surface toward a front surface of the substrate in a predetermined direction and concave section defined by the convex sections on the front surface of the substrate having the front surface and the rear surface, a second process of forming first scintillator units respectively extending from the convex sections of the substrate in the predetermined direction through crystal growth of a columnar crystal of a scintillator material, and a third process of radiating a laser beam to contact portions of the first scintillator units extending from the adjacent convex sections and separating the first scintillator units extending from the adjacent convex sections by scanning the concave section with the laser beam.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: August 2, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Masanori Yamashita, Yutaka Kusuyama, Shintaro Toyama, Hirotake Osawa, Katsuhiko Suzuki
  • Patent number: 9395452
    Abstract: A multilayer scintillation crystal (1) comprises n layers of array scintillation crystals and m layers of continuous scintillation crystals which have uncut inner parts, both n and m being integers greater than or equal to 1 and a sum of n and m being smaller than or equal to 10. The array scintillation crystals are formed by strip-type scintillation crystals arranged along the width and length directions, the array scintillation crystals and the continuous scintillation crystals are sequentially coupled along the height direction of the strip-type scintillation crystals to form the multilayer scintillation crystal (1), and the continuous scintillation crystals are located at the bottom of the multilayer scintillation crystal (1).
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: July 19, 2016
    Assignee: Raycan Technology Co., Ltd.
    Inventors: Qingguo Xie, Daoming Xi, Jun Zhu, Luyao Wang
  • Patent number: 9375187
    Abstract: A patient table mounts to a patient imaging apparatus support base. When attached to first and second support ends of an imaging apparatus, the patient table has a generally planar patient support adapted for spanning the imaging apparatus field of view (FOV), and is analogous to a beam spanning the FOV. The beam-like patient support has sufficient rigidity for supporting and imaging a patient placed thereupon without any additional external support columns affixed to the imaging room floor, as was utilized in previously existing imaging apparatus. Elimination of external patient table supports reduces imaging apparatus installation complexity and costs, frees up floor space, and facilitates easier patient transfer to the imaging apparatus.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 28, 2016
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Bradley Etters
  • Patent number: 9366769
    Abstract: For each photomultiplier tube in an Anger camera, an R×S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P×Q array of photomultiplier tubes, P×Q summation circuitries generate P×Q row histograms including R entries and P×Q column histograms including S entries. The total set of histograms include P×Q×(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: June 14, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Lloyd G. Clonts, Yacouba Diawara, Cornelius Donahue, Jr., Christopher A. Montcalm, Richard A. Riedel, Theodore Visscher
  • Patent number: 9354351
    Abstract: A method and system for acquiring spectral information from an energy sensitive nuclear detector is disclosed. The method includes detecting nuclear radiation at a detection device and generating an electronic input pulse indicative of energy deposited in the detection device. The method further includes integrating the electronic input pulse at an integrating device to produce an integrated output signal and digitally sampling the integrated output signal of the integrating device at intervals to produce a stream of digital samples. The method further includes resetting the integrator synchronously with a sampling clock when a limit condition is reached.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 31, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Bruno Jorion
  • Patent number: 9348033
    Abstract: A positron CT apparatus of this invention includes a first detecting device and a first image processing device for acquiring a 3D image of a first site of interest. Further, a second detecting device and a second image processing device are provided for acquiring a real planar image of the first site of interest and a second site of interest. A calculated planar image calculating device calculates, based on the 3D image, data corresponding only to the first site of interest projected to the real planar image. A correcting device provides a corrected planar image corresponding only to the second site of interest by subtracting the calculated planar image from the real planar image. Thus, the 3D image corresponding to the first site of interest and the corrected planar image with a projection of the second site of interest can be acquired at the same time through one diagnosis.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 24, 2016
    Assignee: SHIMADZU CORPORATION
    Inventor: Junichi Ohi
  • Patent number: 9329500
    Abstract: The invention relates to an image for detection of an aerial pattern comprising spatial differences in radiation intensity in a cross section of a beam of radiation in a lithographic apparatus for exposing a substrate. The image sensor comprises a lens (5) arranged to form a detection image of the aerial pattern and an image detector (6) arranged to measure radiation intensities in a plurality, of positions in the detection image.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: May 3, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Frank Staals, Joeri Lof, Erik Roelof Loopstra, Wim Tjibbo Tel, Bearrach Moest
  • Patent number: 9326742
    Abstract: A hazardous fluid handling system which includes a housing having a radiation shielded internal chamber disposed therein which may accommodate a container holding a radioactive fluid, one or more radioactivity detectors positioned within the shielded internal chamber in operational proximity to the radioactive fluid in the container, and a dosimeter control device electronically coupled to the radioactivity detector(s) is disclosed. The dosimeter control device is operational for determining information regarding the radioactive fluid in the container based on individual measurements received from the one or more radioactivity detectors. The hazardous fluid handling system may be integrated into a patient support platform which includes a patient stimulus apparatus, an imager proximate the patient support platform, a radiopharmaceutical fluid delivery system for infusing a radiopharmaceutical fluid into a patient, a patient monitor to be associated with the patient, and an integrated system controller.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 3, 2016
    Assignee: Bayer Healthcare LLC
    Inventors: Alan D. Hirschman, Arthur E. Uber, III, David M. Reilly, John Kalafut, Frederick W. Trombley, III, Steven J. Remis, Scott Griffith, Douglas Descalzi, Richard Dewit, David M. Griffiths, Marc A. Mabie, Mark Trocki
  • Patent number: 9291723
    Abstract: An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 22, 2016
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: Jody Rustyn Coleman, Eduardo B. Farfan
  • Patent number: 9285486
    Abstract: The invention relates to a method for radiation detection signal processing, and more particularly to a method capable of using a periodic signal to control the time of charging/discharging to a capacitor of an integrator. The method can be used for detecting the energy of incident photon of Gamma ray during the happening of an event while reducing dead time, and thereby, the count rate is increased. As the periodic signal is used as the signal for controlling the time of charging/discharging to a capacitor, the charging/discharging time of the integrator is no longer being controlled by the triggering time of the event, and thus, the present method is advantageous in that: the control method and circuit architecture are comparatively simpler since the charging/discharging time of the integrator no longer required to be controlled precisely, and thus the integration error due to insufficient resolution in delay element can be avoided.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 15, 2016
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Sheng-Pin Tseng, Ming-Lee Chu, Meei-Ling Jan
  • Patent number: 9279776
    Abstract: An X-ray analysis apparatus has at least one X-ray aperture (4; 4a, 4b) which delimits an X-ray beam (RS) emitted by an X-ray source (2). The at least one X-ray aperture (4; 4a, 4b) is disposed at a separation from the sample (5) and has a single crystal aperture body (8) with a through pinhole (9). The single crystal aperture body (8) forms a peripheral continuous edge (10) which delimits the X-ray beam (RS) and starting from which the pinhole (9) widens like a funnel in a direction of an outlet opening (11) of the X-ray aperture (4; 4a, 4b) in a first area (B1). The X-ray analysis apparatus reduces impairment of X-ray measurements due to parasitic scattered radiation and at little expense.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 8, 2016
    Assignee: incoatec GmbH
    Inventors: Andreas Kleine, Josef Kreith, Frank Hertlein
  • Patent number: 9176241
    Abstract: A photon detector (10) includes a detector array (12) comprising single photon avalanche diode (SPAD) detectors (14) configured to break down responsive to impingement of a photon. Trigger circuitry (34) is configured to generate a trigger signal responsive to break down of a SPAD detector of the detector array. Latches (20, 22) are configured to store position coordinates of SPAD detectors of the detector array that are in break down. The latches are configured to latch responsive to a trigger signal generated by the trigger circuitry. The latches may include row latches (22) each connecting with a logical “OR” combination of SPAD detectors of a corresponding row of the detector array, and column latches (20) each connecting with a logical “OR” combination of SPAD detectors of a corresponding column of the detector array. Time to digital converter (TDC) circuitry (28) may generate a digital time stamp for the trigger signal.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Thomas Frach
  • Patent number: 9165692
    Abstract: A glass radiation-source with customized geometries to maximize receipt of radiation into treatment areas that is formed from either neutron-activated glass, radioisotopes molecularly bonded to glass, or radioisotopes encased within glass.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 20, 2015
    Assignee: IP LIBERTY VISION CORPORATION
    Inventors: Paul T. Finger, Toby Welles
  • Patent number: 9151850
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a conversion system (160) located on the lateral wall (123) of the scintillator (120), said system comprising a plurality of channels (165). Each channel (165) has a photocathode section (130; 131; 132) for generating electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), said electrons being multipliable by impact processes in the channels (165). A detection system (170) for detecting electrons (204) that have been multiplied in the channels (165) of the conversion system (160) is also provided.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 6, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Patent number: 9078618
    Abstract: Methods and systems for patient alignment for nuclear medicine imaging are provided. One method includes activating a proximity sensor system associated with imaging detectors of the diagnostic imaging system, wherein the imaging detectors are in an L-mode configuration. The method also includes initiating movement of a patient table of the diagnostic imaging system and using a sensed proximity of a patient on the moving patient table by the proximity sensor system to automatically adjust a height of the patient table on which the patient is supported to a patient table height scanning position.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 14, 2015
    Assignee: General Electric Company
    Inventors: Eli Stern, Deborah Ruth Zelnik, Ruth Katz
  • Patent number: 9063087
    Abstract: Disclosed is a radiation detector signal processor that allows accurate identification of a variation in fluorescence detection intensity. With a construction of the disclosure, the variation is obtainable in accordance with detection data (a peak value) of fluorescence and a specified number of light spread indicating how the fluorescence generated in a scintillator spreads spatially until reaching each of detecting elements. Such a construction allows accurate obtainment of the variation in the radiation detector in which the fluorescence is detected with a plurality of light detecting elements while spreading. A radiation detector is adjusted in accordance with the variation, achieving more accurate positional identification by the radiation detector.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: June 23, 2015
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoaki Tsuda, Masanobu Sato
  • Patent number: 9029785
    Abstract: A method of fabricating a microlens includes forming layer of photoresist on a substrate, patterning the layer of photoresist, and then reflowing the photoresist pattern. The layer of photoresist is formed by coating the substrate with liquid photoresist whose viscosity is 150 to 250 cp. A depth sensor includes a substrate and photoelectric conversion elements at an upper portion of the substrate, a metal wiring section disposed on the substrate, an array of the microlenses for focusing incident light as beams onto the photoelectric conversion elements and which beams avoid the wirings of the metal wiring section. The depths sensor also includes a layer presenting a flat upper surface on which the microlenses are formed. The layer may be a dedicated planarization layer or an IR filter, interposed between the microlenses and the metal wiring section.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo Cheol Park, Seung Hyuk Chang, Myung-Sun Kim, Won Joo Kim, Ju Hwan Jung, Seung Hoon Lee, Kwang-Min Lee, Hyoung Soo Ko
  • Patent number: 9024263
    Abstract: Disclosed is radiation tomography apparatus for smaller animals including a radiation source for emitting radiation; a radiation detecting device for detecting radiation; a rotary device for rotating the radiation source; and a holder provided between the radiation source and the radiation detecting device that has two or more spaces for placing a subject. The holder includes space discriminating members for each of the spaces. Each of the space discriminating members has a unique sectional shape when cut along a plane where an imaginary circle exists. Here, the imaginary circle is a locus of rotation of the radiation source.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Shimadzu Corporation
    Inventor: Hiromichi Tonami
  • Patent number: 9014330
    Abstract: A radiation diagnostic apparatus includes a CT gantry apparatus, a PET gantry apparatus and a controller. The CT gantry apparatus includes an X-ray tube and an X-ray detector for reconstructing an X-ray CT image. The PET gantry apparatus includes a plurality of photodetectors for reconstructing nuclear medicine images and an FE circuit that is connected to the back of the photodetectors. The controller exerts control such that, when X-rays are radiated from the X-ray tube, the output from the photodetectors to the FE circuit is stopped or reduced.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 21, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Takuzo Takayama
  • Patent number: 8993970
    Abstract: The invention provides a switchable photomultiplier switchable between a detecting state and a non-detecting state including a cathode upon which incident radiation is arranged to impinge. The photomultiplier also includes a series of dynodes arranged to amplify a current created at the cathode upon detection of photoradiation. The invention also provides a detection system arranged to detect radiation-emitting material in an object. The system includes a detector switchable between a detecting state in which the detector is arranged to detect radiation and a non-detecting state in which the detector is arranged to not detect radiation. The system further includes a controller arranged to control switching of the detector between the states such that the detector is switched to the non-detecting state while an external radiation source is irradiating the object.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: March 31, 2015
    Assignee: Rapiscan Systems, Inc.
    Inventor: Edward James Morton
  • Patent number: 8969816
    Abstract: A printed circuit board (PCB) assembly of a data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system, the PCB assembly includes a plurality of PCB layers disposed in a stacked arrangement, first and second PET signal processing circuits carried by a first layer of the plurality of PCB layers, first and second ground plane structures carried by a second layer of the plurality of PCB layers and configured relative to the first and second PET signal processing circuits, respectively, and a ground partition that separates the first PET signal processing circuit from the second PET signal processing circuit on the first layer. The ground partition extends through the first layer to provide electromagnetic interference (EMI) shielding between the first and second PET signal processing circuits.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James Frank Caruba, Patanit Sanpitak, Grant Arthur Albert, Darryl Hrdina, Roger E. Arseneau, John P. Valenta
  • Patent number: 8963094
    Abstract: The present invention provides a gamma-neutron detector based on mixtures of thermal neutron absorbers that produce heavy-particle emission following thermal capture. In one configuration, B-10 based detector is used in a parallel electrode plate geometry that integrates neutron moderating sheets, such as polyethylene, on the back of the electrode plates to thermalize the neutrons and then detect them with high efficiency. The moderator can also be replaced with plastic scintillator sheets viewed with a large area photomultiplier tube to detect gamma-rays as well. The detector can be used in several scanning configurations including portal, drive-through, drive-by, handheld and backpack, etc.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: February 24, 2015
    Assignee: Rapiscan Systems, Inc.
    Inventors: Tsahi Gozani, Michael Joseph King, Donald Bennett Hilliard, Joseph Bendahan
  • Publication number: 20150014545
    Abstract: A detector module (50) for a positron emission tomography (PET) system (10) includes an optical transceiver (66) receiving an optical data stream from a PET processing system (48). The data stream includes a pulse train carrying a command to generate sync/reset pulses. The system (10) further includes synchronization circuitry (70) configured to simultaneously jitter clean the pulse train and one of: 1) count the pulses of the pulse train; and 2) monitor the pulse train for a missing pulse. The synchronization circuitry (70) is further configured to, in response to counting a predetermined number of pulses or detecting the missing pulse, extract a jitter clean pulse from the pulse train to generate a jitter clean sync/reset pulse. The system (10) further includes an internal clock (64) which receives the jitter clean sync/reset pulse.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 15, 2015
    Inventors: Bjoern Weissler, Pierre Klaus Gebhardt
  • Patent number: 8933411
    Abstract: A diagnostic imaging device includes a signal processing circuit (22) processes signals from a detector array (16) which detects radiation from an imaging region (20). The hit signals are indicative of a corresponding detector (18) being hit by a radiation photon. The signal processing circuit (22) includes a plurality of input channels (321, 322, 323, 324), each input channel receiving hit signals from a corresponding detector element (18) such that each input channel (321, 322, 323, 324) corresponds to a location at which each hit signal is received. A plurality of integrators (42) integrate signals from the input channels (32) to determine an energy value associated with each radiation hit. A plurality of analog-to-digital converters (441, 442, 443, 444) convert the integrated energy value into a digital energy value. A plurality of time to digital converters (40) receive the hit signals and generate a digital time stamp.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: January 13, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Torsten Solf
  • Patent number: 8895933
    Abstract: A data acquired system is provided. The data acquired system includes a main structure with a cavity formed therein, the cavity having a bottom for mounting a circuit board with electrical components thereto, a fan assembly disposed on the main structure, and an airflow guide disposed within the cavity and configured to guide airflow from the fan assembly for heat dissipation of the electrical components, the airflow guide positioned at a distance above the electrical components to form a gap between the airflow guide and the electrical components, wherein a sidewall of the cavity is provided with an air vent corresponding to the gap such that the airflow passes through the gap and is discharged from the air vent.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: November 25, 2014
    Assignee: General Electric Company
    Inventors: Jun Guo, Xiaoyan Zhang, Hailiang Liu, Zhuo Liu, Ashutosh Joshi
  • Patent number: 8822932
    Abstract: This disclosure describes an apparatus and a system for inspection of deepwater assets, e.g., pipes and pipelines that traverse the ocean floor. In one embodiment, the apparatus includes a housing that retains a compensation fluid therein to form a fluidic environment. A digital detector resides in the fluidic environment. The digital detector can generate digital images in response to radiation that penetrate though the deepwater asset and impinges on components of the digital detector. In one embodiment, the digital detector utilizes one or more seal members to secure the components together. The seal members may be permeable and/or impermeable to the compensation fluid thereby preventing and/or permitting migration of the compensation fluid between certain components of the digital detector.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 2, 2014
    Assignee: General Electric Company
    Inventors: Daniel Jay Scoville, Rajashekar Venkatachalam, Christopher Jay Morse
  • Patent number: 8785876
    Abstract: A radiation image capturing apparatus is provided with a scanning drive unit which sequentially applies ON voltage to respective scanning lines during a readout process to read out image data from radiation detection elements. From the time before radiation imaging, a controller controls the scanning drive unit to sequentially apply the ON voltage to the respective scanning lines and executes the readout process for the image data from the radiation detection elements. The controller detects start of the radioactive irradiation when the image data exceeds a threshold value, and controls that ON time, during which the ON voltage is applied to the scanning lines from the scanning drive unit during the readout process for the image data before radiation imaging, becomes longer than ON time during a readout process for the image data after finishing the radioactive irradiation.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: July 22, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Hideaki Tajima
  • Patent number: 8742354
    Abstract: A radiation image capturing device includes: an image capturing unit that captures a radiation image using irradiated radiation; a radiation detection unit that detects the radiation; a determination unit that determines whether image capturing preparation is completed; and a control unit that starts detection of the radiation by the radiation detection unit, in a case in which the determination unit determines that the image capturing preparation is completed, and controls the image capturing unit to capture a radiation image, in a case in which the radiation detection unit detects the radiation.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: June 3, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Sho Shimizukawa, Kouichi Kitano, Yasunori Ohta, Naoto Iwakiri, Naoyuki Nishino, Makoto Sugizaki
  • Patent number: 8735833
    Abstract: The invention provides a switchable photomultiplier switchable between a detecting state and a non-detecting state including a cathode upon which incident radiation is arranged to impinge. The photomultiplier also includes a series of dynodes arranged to amplify a current created at the cathode upon detection of photoradiation. The invention also provides a detection system arranged to detect radiation-emitting material in an object. The system includes a detector switchable between a detecting state in which the detector is arranged to detect radiation and a non-detecting state in which the detector is arranged to not detect radiation. The system further includes a controller arranged to control switching of the detector between the states such that the detector is switched to the non-detecting state while an external radiation source is irradiating the object.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 27, 2014
    Assignee: Rapiscan Systems, Inc
    Inventor: Edward James Morton
  • Patent number: 8729479
    Abstract: A nuclear medicine mammography system and method for conducting concurrent examinations of both breasts of a patient, thereby reducing examination time in molecular breast imaging. The system comprises first and second pairs of generally opposed articulatable gamma photon detectors, wherein each pair of detectors can be arranged to image a respective breast independently from the other pair of detectors. In one or more embodiments, the first detector pair is dedicatedly oriented in a first orientation and the second detector pair is dedicatedly oriented in a second, different orientation.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 20, 2014
    Assignee: GE Medical Systems Israel Ltd.
    Inventors: Jonathan Sachs, Yaron Hefetz
  • Patent number: 8716669
    Abstract: A method for estimating a line or response in a positron emission tomography scanner having depth of interaction estimation capability. The method utilizes information from both detector modules detecting a coincident event. A joint probability density function combining factors accounting for intermediate Compton scattering interactions and/or a final interaction that may be either a Compton scattering interaction or photoelectric absorption is calculated. In a preferred embodiment, a Bayesian estimation scheme is used to integrate the PDF for all permutations of the measured signal pairs, and the permutation with the largest joint probability is selected to construct the estimated line of response.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 6, 2014
    Assignee: University of Washington
    Inventors: Robert S. Miyaoka, Kyle Champley, Lawrence MacDonald, Thomas K. Lewellen
  • Publication number: 20140114150
    Abstract: A system for providing monitored radiation therapy has a high energy radiation source, apparatus for excluding uncontrolled ambient light, and apparatus for collecting light emitted from a subject. The system has apparatus for spectrally analyzing the collected light, and a processor for determining oxygenation or other metabolic function of tissue within the subject from spectral analysis of the collected light. The system monitors radiation therapy by providing a beam of high energy radiation; collecting Cherenkov and/or photoluminescent light from the subject, the light generated along the beam; spectrally analyzing the light; and determining oxygenation or metabolic function of tissue from the spectral analysis. Beam profile of the system is calibrated by imaging from multiple angles Cherenkov and/or photoluminescent light emitted by a phantom placed in the beam in lieu of a subject, captured images are analyzed to determine beam profile.
    Type: Application
    Filed: May 18, 2012
    Publication date: April 24, 2014
    Applicant: The Trustees of Dartmouth College
    Inventors: Brian William Pogue, David Joseph Gladstone, Scott Christian Davis, Johan Jakob Axelsoon, Adam Kenneth Glaser, Rongxiao Zhang
  • Publication number: 20140103200
    Abstract: An apparatus and method for simulating a radiation phantom so as to calibrate or measure performance of a gamma detection system. The apparatus includes a line bar configured to rotate around an axis of rotation, a source carriage configured to move linearly along the line bar and to hold an attached radiation source, and a fixture assembly configured to support the line bar, the fixture assembly being configured to attach to a patient bed.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Inventors: Zhengyan (Zen) WANG, Wenli WANG, Karthikayan BALAKRISHNAN
  • Patent number: 8687869
    Abstract: A method for reconstructing an image from emission data includes generating a compressed point-spread function matrix, generating an accumulated attenuation factor; and performing at least one image projection operation on an image matrix of the emission data using the compressed point-spread function matrix and the accumulated attenuation factor. The image projection operation can include rotating an image matrix and an exponential attenuation map to align with a selected viewing angle. An accumulated attenuation image is then generated from the rotated image matrix and rotated exponential attenuation map and a projection image is generated for each voxel by multiplying the accumulated attenuation image and point spread function matrix for each voxel. The rotating and multiplying operations can be performed on a graphics processing unit, which may be found in a commercially available video processing card, which are specifically designed to efficiently perform such operations.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 1, 2014
    Assignee: The Research Foundation of State of University of New York
    Inventors: Jerome Z. Liang, Zigang Wang
  • Patent number: 8676292
    Abstract: Apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, comprises: an imaging unit configured to obtain radiation intensity data from a target region in the spatial dimensions and at least one other dimension, and an image four-dimension analysis unit analyzes the intensity data in the spatial dimension and said at least one other dimension in order to map the distinguishable regions. The system typically detects rates of change over time in signals from radiopharmaceuticals and uses the rates of change to identify the tissues. In a preferred embodiment, two or more radiopharmaceuticals are used, the results of one being used as a constraint on the other.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 18, 2014
    Assignee: Biosensors International Group, Ltd.
    Inventors: Benny Rousso, Michael Nagler
  • Patent number: 8668844
    Abstract: The invention relates to a Gd2O2S:Nd fluorescent material and the use of Nd3+ as emitter in suitable materials.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: March 11, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Cornelis Reinder Ronda, Guenter Zeitler, Herbert Schreinemacher, Norbert Conrads, Detlef Uwe Wiechert
  • Publication number: 20140061485
    Abstract: A radiation imaging apparatus, comprising a sensor panel including a sensor array, a scintillator layer disposed on the sensor panel so as to cover the sensor array, and a housing having a side wall facing a side surface of the sensor panel and containing the sensor panel and the scintillator layer, wherein the scintillator layer protrudes, at at least one side of the sensor panel, from the side toward the side wall.
    Type: Application
    Filed: August 26, 2013
    Publication date: March 6, 2014
    Inventors: Kazumi Nagano, Satoshi Okada, Keiichi Nomura, Yohei Ishida
  • Publication number: 20140054467
    Abstract: A radiation imaging apparatus comprising a plurality of sensor units each including a plurality of photoelectric converters, a substrate configured to support the plurality of sensor units, and a scintillator, wherein the scintillator comprises scintillator grains configured to convert radiation into light and a binder configured to make the scintillator grains adhere to each other, and the scintillator includes first portions provided between the plurality of sensor units and a second portion provided on the plurality of sensor units and the substrate.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 27, 2014
    Inventors: Shinichi Takeda, Masato Inoue, Satoru Sawada, Takamasa Ishii, Taiki Takei, Kota Nishibe, Shoshiro Saruta
  • Patent number: 8658979
    Abstract: A system is provided for obtaining a nuclear image of a moving object. The system comprises an input (14), a processing unit (15) and an output (17). The input (14) is provided for receiving a nuclear image and morphological images of the object. The processing unit (15) is configured to process the morphological images to obtain sparse motion information of the object, to use the sparse motion information and a motion model for obtaining estimated motion information about the object, and to generate a motion-corrected nuclear image based on the estimated motion information and the acquired nuclear image. The output (17) provides the corrected nuclear image.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 25, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Tobias Klinder, Cristian Lorenz, Michael H. Kuhn
  • Patent number: 8642968
    Abstract: A tomographic image of a subject is generated from projection image data acquired in a series of image capturing processes carried out by a radiation detector based on radiation emitted from a radiation source and transmitted through the subject. An extrapolating process is performed on each of the projection image data along a prescribed direction, and a smoothing process is performed on each of the projection image data along a direction perpendicular to the prescribed direction, thereby determining values of a plurality of pixels in non-detecting regions, which do not belong to a detecting region of the radiation detector. The determined values of the pixels also are used to generate the tomographic image.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 4, 2014
    Assignee: Fujifilm Corporation
    Inventor: Sadato Akahori
  • Patent number: 8637842
    Abstract: A method of using automatic whole body personnel contamination monitors and/or means for decontaminating individuals exposed to radioactive material contamination is provided. The inventive method involves the use of these monitors and/or decontamination means in intermodal containers of mobile-unit structures dedicated to responding to radiological emergency situations. Also provided are such mobile-unit structures, as well as systems that employ such mobile-unit structures.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 28, 2014
    Assignee: UniTech Services Group, Inc.
    Inventors: Leslie B. Case, III, Michael R. Fuller, Gregg A. Johnstone, Thomas Pearce O'Kelley, Glenn E. Roberts
  • Patent number: 8633445
    Abstract: An imaging method includes obtaining a first image data for a subset of a target region, the subset of the target region having a first metallic object, obtaining a second image data for the target region, and using the first and second image data to determine a composite image. A imaging system includes a first detector configured to provide a first projection data using a first radiation having high energy, and a second detector configured to provide a second projection data using a second radiation having low energy, wherein the first detector has a first length, the second detector has a second length, and the first length is less than 75% of the second length.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: January 21, 2014
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems International AG
    Inventors: Josh Star-Lack, Michael Green, Heinrich Riem, Timothy Guertin
  • Patent number: 8629404
    Abstract: An apparatus and method are provided for optimizing an amount of radiation dose and acquisition time in cardiac Single Photon Emission Computed Tomography (SPECT) imaging. The apparatus and method include providing an organ, acquiring images of the organ at projected views. Then a projected view that projects the organ as an annulus is selected; a region of interest (ROI) is also selected in the projected view, wherein the ROI is in a lateral wall of the organ. An average count in the ROI is determined; and an image quality of a reconstructed image based on the average count is predicted.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 14, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Alexander Hans Vija
  • Patent number: 8625873
    Abstract: Provided is a medical image processing apparatus allowing the generation of image data by changing the reconstruction conditions in correspondence with the positional relation of an observation target based on the projected data chronologically acquired by an X-ray CT scanner. The medical image processing apparatus includes a photographing unit, a reconfiguration processing unit, an extracting unit, and an analyzing unit. The photographing unit scans the flexible site of the living body configured from multiple parts in order to acquire projected data. The reconfiguration processing unit carries out reconfiguration processing on the projected data and generates image data of the flexible site regarding the plurality of timing points. The extracting unit extracts the plurality of components configuring the flexible site from the respective image data. The analyzing unit obtains the positional relation of the plurality of components.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 7, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Yasuko Fujisawa, Shinsuke Tsukagoshi, Yoshihiro Ikeda
  • Patent number: 8625868
    Abstract: According to one embodiment, a radiation diagnostic apparatus includes a photon-counting detector, a counting information storage unit, an image reconstituting unit, and a controlling unit. The detector performs counting on light derived from incident radiation. The counting information storage unit stores therein counting information based on the counting result of the detector. The image reconstituting unit reconstitutes a medical image by performing a back projection process on projection data that is generated by use of the counting information stored in the counting information storage unit. After the reconstitution of the medical image, the controlling unit performs control so that all or part of the counting information is maintained in the counting information storage unit.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 7, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Takuzo Takayama, Manabu Teshigawara, Kenta Moriyasu
  • Patent number: 8618490
    Abstract: A method is disclosed for determining radiation attenuation as a result of an object in a positron emission tomography scanner. In at least one embodiment, a phantom object is arranged in the positron emission tomography scanner during the method. First raw radiation data of the phantom object is acquired while the object is not arranged in the positron emission tomography scanner. A first image of the phantom object is calculated from the first raw radiation data. The object then is arranged in the positron emission tomography scanner (2) and preliminary radiation attenuation of the object is identified. Second raw radiation data of the phantom object is acquired while the object is arranged in the positron emission tomography scanner. A second image of the phantom object is calculated from the second raw radiation data taking into account the preliminary radiation attenuation. The radiation attenuation is determined on the basis of the first image and the second image.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: December 31, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Fenchel, Ralf Ladebeck
  • Publication number: 20130341516
    Abstract: A radiation detection apparatus comprises a sensor panel including a plurality of sensor units which detect radiation and are arrayed, each of the plurality of sensor units comprising a pixel array including a plurality of pixels which detect light and are two-dimensionally arranged, a scintillator layer which converts radiation into light, and a first scintillator protective layer disposed to cover the scintillator layer, and the radiation detection apparatus further comprising a second scintillator protective layer disposed to cover the plurality of sensor units.
    Type: Application
    Filed: May 16, 2013
    Publication date: December 26, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yohei Ishida, Satoshi Okada, Kazumi Nagano, Shoshiro Saruta, Keiichi Nomura
  • Publication number: 20130341517
    Abstract: A radiation detection apparatus, comprising a housing including a first plate portion and a second plate portion arranged to face each other, a scintillator configured to convert a radiation into light, supported by a supporting portion arranged in a side of the second plate portion in the housing, a sensor panel including a sensor array in which a plurality of sensors for detecting light are arrayed, interposed between the scintillator and the first plate portion in the housing, and a member interposed between the first plate portion and the sensor panel in the housing, wherein the sensor panel is arranged to position an outer edge of the sensor panel outside an outer edge of the scintillator, and the member is arranged to position an outer edge of the member inside the outer edge of the scintillator.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 26, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Masato Inoue, Shinichi Takeda, Satoru Sawada, Takamasa Ishii, Taiki Takei, Kota Nishibe
  • Patent number: 8598534
    Abstract: A diagnostic imaging device includes a signal processing circuit (22) processes signals from a detector array (16) which detects radiation from an imaging region (20). The hit signals are indicative of a corresponding detector (18) being hit by a radiation photon. The signal processing circuit (22) includes a plurality of input channels (321, 322, 323, 324), each input channel receiving hit signals from a corresponding detector element (18) such that each input channel (321, 322, 323, 324) corresponds to a location at which each hit signal is received. A plurality of integrators (42) integrate signals from the input channels (32) to determine an energy value associated with each radiation hit. A plurality of analog-to-digital converters (441, 442, 443, 444) convert the integrated energy value into a digital energy value. A plurality of time to digital converters (40) receive the hit signals and generate a digital time stamp.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventor: Torsten Solf