X-ray Or Gamma-ray System Patents (Class 250/370.09)
  • Patent number: 9024269
    Abstract: A digital X-ray detector includes a scintillator that is configured to absorb radiation emitted from an X-ray radiation source and to emit light photons in response to the absorbed radiation. The detector also includes a complementary metal-oxide-semiconductor (CMOS) light imager that is configured to absorb the light photons emitted by the scintillator. The CMOS light imager includes a first surface and a second surface. The first surface is disposed opposite the second surface. The scintillator contacts the first surface of the CMOS light imager. The CMOS light imager further includes a CMOS pixel array with an array of CMOS pixels. Each individual CMOS pixel includes at least two row select transistors.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 5, 2015
    Assignee: General Electric Company
    Inventor: James Zhengshe Liu
  • Patent number: 9024244
    Abstract: A control device of a radiation image capturing apparatus performs repeated reading of leak data prior to radiation image capturing operation and, when a threshold value has been exceeded by the leak data having been read out, said control device detects the start of irradiation. If there are periodic fluctuations in the leak data read out prior to radiation image capturing operation even though irradiation has not started, said control device determines whether or not a threshold value has been exceeded by a value obtained by subtracting a previously obtained fluctuation pattern of the leak data from the read-out leak data during a time period including at least a time period when the leak data fluctuates.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: May 5, 2015
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Kouji Amitani
  • Patent number: 9024270
    Abstract: The present invention based on not changing hardware design, which means that each imaging detector keep independent considerations, the weighted value of the circuit to be pushed back the weight of the original signal, and then estimate the amount of the original signal in a virtual cascade circuit to renew weighted signal; this estimation process through simplification, only simple addition and multiplication calculations on real numbers need to be implemented. Advantage of the present invention is that the signal data through a simple operation will complete the estimate. Executing the estimate in hardware without increasing storage capacity of the rear-end list mode data, and also to achieve a continuous and effective imaging area to expand and enhance the probe's sensitivity and keep a higher signal to noise ratio (S/N ratio).
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: May 5, 2015
    Assignee: Institute of Nuclear Energy Research Atomic Council, Executive Yuan
    Inventors: Hsin-Chin Liang, Meei-Ling Jan, Ching-Wei Kuo
  • Patent number: 9018590
    Abstract: A device is provided for addressing the rows of an active detection matrix for imaging by ionizing radiations comprising a plurality N of rows n of pixels, the addressing device being produced on a substrate on which the matrix is also producing and mainly comprising thin film transistors of single N or P type. The row addressing device can comprise a plurality of stages suitable for delivering at their respective outputs switching signals for switching the high and low levels of a signal applied to switching devices at the output on a corresponding row of the matrix and being characterized in that each stage comprises an input stage and an output stage, the input stage delivering an activation signal for the output stage, the output stage delivering, in case of activation, said switching signal for the corresponding row n.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Trixell S.A.S.
    Inventors: David Blanchon, Benoît Racine
  • Publication number: 20150108357
    Abstract: In certain embodiments, a mixed signal integrated circuit is provided that includes both a digital portion and an analog portion. A shield is provided that overlays one of the digital portion or the analog portion of the mixed signal integrated circuit. The shield limits propagation of signals between the digital portion and the analog portion of the mixed signal integrated circuit.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: General Electric Company
    Inventors: James Wilson Rose, Oliver Richard Astley, Donna Marie Sherman, Jonathan David Short
  • Publication number: 20150108355
    Abstract: Disclosed are a charge sensitive amplifier, a detector and an X-ray photographing apparatus including the same. The charge sensitive amplifier includes an amplification unit that amplifies an electric charge input thereto, a capacitor that has one end of the capacitor, connected to an input terminal of the amplification unit, and the other end connected to an output terminal of the amplification unit, and a buffer unit that has an input terminal and an output terminal which is connected to the input terminal of the amplification unit and the one end of the capacitor. Impedance at the input terminal of the buffer unit is lower than impedance at the output terminal of the buffer unit.
    Type: Application
    Filed: August 8, 2014
    Publication date: April 23, 2015
    Inventors: Kang-Ho LEE, Jin-Myoung KIM, Jae-chul PARK
  • Patent number: 9012858
    Abstract: Described embodiments provide an X-ray detector and a method for driving the same. The X-ray detector includes: a sensor panel in which a plurality of pixels are defined, the plurality of pixels each including a photodiode for converting light corresponding to incident X-ray into an electric signal, and a switching element connected to one terminal of the photodiode to control the output of the electric signal; a light emitting unit for providing light to the photodiode; and a voltage supply unit connected to the other terminal of the photodiode to selectively supply first and second voltages different from each other.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: April 21, 2015
    Assignee: Rayence Co., Ltd.
    Inventors: Kang Min Hwang, Hae Sung Lee, Jong Chul Kim, Jae Seok Lee
  • Patent number: 9011000
    Abstract: An X-ray imaging apparatus includes an X-ray sensor configured to convert an X-ray to an image signal, a supporting member configured to support the X-ray sensor, and a casing having the X-ray sensor and the supporting member incorporated therein, wherein the casing includes a front casing configured to cover a front surface of the X-ray imaging apparatus where an X-ray enters, and a rear casing configured to cover a rear surface opposite the front surface of the X-ray imaging apparatus, and wherein a recess is formed toward the exterior of the casings at the connection portion of the front casing and the rear casing.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 21, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Motoki Tagawa
  • Patent number: 9012857
    Abstract: An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: April 21, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Nicolaas Johannes Anthonius Van Veen, Amiaz Altman, Igor Uman, Rafael Goshen
  • Patent number: 9014329
    Abstract: An X-ray CT apparatus includes an X-ray source configured to generate an X-ray; a scintillator configured to convert the X-ray into a fluorescent; a substrate including a plurality of photosensitive elements configured to convert the fluorescent into an electric charge; a temperature sensor formed on the surface of the substrate; a heat element formed on the surface of the substrate; and a controller configured to control a temperature of the photodiode by adjusting an electric current of the heat element.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 21, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Tomoe Sagoh, Takayuki Yamazaki, Michito Nakayama, Atsushi Hashimoto, Takeshi Miyagi
  • Publication number: 20150102227
    Abstract: A detector has a 2-dimensional matrix of pixels that includes at least one group wherein there is coupled to each pixel in the group a respective electronic circuit being responsive to a discrete photon striking the pixel for generating and storing a corresponding analog pixel level signal fed to a processing circuit via a common analog databus common. A common signaling line informs the respective electronic circuit that the databus is available, and a respective logic circuit coupled to all of the electronic circuits in the group and responsive to the signaling line being available and to the signal level of any pixel in the group being commensurate with the pixel having been hit by a photon, passes the analog pixel level on to the databus and flags the signaling line as busy so that the other pixels in the group are notified that the databus is busy.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 16, 2015
    Applicant: Nygon AS
    Inventor: Einar NYGÅRD
  • Publication number: 20150103975
    Abstract: An x-ray image sensor and an x-ray image sensor system using the same is disclosed. The x-ray image sensor has a back-light unit emitting actinic and non-actinic lights. There is an x-ray-photoconductor-assisted liquid crystal light valve including an x-ray photoconductive unit to absorb x-rays passing through an object to be imaged and create a charge image corresponding to an image of the x-rays and a liquid crystal cell unit to convert the charge image into at least one optical image illuminated by the non-actinic light. The optical image is detected by an optical imager. The optical imager is coupled to a processor converting data of the optical image into picture archiving and communication system (PACS)-compatible format for further storages, distributions, and displays.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventor: KEI-HSIUNG YANG
  • Patent number: 9006671
    Abstract: A radiological image detection apparatus includes: a lock mechanism including at least one first lock mechanism and at least one second lock mechanism, each including a coupling member moving between a coupling position at which the lock mechanism is coupled to a battery and a non-coupling position, the coupling member being installed with a manipulation part exposed to an outer surface of a portion of a case in which a battery accommodating part is installed, and the first lock mechanism setting a first direction of a movement direction of the corresponding coupling member from the coupling position to the non-coupling position and the second lock mechanism setting a second direction of a movement direction of the corresponding coupling member from the coupling position to the non-coupling position, being different from the first direction.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Fujifilm Corporation
    Inventors: Shinsuke Noguchi, Akihito Bettouyashiki, Makoto Sugizaki
  • Patent number: 9006673
    Abstract: An X-ray analysis apparatus converts an X-ray intensity distribution of discrete data determined for each pixel, from a first plane where the distribution is known into a second plane where the distribution is not known. The X-ray analysis apparatus projects onto the second plane, a grid point which specifies a pixel on the first plane and an intermediate point between the grid points, as nodes, calculates an area of a region where a polygon expressing a projected pixel specified by the projected nodes overlaps with each pixel on the second plane, to thereby calculate an occupancy ratio of the polygon expressing the projected pixel to each pixel on the second plane and distributes X-ray intensity in the pixel on the first plane to the pixel on the second plane based on the occupancy ratio, to thereby convert the X-ray intensity distribution.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: April 14, 2015
    Assignee: Rigaku Corporation
    Inventors: Kazuki Ito, Yoshinori Ueji, Koichi Kajiyoshi, Kunio Nishi
  • Publication number: 20150083925
    Abstract: An apparatus for spatially correcting an image frame is disclosed. In some embodiments, the apparatus stores a frame of pixel values and scans a multi-pixel correction window across the frame. Spatial correction is performed on pixels within the window at correction positions during the scan. The spatial correction comprises estimating pixel values at value estimation positions based on one or more pixel values within the window for pixels satisfying a logical condition. The value estimation positions correspond to pixel values which do not fall within the window again during the scan. Further disclosed is an apparatus for detecting high-energy radiation, in which integration circuitry is used for integrating charge responsive to radiation photon interaction events. The circuits are controllable in accordance with an exposure control signal to vary an exposure window duration according to an operating parameter of the apparatus.
    Type: Application
    Filed: April 30, 2014
    Publication date: March 26, 2015
    Applicant: RADIATION WATCH LIMITED
    Inventors: David Prendergast, Michael Anderson, Paul Downes, William Croydon, Christopher Boyce, Wayne Cranwell, Trevor McAlister, Zhuo Zhhang
  • Patent number: 8981309
    Abstract: A cassette includes: an image capturing unit including: an image receiving unit having a flat panel shape on which a plurality of pixels are arranged on a substrate converting radiation into electric charges and accumulating the converted electric charges; and a support to which the image receiving unit is attached; and a case in which the image capturing unit is accommodated in an unfixed state, in which the support supports the image receiving unit, and an outer edge of the support is disposed on an outer side of an outer edge of the substrate of the image receiving unit in a direction parallel to an image receiving surface of the image receiving unit.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujifilm Corporation
    Inventors: Shinsuke Noguchi, Takeyasu Kobayashi, Makoto Sugizaki
  • Patent number: 8983036
    Abstract: Embodiments of methods/apparatus can transition a DR detector imaging array to low power photosensor mode where a first voltage is applied across the photosensors. Embodiments of methods/apparatus can provide an area radiographic imaging array including a plurality of pixels arranged in a matrix at the imaging array where each pixel can include at least one electrically chargeable photosensor and at least one transistor, row address circuits, signal sensing circuits, and photosensor power control circuitry to maintain a first voltage across photosensors of the portion of the imaging array when the detector is between imaging operations. In one embodiment, photosensor power control circuitry can maintain the first voltage across the photosensors when a power consumption of the signal sensing circuits is less than 1% of the power consumption of the signal sensing circuits during readout of a signal from the portion of the imaging array.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: March 17, 2015
    Assignee: Carestream Health, Inc.
    Inventors: Timothy J. Tredwell, Jeff Hsin Chang
  • Patent number: 8983165
    Abstract: The claimed subject matter describes a novel technique to measure the beam profile using an area detector. In one embodiment, a set of one-dimensional beam profile measurements is performed by taking two images under the same source conditions but at two different positions of the detector, with each position of the detector shifted by a certain distance in the direction corresponding to the direction of the one-dimensional profile measurement. In further embodiments, a set of two-dimensional beam profile measurements is achieved by determining a second set of one-dimensional profiles from the same sampling points in a second direction and building a two-dimensional map of the beam profile by correlating the first one-dimensional profile measurement with the second one-dimensional profile measurement.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 17, 2015
    Assignee: Varian Medical Systems, Inc.
    Inventors: Mingshan Sun, Josh Star-Lack, Gary Virshup, Daniel Morf, Stefan Jochem Thieme-Marti
  • Patent number: 8983035
    Abstract: A flat panel detector has pixels for obtaining image signals and detective pixels for detecting the amount of incident x-rays. A signal processing circuit is of a pipeline-type, wherein first and second buffer memories are connected to the output of an A/D converter. In a dose detecting operation, the signal processing circuit repeats primary cycles alternately with secondary cycles of a shorter length than the primary cycles. In the primary cycle, a dose detection signal based on electric charges from the detective pixels is input in the first buffer memory and, simultaneously, a dummy signal is output from the second buffer memory. In secondary cycle, the dose detection signal is output from the first buffer memory and, simultaneously, a second dummy signal is input in the second buffer memory. On the basis of the dose detection signals, a start-of-radiation detector detects the start of x-ray radiation.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 17, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Kentaro Noma, Kenji Nakamura, Naoto Iwakiri, Kouichi Kitano, Keita Watanabe
  • Publication number: 20150069252
    Abstract: An x-ray detector is disclosed for detection of x-ray radiation, including a planar cathode, an anode divided into a plurality of pixel elements and a direct converter disposed between cathode and anode for conversion of radiation into electrical charge. In an embodiment, at least two guard rings or guard ring structures are disposed around pixel elements or groups of pixel elements, to which guard rings or guard ring structures potentials are applied. Different potentials are applied to at least two different rings of the at least two guard rings or parts of the guard ring structures.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 12, 2015
    Inventor: Mario EICHENSEER
  • Publication number: 20150060677
    Abstract: An X-ray detector is disclosed, in particular for a computed tomography system. In an embodiment, the X-ray detector includes a regular arrangement of measuring pixels for covering a measuring surface. A plurality of the measuring pixels of the regular arrangement are constructed as direct converting measuring pixels, and remaining ones of the measuring pixels are constructed as indirect converting measuring pixels.
    Type: Application
    Filed: August 13, 2014
    Publication date: March 5, 2015
    Inventors: Peter HACKENSCHMIED, Christian SCHRÖTER, Matthias STRASSBURG
  • Publication number: 20150060681
    Abstract: An imaging apparatus (400) includes a detector array (412) with at least one detector tile (418). The detector tile includes a photosensor array (422) with a two dimensional array of individual photosensitive detector pixels (424) located within a non-photosensitive area (426). The imaging apparatus also includes readout electronics (432) coupled to the photosensor array and including individual readout channel wells (602, 604) corresponding to the individual detector pixels. The imaging apparatus also includes an anti-aliasing filter (800) for a detector pixel that is located in at least one of a region of the photosensor array corresponding to the detector pixel or a region of the readout electronics corresponding to the detector pixel.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 5, 2015
    Inventors: Marc Anthony Chappo, Randall Peter Luhta
  • Publication number: 20150060682
    Abstract: An X-ray matrix imager is configured to operate based on a multiple-gate-line driving scheme and a shared-data-line driving scheme. The X-ray matrix imager includes a matrix with multiple pixels, multiple gate line sets, multiple data lines, multiple gate drivers, multiple row multiplexers, and multiple pull-down units. Each gate line sets includes a first gate line coupled to a first pixel and a second gate line coupled to a second pixel adjacent to the first pixel. Each data line is coupled to the multiple gate line sets for receiving charges accumulated on the pixels. Each row multiplexer is configured to selectively couple a corresponding gate driver to the first gate line or the second gate line in a corresponding gate line set. Each pull-down unit is configured to couple the first gate line to a constant voltage when the first gate line is not coupled to the corresponding gate driver.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventors: Richard WEISFIELD, Ivan P. MOLLOV, Pieter Gerhard ROOS
  • Patent number: 8969821
    Abstract: An apparatus for detecting an X-ray includes a photo diode having an anode electrode and a cathode electrode, a switching transistor, and a first storage capacitor that has one end connected to the cathode electrode and another end connected to the switching transistor.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Dong Hyuk Kim
  • Patent number: 8970755
    Abstract: The present invention may suppress feedthrough components in video imaging. Namely, TFT driving waveforms are plurally overlapped, and an integration period of capacitors C of amplification circuits is set so as to encompass a generation period of a feedthrough component (OFF), a generation period of a feedthrough component (ON), and a period in which charges (a signal component) are read out from storage capacitors of pixels by ON states of the TFTs. A number of driving waveforms to be overlapped is determined in accordance with a frame rate, the integration period and a reset period, or the like.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 3, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Naoyuki Nishino, Naoto Iwakiri, Kouichi Kitano, Yasunori Ohta, Haruyasu Nakatsugawa
  • Patent number: 8969820
    Abstract: A radiographic apparatus includes an X-ray detection sensor having a two-dimensional detector plane for detecting an intensity distribution of X-rays, a body internally containing the X-ray detection sensor, a supporting member having a supporting surface for supporting the X-ray detection sensor across the detector plane and which fixes the X-ray detection sensor to an inner bottom surface of the body, and a circuit board on which is mounted a circuit for reading out a detection signal from the X-ray detection sensor. Furthermore, in the radiographic apparatus, the supporting member forms a space between the supporting member and the inner bottom surface of the body in a peripheral portion of the supporting member. At least a part of the circuit board is arranged in the space.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hidetomo Suwa, Akio Saigusa, Tetsuo Watanabe
  • Publication number: 20150053865
    Abstract: A radiation image-pickup device includes: a plurality of pixels each configured to generate signal charge based on radiation; and a field effect transistor used to read the signal charge from each of the plurality of pixels, wherein the field effect transistor includes a semiconductor layer including an active layer and a low concentration impurity layer formed to be adjacent to the active layer, and a first and a second gate electrode disposed to face each other with the active layer interposed therebetween, and one or both of the first and the second gate electrodes are provided in a region not facing the low concentration impurity layer.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 26, 2015
    Applicant: Sony Corporation
    Inventor: Yasuhiro Yamada
  • Patent number: 8963096
    Abstract: Example embodiments are directed an X-ray detector including an oxide semiconductor transistor. The X-ray detector including the oxide semiconductor transistor includes an oxide semiconductor transistor and a signal storage capacitor in parallel to each other on a substrate. The oxide semiconductor transistor includes a channel formed of an oxide semiconductor material, and a photoconductor. A pixel electrode and a common electrode are formed on opposite surfaces of the photoconductor. The channel includes ZnO, or a compound including ZnO and at least one selected from a group consisting of gallium (Ga), indium (In), hafnium (Hf), and tin (Sn).
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-il Kim, Jae-chul Park, Sang-wook Kim, Chang-jung Kim
  • Patent number: 8964939
    Abstract: A radiation image acquiring system is provided. An X-ray image acquiring system irradiates X-rays to a subject from an X-ray source, and detects X-rays transmitted through the subject. The X-ray image acquiring system includes a first detector for detecting X-rays that are transmitted through the subject to generate first image data, a second detector arranged in parallel to the first detector with a dead zone region sandwiched therebetween, for detecting X-rays that are transmitted through the subject to generate second image data, and a timing control section for controlling detection timing of the second detector based on a dead zone width of the dead zone region so that first image data to be generated by the first detector and second image data to be generated by the second detector mutually correspond.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Toshiyasu Suyama, Tadashi Maruno, Toshihide Sasaki, Junichi Sonoda, Shinji Takihi
  • Publication number: 20150043715
    Abstract: A radiographic imaging device includes: a radiation detector including plural pixels, each including a sensor portion and a switching element; a detection unit that detects a radiation irradiation start if an electrical signal caused by charges generated in the sensor portion satisfies a specific irradiation detection condition, and/or if an electrical signal caused by charges generated in a radiation sensor portion that is different from the sensor portion satisfies a specific irradiation detection condition; and a control unit that determines whether or not noise caused by external disturbance has occurred after the detection unit has detected the radiation irradiation start, and if the noise has occurred, that stops a current operation of the radiation detector, and causes the detection unit to perform detection.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Takeshi KUWABARA, Yoshihiro OKADA, Haruyasu NAKATSUGAWA, Naoyuki NISHINO
  • Patent number: 8953744
    Abstract: An FPD, being offline from an X-ray source, detects X-ray irradiation from the X-ray source to detect an X-ray image. The FPD includes pixels arranged in two dimensions, scan lines corresponding to respective rows of the pixels, signal lines corresponding to respective columns of the pixels, and switching elements provided to the respective pixels to allow performing accumulation operation or readout operation. At least one of the pixels is used as a detection pixel to detect a start of the X-ray irradiation. First and second voltage signals are obtained successively through the signal line to which the detection pixel is connected. The start of the X-ray irradiation is judged based on a difference between the first and second voltage signals.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: February 10, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Keita Watanabe, Kentaro Noma
  • Patent number: 8952336
    Abstract: An image pickup device includes: an image pickup section including a plurality of pixels; and a drive section reading a signal charge stored in each of the pixels. Each of the pixels includes: a circuit layer including a field-effect transistor, a signal line, and a holding capacitive element; a first electrode provided on the circuit layer and arranged for each of the pixels; a semiconductor layer provided on the first electrode across the pixels, and generating the signal charge based on incident radiation; a second electrode provided on the semiconductor layer; and a third electrode disposed in a region that is between the circuit layer and the semiconductor layer and that is not in opposition to the first electrode, and controlled in voltage by the drive section.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: February 10, 2015
    Assignee: Sony Corporation
    Inventors: Michiru Senda, Tsutomu Tanaka
  • Patent number: 8953740
    Abstract: The invention relates to an X-ray device comprising an x-ray sensitive camera for creating tomograms, especially panoramic tomograms. Means for creating 3D shots of a partial volume of the mandibular arch are also provided, said 3D shots being created especially by a second image receiver for creating a 2D shot and means for taking a plurality of 2D shots from different directions and creating a 3D shot therefrom, preferably according to conebeam technology with the associated reconstruction algorithms. The x-ray sensitive camera comprises a first x-ray sensitive image receiver for creating a tomogram, and a second x-ray sensitive image receiver for creating plane shots.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 10, 2015
    Assignee: Sirona Dental Systems GmbH
    Inventors: Norbert Erhardt, Werner Gunther
  • Patent number: 8952335
    Abstract: Bias lines are provided for respective columns of pixels, and of a plurality of bias lines, bias lines provided at an interval of 10 mm are connected to a bias power source through a current detector. The remaining bias lines are connected directly to the bias power source without passing through the current detector. In each pixel, if electric charge is generated by a radiation detection element in accordance with the dose of irradiated radiation, a current flows in the bias line in accordance with the generated electric charge. The current detector detects the current flowing in the bias line, and a control unit detects, as the timing of starting irradiation of a radiation, when the detected current (current value) is equal to or greater than a threshold value, and starts radiographing of a radiological image.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: Fujifilm Corporation
    Inventor: Keiichiro Sato
  • Publication number: 20150034831
    Abstract: Provided is an imaging device that can correct an output value of a pixel circuit. The imaging device includes a pixel circuit, a current detection circuit, an A/D converter, one or more memory circuit portions, and an arithmetic circuit portion. The pixel circuit includes a transistor, a charge accumulation portion, and a light-receiving element. The memory circuit portion includes a first look-up table, a second look-up table, and a region where image data output from the arithmetic circuit portion is stored. The first look-up table stores data of potentials of the charge accumulation portion, which depends on the intensity of light. The second look-up table stores output data of the transistor, which depends on the potentials of the charge accumulation portion.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventors: Hiroyuki MIYAKE, Hideaki SHISHIDO
  • Patent number: 8948338
    Abstract: An x-ray imaging system for imaging a subject includes an x-ray source configured to project an x-ray radiation toward a portion of the subject and a panel detector positioned opposite the x-ray source relative to the subject and configured to receive x-ray radiation passing through the subject. The panel detector includes a scintillation layer converting x-ray radiation to light rays of a selected spectrum and a plurality of microelectromechanical scanners. Each microelectromechanical scanner includes a photodetector mounted on a corresponding movable platform and configured to detect light in the selected light spectrum. The panel detector includes a scanning control module configured to move each platform in a selected scan pattern.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Louis J. Barbato, Patrick A. Helm, Jigney Shah
  • Patent number: 8946645
    Abstract: A radiation-monitoring diagnostic hodoscope system for producing an approximate image of radiation-detecting components within or external to a pressure vessel of an operating, damaged, or shutdown nuclear-power plant.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 3, 2015
    Inventor: Alexander De Volpi
  • Patent number: 8941070
    Abstract: An imaging system is provided. In one embodiment, an imaging system includes a radiation source and a digital detector. The imaging system may also include first and second structures, each configured to receive the digital detector. Further, the imaging system may include system control circuitry configured to control exposure of the digital detector by the radiation source and to acquire image data from the digital detector. Additionally, the digital detector may be configured to communicate its location to the system control circuitry based on receipt of the digital detector by the first or second receiving structures. Additional systems, methods, and devices are also disclosed.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Scott W. Petrick, Alan D. Blomeyer, James Z. Liu, Emad Abu Tabanjeh
  • Patent number: 8941072
    Abstract: A detector with a Silicon Diode and an amplifier, and a feedback element in the form of, for example, a resistor or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch, the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 27, 2015
    Assignee: FEI Company
    Inventors: Cornelis Sander Kooijman, Gerard Anne Nicolaas van Veen
  • Patent number: 8939640
    Abstract: An electronic cassette that is equipped with a drive mechanism capable of accommodating a radiation detection section respectively in two casings and that is capable of changing the surface area of the radiation detection section to be externally exposed and the exposure position on the radiation detection section. Deterioration of the radiation detection section from radiation can be distributed due to control such that the same exposure position is not repeatedly employed. An electronic cassette is accordingly provided that does not suffer from uneven effects of deterioration from radiation within a single sheet radiation detection section even with repeated use.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 27, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Naoyuki Nishinou, Haruyasu Nakatsugawa
  • Patent number: 8928773
    Abstract: An image pickup unit includes: an image pickup section including a plurality of pixels, the pixels each including a photoelectric transducer and a field-effect transistor; and a drive section switching the transistor between an on operation and an off operation to perform a read operation and a reset operation of a signal charge accumulated in each of the pixels. The transistor includes a first gate electrode and a second gate electrode with a semiconductor layer in between, the drive section applies a first voltage and a second voltage to the first gate electrode and the second gate electrode of the transistor, respectively, to switch the transistor between the on operation and the off operation, and the drive section adjusts timings of switching the first and second voltages between an on-voltage and an off-voltage, on-voltage values of the first and second voltages, or both thereof to be different from each other.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventors: Yasuhiro Yamada, Tsutomu Tanaka, Michiru Senda
  • Patent number: 8920686
    Abstract: A radiation converter material includes a semiconductor material used for directly converting radiation quanta into electrical charge carriers. In at least one embodiment, the semiconductor material includes a dopant in a dopant concentration and defect sites produced in a process-dictated manner in such a way that the semiconductor material includes an ohmic resistivity in a range of between 5·107 ?·cm and 2·109 ?·cm. Such a radiation converter material is particularly well matched to the requirements in particular in human-medical applications with regard to the high flux rate present and the spectral distribution of the radiation quanta. In at least one embodiment, the invention additionally relates to a radiation converter and a radiation detector, and a use of and a method for producing such a radiation converter material.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Hackenschmied, Christian Schröter, Matthias Strassburg
  • Publication number: 20140374609
    Abstract: Provided is a radiation detecting element, including: a semiconductor layer including a tin oxide crystal; and a detecting unit configured to detect, as an electrical signal, charges generated in the semiconductor layer when the semiconductor layer is irradiated with radiation, in which a resistivity of the semiconductor layer is 107 ?·cm or more.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 25, 2014
    Inventors: Tatsuya Iwasaki, Tatsuya Saito, Toru Den, Yoshinobu Nakamura, Hidenori Takagi
  • Publication number: 20140374610
    Abstract: The present invention may suppress feedthrough components in video imaging, Namely, TFT driving waveforms are plurally overlapped, and an integration period of capacitors C of amplification circuits is set so as to encompass a generation period of a feedthrough component (OFF), a generation period of a feedthrough component (ON), and a period in which charges (a signal component) are read out from storage capacitors of pixels by ON states of the TFTs. A number of driving waveforms to be overlapped is determined in accordance with a frame rate, the integration period and a reset period, or the like.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Naoyuki NISHINO, Naoto IWAKIRI, Kouichi KITANO, Yasunori OHTA, Haruyasu NAKATSUGAWA
  • Patent number: 8916830
    Abstract: An X-ray detector panel comprises: a substrate; a transistor including a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode, an active layer disposed on the gate insulating layer, and a source electrode and a drain electrode disposed on the active layer and separated from each other; a photodiode including a first electrode connected to the drain electrode of the transistor, a photoconductive layer disposed on the first electrode, and a second electrode disposed on the photoconductive layer; an interlayer insulating layer including a first interlayer insulating layer covering the transistor and the photodiode, the first interlayer insulating layer being formed of an insulating material having a band gap energy of about 8 eV to about 10 eV; a data line disposed on the interlayer insulating layer and contacting the source electrode of the transistor via the interlayer insulating layer; a bias line disposed on the interlayer insulating layer and contacting the second
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: James Lim, Kwan-Wook Jung, Dong-Hyuk Kim, Jea-Eun Ryu
  • Patent number: 8916829
    Abstract: A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 23, 2014
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: James R. Cadieux, George S. King, III, Glenn A. Fugate
  • Publication number: 20140367578
    Abstract: An X-ray image sensor, comprising an X-ray converter layer for converting X-rays into signals received by a semiconductor detector for sampling and detecting converted X-rays as electrical signals, and a connection substrate comprising electrical connections, the X-ray converter layer bonded to a first surface of the semiconductor detector and the connection substrate arranged at a second surface of the semiconductor detector, opposite the X-ray converter layer, wherein the semiconductor detector in at least one edge portion comprises vias for through-contacting detector elements formed in or on the first surface of the semiconductor detector to the connections substrate.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 18, 2014
    Applicant: FORSTGARTEN INTERNATIONAL HOLDING GMBH
    Inventor: Uwe Zeller
  • Patent number: 8913714
    Abstract: A detector arrangement is disclosed for performing phase-contrast measurements, including at least two transducer layers arranged one behind the other, wherein at least the first transducer layer arranged in the radiation direction includes alternate sensitive areas having a high absorptance for the conversion of incident radiation quanta into signals and less sensitive areas having a lower absorptance in comparison thereto. Further, a corresponding X-ray tomography device and a method for performing phase-contrast measurements are also enclosed.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: December 16, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thilo Michel, Peter Bartl, Gisela Anton
  • Publication number: 20140361180
    Abstract: A radiation image-pickup device includes: a plurality of pixels configured to generate signal charge based on radiation; a first substrate including a transistor configured to read out the signal charge; a second substrate disposed to face the first substrate; a conversion layer provided between the first substrate and the second substrate, the conversion layer being provided for each of the pixels, and being configured to convert the radiation to other wavelength or an electric signal; a partition provided between the first substrate and the second substrate, to partition the conversion layer for each of the pixels; and a radiation shielding layer provided to face the partition.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 11, 2014
    Applicant: Sony Corporation
    Inventor: Takashi Fujimura
  • Publication number: 20140353515
    Abstract: A sensor unit includes a metallic base member, a solid-state imaging element, and amplifier chips. The base member has a first placement surface and a second placement surface. The solid-state imaging element has a photodetecting surface, and is disposed on the first placement surface such that a rear surface and the first placement surface face each other. The amplifier chips are mounted on a substrate disposed on the second placement surface. The base member further has side wall portions facing side surfaces of the solid-state imaging element. The chips and the solid-state imaging element are electrically connected to one another via a bonding wire. The chips are thermally coupled to the base member via a thermal via of the substrate.
    Type: Application
    Filed: December 4, 2012
    Publication date: December 4, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuki Fujita, Ryuji Kyushima, Harumichi Mori, Haruyoshi Okada, Junichi Sawada