Ion Bombardment Patents (Class 250/492.21)
  • Patent number: 11665810
    Abstract: Embodiments herein are directed to a linear accelerator assembly for an ion implanter. In some embodiments, the linear accelerator assembly may include a central support within a chamber, and a plurality of modules coupled to the central support, at least one module of the plurality of modules including an electrode having an aperture for receiving and delivering an ion beam along a beamline axis.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: May 30, 2023
    Assignee: APPLIED Materials, Inc.
    Inventors: Frank Sinclair, Paul J. Murphy, Michael Honan, Charles T. Carlson
  • Patent number: 11651932
    Abstract: An ion source capable of extracting a ribbon ion beam with improved vertical angular uniformity is disclosed. The extraction plate and extraction optics are designed such that there is at least one non-uniform gap between adjacent components. A non-uniform gap may be effective in reducing angular spread non-uniformity of the extracted ribbon ion beam. Specifically, for a given gap in the Z direction, ions extracted from regions with lower plasma density may have more vertical angular spread. A larger gap in the Z direction between components in this region may make the vertical angular spread closer to the vertical angular spread of ions extracted from regions with higher plasma density. The non-uniform gap may be created by having an extraction plate that is flat or curved and electrodes that are flat, convex or concave. In certain embodiments, the non-uniform gap is located between the extraction plate and the suppression electrode.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: May 16, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Jay T. Scheuer, Sudhakar Mahalingam, Nevin Clay
  • Patent number: 11651928
    Abstract: Disclosed herein are apparatuses and systems for reentrant fluid delivery techniques. An example system includes at least a fluid delivery conduit extending between first and second electrical potentials, wherein the fluid delivery conduit is formed into a tilted helical so that a fluid flowing through the fluid delivery conduit experiences an electric field reversal through each winding of the fluid delivery conduit.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: May 16, 2023
    Inventor: James B McGinn
  • Patent number: 11615961
    Abstract: The present disclosure describes a system and a method for an ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: March 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung Huang, Li-Hsin Chu, Po-Feng Tsai, Henry Peng, Kuang Huan Hsu, Tsung Wei Chen, Yung-Lin Hsu
  • Patent number: 11569058
    Abstract: An ion implanter includes: a plurality of devices which are disposed along a beamline along which an ion beam is transported; a plurality of neutron ray measuring instruments which are disposed at a plurality of positions in the vicinity of the beamline and measure neutron rays which are generated at a plurality of locations of the beamline due to collision of a high-energy ion beam; and a control device which monitors at least one of the plurality of devices, based on a measurement value in at least one of the plurality of neutron ray measuring instruments.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: January 31, 2023
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventor: Hiroshi Matsushita
  • Patent number: 11569062
    Abstract: An ion implantation system includes an ion implanter containing an ion source unit and a dopant source gas supply system. The system includes a dopant source gas storage tank inside a gas box container located remotely to the ion implanter and a dopant source gas supply pipe configured to supply a dopant source gas from the dopant source gas storage tank to the ion source unit. The dopant source gas supply pipe includes an inner pipe, an outer pipe enclosing the inner pipe, a first pipe adaptor coupled to first end of respective inner and outer pipes, and a second pipe adaptor coupled to seconds end of respective inner and outer pipes opposite the first end. The first pipe adaptor connects the inner pipe to the dopant source gas storage tank and the second pipe adaptor connects the inner pipe to the ion source unit.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hom-Chung Lin, Jih-Churng Twu, Yi-Ting Chang, Chao-Po Lu, Tsung-Min Lin
  • Patent number: 11540372
    Abstract: A power converter for an LED drive circuit, can include: a capacitor and an LED load coupled in parallel to receive an output signal of a rectifier circuit; a power switch coupled in series with the LED load, and being configured to control a current path from the rectifier circuit to the LED load; and a control circuit configured to control the power switch to be turned off in accordance with an error between an output current flowing through the LED load and a desired current value to decrease power consumption of the power switch, where the operation of the power switch is controlled to transition between on and off states in each sinusoidal half-wave period.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: December 27, 2022
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Qiukai Huang, Jianxin Wang, Qingliang Zheng
  • Patent number: 11491640
    Abstract: An apparatus including a robot drive, a first arm connected to the robot drive, and a second arm connected to the robot drive. The first arm includes a first upper arm, a first forearm and a first end effector. The second arm includes a second upper arm, a second forearm and a second end effector. The first and second upper arms are connected to a first drive shaft of the robot drive. The first and second upper arms are either a same member or two members stationarily connected to one another. While the first arm is being extended and retracted, straight movement of the first end effector is provided relative to the robot drive along an axis which intersects a drive axis of the robot drive, where a wrist joint of the first arm does not intersect the drive axis while the first arm is being extended and retracted.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: November 8, 2022
    Assignee: Persimmon Technologies Corporation
    Inventors: Martin Hosek, Christopher Hofmeister
  • Patent number: 11462382
    Abstract: The present disclosure provides a substrate-processing apparatus. The substrate-processing apparatus includes an ion implanter and a controller associated with the ion implanter. The ion implanter is configured to implant ions into a substrate using an ion beam. The controller is configured to monitor an initial implantation profile of the ion beam and tune the ion implanter to provide the ion beam having a desired implantation profile based on the initial implantation profile and the desired implantation profile.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 4, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Hsun-Po Wen, Sung-Hui Chen
  • Patent number: 11415892
    Abstract: A method for producing a reflecting optical element for a projection exposure apparatus (1). The element has a substrate (30) with a substrate surface (31), a protection layer (38) and a layer partial system (39) suitable for the EUV wavelength range. The method includes: (a) measuring the substrate surface (31), (b) irradiating the substrate (30) with electrons (36), and (c) tempering the substrate (30). Furthermore, an associated reflective optical element for the EUV wavelength range, a projection lens with a mirror (18, 19, 20) as reflective optical element, and a projection exposure apparatus (1) including such a projection lens.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: August 16, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Matthias Kaes, Steffen Bezold, Matthias Manger, Christoph Petri, Pavel Alexeev, Walter Pauls
  • Patent number: 11398368
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: July 26, 2022
    Assignee: ASML Netherlands B.V
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Patent number: 11373837
    Abstract: The disclosure provides a metal ion source emitting device comprising a ceramic chamber, a leading-out electrode chamber and three cathodes hermetically connected, a trigger electrode fixed on a ceramic insulating element, a cathode target material fixed on an indirect cooling channel, a limiting element fixed on a fixed element, the fixed element fixing the indirect cooling channel on a cathode cooling pipe, the cathode cooling pipe fixed on a cathode flange, a trigger binding post connected with the trigger electrode, a leading-out electrode and an accelerating electrode arranged right below a cathode in the leading-out electrode chamber, and leading-out slits formed on the accelerating electrode and the leading-out electrode. According to the emitting device, three cathodes can operate simultaneously with only one anode, increasing irradiation area of an ion source, and improving the operating efficiency and energy utilization rate, with a more compact emitting source and larger processing area.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: June 28, 2022
    Assignees: Beijing Normal University, GUANGXIN ION BEAM TECHNOLOGY CO., LTD.
    Inventors: Bin Liao, Xiao Ouyang, Guoliang Wang, Xiaoping Ouyang, Jun Luo, Pan Pang, Lin Chen, Xu Zhang, Xianying Wu, Minju Ying
  • Patent number: 11371134
    Abstract: An array of nanowires with a period smaller than 150 nm on the surface of curved transparent substrate can be used for applications such as optical polarizers. A curved hard nanomask can be used to manufacture such structures. This nanomask includes a substantially periodic array of substantially parallel elongated elements having a wavelike cross-section. The fabrication method of the nanomask uses ion beams.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 28, 2022
    Assignee: Wostec, Inc.
    Inventors: Valery Konstantinovich Smirnov, Dmitry Stanislavovich Kibalov
  • Patent number: 11367589
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 21, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11346795
    Abstract: XPS spectra are used to analyze and monitor various steps in the selective deposition process. A goodness of passivation value is derived to analyze and quantify the quality of the passivation step. A selectivity figure of merit value is derived to analyze and quantify the selectivity of the deposition process, especially for selective deposition in the presence of passivation. A ratio of the selectivity figure of merit to maximum selectivity value can also be used to characterize and monitor the deposition process.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 31, 2022
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Charles Thomas Larson, Kavita Shah, Wei Ti Lee
  • Patent number: 11335586
    Abstract: A transfer device is disposed in a vacuum transfer chamber. The transfer device includes a structure body having an inner space isolated from the vacuum transfer chamber, an arm that rotates with respect to the structure body, and a vacuum seal structure configured to airtightly seal a sliding portion between the structure body and the arm. Further, the vacuum seal structure includes one or more seal members disposed at the sliding portion; a sealing portion formed by the structure body, the arm, and the seal members, lubricant being sealed in the sealing portion; and a pressure adjusting unit configured to adjust a pressure in the sealing portion.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: May 17, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takehiro Shindo, Shinji Wakabayashi
  • Patent number: 11315791
    Abstract: A method and system for fluorine ion implantation is described, where a fluorine compound capable of forming multiple fluorine ionic species is introduced into an ion implanter at a predetermined flow rate. Fluorine ionic species are generated at a predetermined arc power and source magnetic field, providing an optimized beam current for the desired fluorine ionic specie. The desired fluorine ionic specie, such as one having multiple fluorine atoms, is implanted into the substrate under the selected operating conditions.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: April 26, 2022
    Assignee: ENTEGRIS, INC.
    Inventors: Ying Tang, Sharad N. Yedave
  • Patent number: 11295931
    Abstract: An ion implantation system, including an ion source, and a buncher to receive a continuous ion beam from the ion source, and output a bunched ion beam. The buncher may include a drift tube assembly, having an alternating sequence of grounded drift tubes and AC drift tubes. The drift tube assembly may include a first grounded drift tube, arranged to accept a continuous ion beam, at least two AC drift tubes downstream to the first grounded drift tube, a second grounded drift tube, downstream to the at least two AC drift tubes. The ion implantation system may include an AC voltage assembly, coupled to the at least two AC drift tubes, and comprising at least two AC voltage sources, separately coupled to the at least two AC drift tubes. The ion implantation system may include a linear accelerator, comprising a plurality of acceleration stages, disposed downstream of the buncher.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 5, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Frank Sinclair
  • Patent number: 11264203
    Abstract: A method, a non-transitory computer readable medium and a system for reducing a temperature difference between a sample and a chuck of an electron beam tool. The method may include determining a target temperature of samples located at the load port of the electron beam tool; setting a temperature of the samples, located at the load port, to the target temperature; moving the sample from the load port to the chuck, the chuck is located within a vacuum chamber, the sample belongs to the samples; and positioning the sample on the chuck, wherein when positioned on the chuck, a temperature of the sample substantially equals a temperature of the chuck.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: March 1, 2022
    Assignee: Applied Materials Israel Ltd.
    Inventors: Genadi Gabi Brontvein, Avraham Aboody
  • Patent number: 11244841
    Abstract: Systems and methods are described for integrated decomposition and scanning of a semiconducting wafer, where a single chamber is utilized for decomposition and scanning of the wafer of interest.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 8, 2022
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventors: Tyler Yost, Daniel R. Wiederin, Beau Marth, Jared Kaser, Jonathan Hein, Jae Seok Lee, Jae Min Kim, Stephen H. Sudyka
  • Patent number: 11232925
    Abstract: An IHC ion source that employs a negatively biased cathode and one or more side electrodes is disclosed. The one or more side electrodes are left electrically unconnected in certain embodiments and are grounded in other embodiments. The floating side electrodes may be beneficial in the formation of certain species. In certain embodiments, a relay is used to allow the side electrodes to be easily switched between these two modes. By changing the configuration of the side electrodes, beam current can be optimized for different species. For example, certain species, such as arsenic, may be optimized when the side electrodes are at the same voltage as the chamber. Other species, such as boron, may be optimized when the side electrodes are left floating relative to the chamber. In certain embodiments, a controller is in communication with the relay so as to control which mode is used, based on the desired feed gas.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shengwu Chang, Frank Sinclair, Michael St. Peter
  • Patent number: 11217427
    Abstract: An apparatus may include a scanner, arranged to receive an ion beam, and arranged to deliver a scan signal, defined by a scan period, to scan the ion beam between a first beamline side and a second beamline side. The apparatus may include a corrector module, disposed downstream of the scanner, and defining a variable path length for the ion beam, between the first beamline side and the second beamline side, wherein a difference in propagation time between a first ion path along the first beamline side and a second ion path along the second beamline side is equal to the scan period.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Anthony Renau
  • Patent number: 11195720
    Abstract: The present disclosure describes a system and a method for a ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung Huang, Li-Hsin Chu, Po-Feng Tsai, Henry Peng, Kuang Huan Hsu, Tsung Wei Chen, Yung-Lin Hsu
  • Patent number: 11189462
    Abstract: A method of plasma processing includes generating plasma in a plasma processing chamber containing a first species, a second species, and a substrate. The plasma includes a plasma sheath, first species ions, and second species ions. The first species has a first mass and the second species has a second mass that is less than the first mass. The method further includes applying a pulse train of negative bias pulses to the substrate. Each of the negative bias pulses has a pulse duration less than 10 ?s and spatially stratifies the first species ions and the second species ions in the plasma sheath. No bias voltage is applied to the substrate during a pulse delay after each negative bias pulse. The pulse delay is at least five times the pulse duration.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 30, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Sergey Voronin
  • Patent number: 11183358
    Abstract: The invention relates to an implantation device, an implantation system and a method. The implantation device includes a filter frame and a filter held by the filter frame, and a collimator structure. The filter is designed to be irradiated by an ion beam passing through the filter. The collimator structure is arranged on the filter, in the transmitted beam downstream of the filter, or on the target substrate.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 23, 2021
    Assignee: MI2-FACTORY GMBH
    Inventors: Florian Krippendorf, Constantin Csato
  • Patent number: 11170973
    Abstract: An ion source with a target holder for holding a solid dopant material is disclosed. The ion source comprises a thermocouple disposed proximate the target holder to monitor the temperature of the solid dopant material. In certain embodiments, a controller uses this temperature information to vary one or more parameters of the ion source, such as arc voltage, cathode bias voltage, extracted beam current, or the position of the target holder within the arc chamber. Various embodiments showing the connections between the controller and the thermocouple are shown. Further, embodiments showing various placement of the thermocouple on the target holder are also presented.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: November 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Shreyansh P. Patel, Graham Wright, Daniel Alvarado, Daniel R. Tieger, Brian S. Gori, William R. Bogiages, Jr., Benjamin Oswald, Craig R. Chaney
  • Patent number: 11069511
    Abstract: A system having an auxiliary plasma source, disposed proximate the workpiece, for use with an ion beam is disclosed. The auxiliary plasma source is used to create ions and radicals which drift toward the workpiece and may form a film. The ion beam is then used to provide energy so that the ions and radicals can process the workpiece. Further, various applications of the system are also disclosed. For example, the system can be used for various processes including deposition, implantation, etching, pre-treatment and post-treatment. By locating an auxiliary plasma source close to the workpiece, processes that were previously not possible may be performed. Further, two dissimilar processes, such as cleaning and implanting or implanting and passivating can be performed without removing the workpiece from the end station.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: July 20, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher Hatem, Peter F. Kurunczi, Christopher A. Rowland, Joseph C. Olson, Anthony Renau
  • Patent number: 11062880
    Abstract: An ion implanter includes: a main body which includes a plurality of units which are disposed along a beamline along which an ion beam is transported, and a substrate transferring/processing unit which is disposed farthest downstream of the beamline, and has a neutron ray source in which a neutron ray is generated due to collision of a ultrahigh energy ion beam; an enclosure which at least partially encloses the main body; and a neutron ray scattering member which is disposed at a position where a neutron ray which is emitted from the neutron ray source is incident in a direction in which a distance from the neutron ray source to the enclosure is equal to or less than a predetermined value.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: July 13, 2021
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventors: Hiroshi Matsushita, Ryota Ohnishi
  • Patent number: 11031247
    Abstract: In one embodiment, a processing apparatus may include a plasma chamber configured to generate a plasma; a process chamber adjacent the plasma chamber and configured to house a substrate that defines a substrate plane; an extraction system adjacent the plasma chamber and configured to direct an ion beam from the plasma to the substrate, the ion beam forming a non-zero angle with respect to a perpendicular to the substrate plane; and a molecular chamber adjacent the process chamber, isolated from the plasma chamber and configured to deliver a molecular beam to the substrate, wherein the ion beam and molecular beam are alternately delivered to the substrate to form a monolayer comprising species from the ion beam and molecular beam.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 8, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Thomas R. Omstead
  • Patent number: 10920087
    Abstract: A hydrogenated isotopically enriched boron trifluoride (BF3) dopant source gas composition. The composition contains (i) boron trifluoride isotopically enriched above natural abundance in boron of atomic mass 11 (UB), and (ii) hydrogen in an amount of from 2 to 6.99 vol. %, based on total volume of boron trifluoride and hydrogen in the composition. Also described are methods of use of such dopant source gas composition, and associated apparatus therefor.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 16, 2021
    Assignee: ENTEGRIS, INC.
    Inventors: Steven Bishop, Sharad N. Yedave, Oleg Bly, Joseph Sweeney, Ying Tang
  • Patent number: 10923310
    Abstract: Process for treatment of a sapphire part with a beam of a mixture of mono- and multicharged ions of a gas which are produced by an electron cyclotron resonance (ECR) source, where: the voltage for acceleration of the ions is between 10 kV and 100 kV; the implanted dose, expressed in ions/cm2, is between (5×1016)×(M/14)?1/2 and 1017×(M/14)?1/2, where M is the atomic mass of the ion; the rate of displacement VD, expressed in cm/s, is between 0.025×(P/D) and 0.1×(P/D), where P is the power of the beam, expressed in W (watts), and D is the diameter of the beam, expressed in cm (centimetres). A part made of sapphire having a high transmittance and which is resistant to scratching is thus advantageously obtained.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: February 16, 2021
    Assignee: IONICS FRANCE
    Inventors: Denis Busardo, Frédéric Guernalec
  • Patent number: 10914800
    Abstract: Technologies relating to a magnetic resonance spectrometer are disclosed. The magnetic resonance spectrometer may include a doped nanostructured crystal. By nanostructuring the surface of the crystal, the sensor-sample contact area of the crystal can be increased. As a result of the increased sensor-sample contact area, the output fluorescence signal emitted from the crystal is also increased, with corresponding reductions in measurement acquisition time and requisite sample volumes.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: February 9, 2021
    Assignee: STC.UNM
    Inventors: Victor Acosta, Andrejs Jarmola, Lykourgos Bougas, Dmitry Budker
  • Patent number: 10886135
    Abstract: In a substrate processing method, electrons having a first energy are supplied from an electron beam generator into an inner space of a chamber body of a substrate processing apparatus to generate negative ions by attaching the electrons to molecules in a processing gas supplied to the inner space. Then a positive bias voltage is applied to an electrode of a supporting table that supports a substrate mounted on thereon in the inner space to attract the negative ions to the substrate.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: January 5, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shinji Kubota, Kazuya Nagaseki, Akihiro Yokota, Gen Tamamushi
  • Patent number: 10867773
    Abstract: An apparatus may include a first grounded drift tube, arranged to accept a continuous ion beam, at least two AC drift tubes, arranged in series, downstream to the first grounded drift tube, and a second grounded drift tube, downstream to the at least two AC drift tubes. The apparatus may include an AC voltage assembly, electrically coupled to at least two AC drift tubes. The AC voltage assembly may include a first AC voltage source, coupled to deliver a first AC voltage signal at a first frequency to a first AC drift tube of at least two AC drift tubes. The AC voltage assembly may further include a second AC voltage source, coupled to deliver a second AC voltage signal at a second frequency to a second AC drift tube of the at least two AC drift tubes, wherein the second frequency comprises an integral multiple of the first frequency.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: December 15, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Frank Sinclair
  • Patent number: 10861669
    Abstract: An ion beam treatment or implantation system includes an ion source emitting a plurality of parallel ion beams having a given spacing. A first lens magnet having a non-uniform magnetic field receives the plurality of ion beams from the ion source and focuses the plurality of ion beams toward a common point. The system may optionally include a second lens magnet having a non-uniform magnetic field receiving the ion beams focused by the first lens magnet and redirecting the ion beams such that they have a parallel arrangement having a closer spacing than said given spacing in a direction toward a target substrate.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 8, 2020
    Inventor: Peter F. Vandermeulen
  • Patent number: 10854418
    Abstract: A mass analyzer includes a mass analyzing magnet that applies a magnetic field to ions extracted from an ion source to deflect the ions, a mass analyzing slit that is provided downstream of the mass analyzing magnet and allows an ion of a desired ion species among the deflected ions to selectively pass, and a lens device that is provided between the mass analyzing magnet and the mass analyzing slit and applies a magnetic field and/or an electric field to the ion beam to adjust the convergence or divergence of a ion beam. The mass analyzer changes a focal point of the ion beam in a predetermined adjustable range between an upstream side and a downstream side of the mass analyzing slit with the lens device to adjust mass resolution.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: December 1, 2020
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventor: Haruka Sasaki
  • Patent number: 10801978
    Abstract: XPS spectra are used to analyze and monitor various steps in the selective deposition process. A goodness of passivation value is derived to analyze and quantify the quality of the passivation step. A selectivity figure of merit value is derived to analyze and quantify the selectivity of the deposition process, especially for selective deposition in the presence of passivation. A ratio of the selectivity figure of merit to maximum selectivity value can also be used to characterize and monitor the deposition process.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: October 13, 2020
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Charles Thomas Larson, Kavita Shah, Wei Ti Lee
  • Patent number: 10790117
    Abstract: An ion implantation apparatus includes a first angle measuring instrument configured to measure angle information on an ion beam in a first direction, a second angle measuring instrument configured to measure angle information on the ion beam in a second direction, a relative movement mechanism configured to change relative positions of the first angle measuring instrument and the second angle measuring instrument with respect to the ion beam in a predetermined relative movement direction, and a control device configured to calculate angle information on the ion beam in a third direction perpendicular to both a beam traveling direction and the relative movement direction based on the angle information on the ion beam in the first direction measured by the first angle measuring instrument and the angle information on the ion beam in the second direction measured by the second angle measuring instrument.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 29, 2020
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventor: Yoshiaki Inda
  • Patent number: 10790112
    Abstract: The focused ion beam apparatus includes: a vacuum container; an emitter tip disposed in the vacuum container and having a pointed front end; a gas field ion source; a focusing lens; a first deflector; a first aperture; an objective lens focusing the ion beam passing through the first deflector; and a sample stage. A signal generator responding to the ion beam in a point-shaped area is formed between the sample stage and an optical system including at least the focusing lens, the first aperture, the first deflector, and the objective lens, and a scanning field ion microscope image of the emitter tip is produced by matching a signal output from the signal generator and scanning of the ion beam by the first deflector with each other.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: September 29, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventor: Yoshimi Kawanami
  • Patent number: 10741686
    Abstract: A method for manufacturing a semiconductor device according to an embodiment includes implanting impurity ions into a SiC layer in a direction of <10-11>±1 degrees, <10-1-1>±1 degrees, <10-12>±1 degrees, or <10-1-2>±1 degrees.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 11, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Kono, Tomohiro Nitta
  • Patent number: 10702716
    Abstract: Presented systems and methods facilitate efficient and effective monitoring of particle beams. In some embodiments, a system comprises a primary particle beam generator that generates a primary particle beam, and a monitoring component that monitors the primary particle beam. The monitoring component comprises: a reaction component that is impacted by the primary particle beam, wherein results of an impact include creation of secondary photons; a detection component that detects a characteristic of the secondary photons; and a primary particle beam characteristic determination component that determines a characteristic of the primary particle beam based upon the characteristic of the secondary photons. The characteristic of the primary particle beam can include a radiation dose measurement and dose rate. The reaction component can include a foil component. A resolution time of less than a nano second can be associated with detecting the secondary photon characteristic.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: July 7, 2020
    Assignee: Varian Medical Systems Particle Therapy GMBH
    Inventor: Juergen Heese
  • Patent number: 10658156
    Abstract: A system and method for generating a plurality of scan profiles based on a desired implant pattern and the uniformity of the spot beam is disclosed. The system scans the spot beam and records the number of ions as a function of position. This is referred to as the linear uniformity array. The desired implant pattern and the linear uniformity array are then combined to generate a composite pattern array. This array contemplates the non-uniformity of the scanned beam and allows the system to create scan profiles that compensate for this. The software may be executed on the controller disposed in the implantation system, or may be executed on a different computing device.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 19, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Stanislav S. Todorov, Jeffrey Morse, John Sawyer
  • Patent number: 10651011
    Abstract: An apparatus may include a first grounded drift tube, arranged to accept a continuous ion beam, at least two AC drift tubes, arranged in series, downstream to the first grounded drift tube, and a second grounded drift tube, downstream to the at least two AC drift tubes. The apparatus may include an AC voltage assembly, electrically coupled to at least two AC drift tubes. The AC voltage assembly may include a first AC voltage source, coupled to deliver a first AC voltage signal at a first frequency to a first AC drift tube of at least two AC drift tubes. The AC voltage assembly may further include a second AC voltage source, coupled to deliver a second AC voltage signal at a second frequency to a second AC drift tube of the at least two AC drift tubes, wherein the second frequency comprises an integral multiple of the first frequency.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 12, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Frank Sinclair
  • Patent number: 10643761
    Abstract: Disclosed is a method for evaluating an irradiation angle of a beam, including a step of sampling the irradiation angle of the beam, wherein the irradiation angle of the beam is defined as being the direction of the vector of the irradiation point of the beam to the pre-set point of the tumor; and a step of calculating the track of the beam passing through the organs, wherein it is determined whether the tumor is fully covered within the effective treatment depth, and if so, entering the steps of calculating the evaluation coefficient, recording the irradiation conditions and calculating the results, and returning to the step of sampling the irradiation angle of the beam; and if not, entering the step of giving the worst evaluation coefficient and returning to the step of sampling the irradiation angle of the beam.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 5, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Yuan-Hao Liu, Wei-Lin Chen
  • Patent number: 10597773
    Abstract: A novel method, composition and system for using antimony-containing dopant materials are provided. The composition is selected with sufficient vapor pressure to flow into an arc chamber as part of an ion implant process. The antimony-containing material is represented by a non-carbon containing chemical formula, thereby reducing or eliminating the introduction of carbon-based deposits into the ion chamber. The composition is stored in a storage and delivery vessel under stable conditions, which includes a moisture-free environment that does not contain trace amounts of moisture.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 24, 2020
    Assignee: Praxair Technology, Inc.
    Inventors: Aaron Reinicker, Ashwini K Sinha, Douglas C Heiderman
  • Patent number: 10573501
    Abstract: Techniques for performing data acquisition and analysis are described. A multi-mode acquisition strategy may be performed which iteratively selects mass isolation windows of different sizes in different scan cycles to acquire experimental data. The mass isolation windows selected may provide for acquiring elevated energy scan data for a defined set of m/z values. Single scan data analysis may be performed. Data analysis may include forming precursor charge clusters, chaining precursor charge clusters having the same mass to charge ratio to form peaks profiles, and using criteria to align precursor and product ions of the experimental data. Unsupervised and supervised clustering may be performed using a database and composite ion spectra formed from experimental data. Also described are a small molecule acquisition enhancement and additional techniques applicable for biopharmaceutical and other applications.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 25, 2020
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Scott J. Geromanos, Steven J. Ciavarini, Curt Devlin
  • Patent number: 10545408
    Abstract: A method of patterning a substrate may include providing a blanket photoresist layer on the substrate; performing an ion implantation procedure of an implant species into the blanket photoresist layer, the implant species comprising an enhanced absorption efficiency at a wavelength in the extreme ultraviolet (EUV) range; and subsequent to the performing the ion implantation procedure, performing a patterned exposure to expose the blanket photoresist layer to EUV radiation.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 28, 2020
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Tristan Y. Ma, Huixiong Dai, Anthony Renau, John Hautala, Joseph Olson
  • Patent number: 10522498
    Abstract: A system of bonded substrates may include a first substrate, a second substrate, and a bonding layer. The first substrate may include a bonding surface, wherein a geometry of the bonding surface of the first substrate includes a plurality of microchannels. The second substrate may include a complementary bonding surface. The bonding layer may be positioned between the first substrate and the second substrate, wherein the bonding layer may fill the microchannels of the first substrate and may contact substantially the entire bonding surface of the first substrate. The bonding layer may include a metal.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: December 31, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shailesh N. Joshi, Masao Noguchi
  • Patent number: 10515784
    Abstract: Exemplary embodiments of the inventive concept provide a plasma treatment apparatus with a substrate support unit, a plasma unit, a first rotation driving unit, and a gas supply part. The substrate support unit supports a substrate. The plasma unit generates a plasma and provides the plasma to the substrate. The first rotation driving unit is coupled to the plasma unit to rotate the plasma unit with respect to the substrate support unit. The gas supply part supplies a source gas to the plasma unit. The plasma unit includes a body, a first electrode located in the body, a second electrode located in the body and facing the first electrode, and a pipe located between the first and second electrodes to flow the source gas therethrough.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: December 24, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Youngsik Yoon, Jaehoon Jung, Daeho Yoon, Jonghwan Cho
  • Patent number: 10490386
    Abstract: An ion beam treatment or implantation system includes an ion source emitting a plurality of parallel ion beams having a given spacing. A first lens magnet having a non-uniform magnetic field receives the plurality of ion beams from the ion source and focuses the plurality of ion beams toward a common point. The system may optionally include a second lens magnet having a non-uniform magnetic field receiving the ion beams focused by the first lens magnet and redirecting the ion beams such that they have a parallel arrangement having a closer spacing than said given spacing in a direction toward a target substrate.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 26, 2019
    Inventor: Peter F. Vandermeulen