With Absorbents Patents (Class 252/190)
  • Publication number: 20140234192
    Abstract: 1) A first amine, which is a straight chain secondary monoamine, 2) a second amine, which is a cyclic secondary polyamine as a reaction accelerator, and 3) a third amine, which is an amine consisting of one selected from a cyclic amine group constituted from a secondary or tertiary amino group or a straight chain amine group with high steric hindrance are mixed to obtain an absorbent. By the synergistic effect thereof, absorption properties to CO2 and/or H2S are excellent and the absorbed CO2 or H2S emission properties during the regeneration of the absorbent become excellent. Therefore, the water vapor amount used during the regeneration of the absorbent in CO2 recovery equipment can be reduced.
    Type: Application
    Filed: October 17, 2012
    Publication date: August 21, 2014
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Takuya Hirata, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8790587
    Abstract: Disclosed are methods for treating hazardous materials, such as those which result from an unwanted spill or leak, which comprise one or more of the steps or effects of: neutralizing the dispersed material; solidifying the dispersed material; immobilizing the material; and/or reducing the evolution of harmful or unwanted gaseous forms from the spillage, preferably using a binding agent which comprises a polyacrylate-polyacrylamide cross-linked copolymer.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: Rajiv R. Singh, Ian Shankland
  • Publication number: 20140190871
    Abstract: This disclosure provides an adsorbing agent which, on the basis of the total weight of the adsorbing agent, comprises the following components: 1) a Si—Al molecular sieve having a BEA structure, in an amount of 1-20 wt %, 2) at least one binder selected from the group consisting of titanium dioxide, stannic oxide, zirconium oxide and alumina, in an amount of 3-35 wt %, 3) a silica source, in an amount of 5-40 wt %, 4) zinc oxide, in an amount of 10-80 wt %, and 5) at least one promoter metal selected from the group consisting of cobalt, nickel, iron and manganese, based on the metal, in an amount of 5-30 wt %, wherein at least 10 wt % of the promoter metal is present in a reduced valence state. The adsorbing agent exhibits improved activity and stability, and at the same time, is capable of significantly improving the octane number of the product gasoline.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING,SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Wei Lin, Huiping Tian, Zhenbo Wang
  • Patent number: 8765010
    Abstract: A lignocellulosic fibrous composite having one or more solvents and a dried lignocellulosic fiber, wherein the dried lignocellulosic fiber has been processed by ruminant digestion and anaerobic digestion. A method for preparing a lignocellulosic fibrous composite is also disclosed including the steps of providing excrement from an animal which has undergone ruminant digestion, introducing the cow excrement into an anaerobic digester, modifying the cow excrement to a first wet product, and drying the first wet product to, in turn, generate a lignocellulosic fibrous composite.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 1, 2014
    Assignee: Eco-Composites LLC
    Inventors: Carey J. Boote, Russ Malek
  • Publication number: 20140178279
    Abstract: A liquid, aqueous CO2 absorbent comprising two or more amine compounds, where the aqueous solution of amines having absorbed CO2 is not, or only partly miscible with an aqueous solution of amines not having absorbed CO2, where at least one of the amines is a tertiary amine, and where at least one of the amines is a primary and/or a secondary amine, wherein the tertiary amine is DEEA and the primary and/or secondary amine(s) is (are) selected from DAB, DAP, DiAP, DMPDA, HEP, or the tertiary amine is DIPAE, or N-TBDEA and primary and/or secondary amine(s) is (are) selected from DAB, DAP, DiAP, DMPDA, HEP, MAPA, and MEA, and a method for CO2 capture using the CO2 absorbent, are described.
    Type: Application
    Filed: June 27, 2012
    Publication date: June 26, 2014
    Applicant: Aker Engineering & Technology AS
    Inventors: Hallvard F. Svendsen, Anastasia A. Trollebø
  • Patent number: 8757092
    Abstract: Animal bedding having one or more solvents and a lignocellulosic fiber, wherein the lignocellulosic fiber has been processed by ruminant digestion and anaerobic digestion. A method for preparing pelletized animal bedding is also disclosed including the steps of providing excrement from a cow which has undergone ruminant digestion, introducing the cow excrement into an anaerobic digester, modifying the cow excrement to a first wet product, drying the first wet product to generate a first dry product, and densifying the first dry product to, in turn, generate pelletized animal bedding.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: June 24, 2014
    Assignee: Eco-Composites LLC
    Inventors: Carey J. Boote, Russ Malek
  • Patent number: 8747694
    Abstract: In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: June 10, 2014
    Assignee: General Electric Company
    Inventors: Robert James Perry, Michael Joseph O'Brien
  • Patent number: 8741245
    Abstract: A method of recovering carbon dioxide, includes bringing gas to be processed containing carbon dioxide (CO2) and oxygen into contact with the CO2-absorbing solution in an absorption column to form a CO2-rich solution; circulating the solution in a regeneration column to thermally release and recover CO2 and recirculating the absorbing solution as a CO2-poor solution inside the absorption column; and performing heat exchange between the solution being delivered from the absorption column to the regeneration column and the solution recirculated from the regeneration column to the absorption column, wherein an alkanolamine aqueous solution containing a silicone oil and/or an organosulfur compound is added to the solution inside the absorption column and/or the solution recirculated from the regeneration column to the absorption column to adjust the composition of the absorbing solution inside the absorption column.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: June 3, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Koichi Yokoyama, Eiji Miyamoto, Hirofumi Kikkawa, Shigehito Takamoto, Toshio Katsube, Naoki Oda, Jun Shimamura, Masaharu Kuramoto
  • Publication number: 20140138578
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Inventors: Alan M. Blair, Keith N. Grarside, william J. Andrews, Kallas B. Sawant
  • Patent number: 8722391
    Abstract: A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and a carbonate compound. The process includes contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption. The biocatalyst improves absorption of the mixture comprising carbonate compounds and the carbonate compound promotes release of the bicarbonate ions from the ion-rich solution during desorption, producing a CO2 gas stream and an ion-depleted solution.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 13, 2014
    Assignee: CO2 Solutions Inc.
    Inventors: Sylvie Fradette, Julie Gingras, Jonathan Carley, Glenn R. Kelly, Olivera Ceperkovic
  • Publication number: 20140127119
    Abstract: The present invention provides a carbon dioxide absorber capable of efficiently and stably removing carbon dioxide in a gas or solution. This carbon dioxide absorber contains an amine compound, a weakly acidic compound and water, the pKb value of the amine compound in an aqueous solution at 30° C. is 4.0 to 7.0, the pKa value of the weakly acidic compound in an aqueous solution at 30° C. is 7.0 to 10.0, and the weakly acidic compound is present in an amount within the range of 0.01 equivalents to 1.50 equivalents with respect to amino groups of the amine compound.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 8, 2014
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Norikazu Fujimoto, Kyouhei Hattori, Fumihiko Yamaguchi
  • Publication number: 20140117281
    Abstract: A process for the activation of a copper, zinc and zirconium oxide-comprising adsorption composition for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin wherein: (i) in a first activation step an activation gas mixture comprising the olefin and an inert gas is passed through the adsorption composition; and (ii) in a second activation step the adsorption composition is heated to a temperature in the range from 180 to 300° C. and an inert gas is passed through it, wherein the steps (i) and (ii) can each be performed several times.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 1, 2014
    Applicant: BASF SE
    Inventors: Guido Henze, Lothar Karrer, David J. Artrip, Heiko Urtel, Stephan Hatscher
  • Publication number: 20140103256
    Abstract: The invention relates to adsorbents for removing impurities from water-comprising gas streams, in particular for use in fuel cell systems, wherein the adsorbents comprise oxides of elements selected from the group consisting of Cu, Fe, Zn, Ni, Co, Mn, Mg, Ba, Zr, Ce, La or combinations of these elements, have a copper oxide content of at least 30% by weight and have pore volumes of less than 0.175 ml·g?1 for pores having a radius of less than 20 nm.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 17, 2014
    Applicant: BASF SE
    Inventor: Stephan Hatscher
  • Patent number: 8696931
    Abstract: A method of production of activated carbon for removal of mercury gas which provides activated carbon impregnated with both sulfur and iodine which gives a higher mercury gas adsorption performance compared with a conventional activated carbon adsorbent and also enables the prime cost of manufacture to be kept down, that is, a method of production provided with a sulfur impregnation step which adds sulfur to activated carbon and heats the mixture to obtain sulfur-impregnated activated carbon comprised of activated carbon to 100 parts by weight of which sulfur is impregnated in 5 to 20 parts by weight and, after the sulfur impregnation step, an iodine substance impregnation step which adds an aqueous solution containing iodine and an iodine salt to the sulfur-impregnated activated carbon.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Futamura Kagaku Kabushiki Kaisha
    Inventors: Hideto Mamiya, Sunao Inada
  • Publication number: 20140099701
    Abstract: A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and an absorption compound selected from dimethylmonoethanolamine (DMMEA), diethylmonoethanolamine (DEMEA), and dimethylglycine. The process may include contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 10, 2014
    Applicant: CO2 SOLUTIONS INC.
    Inventors: Sylvie FRADETTE, Julie GINGRAS, Jonathan CARLEY, Glenn R. KELLY, Olivera CEPERKOVIC, Geert F. VERSTEEG
  • Publication number: 20140084209
    Abstract: A process of treating a gas stream containing mercury and acid gas pollutants is disclosed. The process includes applying a sorbent composition into a gas stream in order to adsorb mercury containing compounds and acid gas pollutants. The sorbent composition includes a compound having the formula (SiO2)x(OH)yMzSaF.B. The combination of basic inorganic solids for the adsorption of acid gases, and metal sulfide-doped silica for the adsorption of mercury provides dual sorbent functionality, along with additional benefits for each individual sorbent: silica for moisture retention on the surface of the basic inorganic particle and adsorption of acid gas, which will improve metal sulfide performance at higher operating temperatures. The use of a hygroscopic solid effectively dries the metal sulfide-doped silica slurry without the use of filtration of drying equipment, providing significant economic benefit for the manufacture of metal sulfide-doped silica material.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Inventors: Nicholas S. Ergang, Ian Saratovsky, Tommy Chen
  • Publication number: 20140056792
    Abstract: An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
    Type: Application
    Filed: October 29, 2013
    Publication date: February 27, 2014
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Yasuyuki Yagi
  • Publication number: 20140042363
    Abstract: An apparatus for separating and recovering CO2 from a CO2 absorbent, includes: a regeneration tower for regenerating the absorbent that has absorbed CO2 by heating it to separate and remove CO2 therefrom and to exhaust CO2 gas; a compressor for compressing the CO2 gas exhausted from the tower; and a heat exchanger for heating the absorbent in the tower by exchanging heat with a part of the compressed CO2 by the compressor which is introduced into the tower. The apparatus may include a plurality of the compressors and a plurality of the heat exchangers. The plurality of compressors is arranged in series to sequentially compress the CO2 gas exhausted from the tower. The plurality of heat exchangers is configured so that each part of the CO2 compressed by the plurality of compressors is introduced to the tower in parallel to exchange heat with the absorbent in the tower.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita
  • Patent number: 8641922
    Abstract: A sorbent for removal of acid gas from hydrocarbon gas includes a mixture of dewatered residue obtained from the distillation of ethanol, and an amine.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Intevep, S.A.
    Inventors: Alfredo Viloria, Rafael Yoll, Yanine Gonzalez, Monica Roman, Jose Biomorgi
  • Publication number: 20130313475
    Abstract: A process for purifying a product contaminated with nitrosamines from an operating plant is proposed. The contaminated product is heated to a temperature T at which the nitrosamines are thermally destroyed. The temperature T is set at a higher level than the maximum temperature in the operating plant, and maintained for a residence time t. An apparatus for regeneration of a nitrosamine-contaminated product from a CO2 capture plant is also proposed.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 28, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Björn Fischer, Erwin Johannes Martinus Giling, Earl Lawrence Vincent Goetheer, Ralph Joh, Rüdiger Schneider, Jan Harm Urbanus
  • Publication number: 20130309155
    Abstract: A method for removing heat stable base salts, such as amine salts, is disclosed. The method of the present invention can be used to reduce the level of heat stable salts in a solvent gas stream in an acid gas removal process. A solvent in which the lean acid gas loading is high is first stripped to achieve an acceptable lean gas loading. The lean solution is then reclaimed using one or more methods. The purified base or amine solution can be used again to remove acid gases from a gas stream. A process for recovering acid gas from an acid gas stream is also disclosed. The process also comprises a reduction of the level of heat stable salts in the solvent gas stream.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 21, 2013
    Applicant: ELECTROSEP TECHNOLOGIES INC. `
    Inventor: Paul Parisi
  • Publication number: 20130302479
    Abstract: A sulfur dioxide reducing composition includes an adsorber and an absorber on the adsorber. The adsorber attracts and holds sulfur dioxide and the absorber reacts irreversibly with the sulfur dioxide.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: MULTISORB TECHNOLOGIES, INC.
    Inventors: Thomas H. Powers, George E. McKedy
  • Patent number: 8545781
    Abstract: The carbon dioxide adsorbent composition relates to a material that will adsorb carbon dioxide gas from the atmosphere and that is made by the treatment of oil fly ash with ammonium hydroxide. In order to make the carbon dioxide adsorbent, oil fly ash is first mixed with ammonium hydroxide. This mixture is then refluxed and cooled. Additional ammonium hydroxide is added to the cooled mixture of oil fly ash and ammonium hydroxide to form a secondary mixture. This forms an amine-functionalized fly ash composition, which is then filtered from the secondary mixture to be used as a carbon dioxide adsorbent composition. The carbon dioxide adsorbent composition is then dried and may be used as a carbon dioxide adsorbent for gas streams, such as flues and exhaust systems, containing carbon dioxide.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: October 1, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Ali Lawan Yaumi, Reyad Awwad Khalaf Shawabkeh, Ibnelwaleed Ali Hussein
  • Patent number: 8545783
    Abstract: There is provided an acid gas absorbent having excellent performance of absorbing acid gas such as carbon dioxide, and an acid gas removal device and an acid gas removal method using the acid gas absorbent. An acid gas absorbent of an embodiment contains at least one type of tertiary amine compound represented by the following general formula (1). (In the above formula (1), the cycle A represents a cyclic structure whose carbon number is not less than 3 nor more than 8. R1, R2 and R3 each represent an alkyl group whose carbon number is 1 to 4, and R4 represents a hydroxyalkyl group. R1 and R2 are groups coupled to carbon atoms adjacent to a carbon atom forming the cycle A and coupled to a nitrogen atom.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Yukishige Maezawa, Yasuhiro Kato, Takehiko Muramatsu, Masatoshi Hodotsuka
  • Patent number: 8524115
    Abstract: A method of selecting an appropriate resin bonded sorbent composition which may be used at least for in part making an enclosure to protect contents from external humidity including the steps of: a) selecting a plurality of resins, a plurality of sorbents and a plurality of ratios therebetween to form a plurality of composites; b) calculating a plurality of failure times for the plurality of composites, wherein each failure time of the plurality of failure times is based on when an internal relative humidity of each composite of the plurality of composites is equal to the maximum internal relative humidity; c) determining which of the plurality of failure times is greater; and, d) selecting one composite of the plurality of composites based on the result of step (c).
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: September 3, 2013
    Assignee: Multisorb Technologies, Inc.
    Inventors: Stanislav E Solovyov, Thomas Powers, Samuel A. Incorvia
  • Patent number: 8506840
    Abstract: Disclosed is a flue gas absorbent composition which contains a compound and water. The compound has a ring structure and includes terminal primary amine groups and substituted ?-carbon atoms neighboring the amine groups. Further, a use of a solution of a compound having a ring structure and terminal amine groups as a flue gas absorbent is disclosed. The absorbent composition includes a ring-structure compound having superior absorption ability when compared to conventional absorbents, thereby exhibiting excellent properties, i.e., flue gas absorption rate improved by 50 to 100% and flue gas absorption capacity improved by 200 to 400%, as compared with currently used absorbents such as monoethanolamine (MEA) and 2-amino-2-methyl-propanol (AMP).
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 13, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Ara Cho, Jong Seop Lee, Byoung Moo Min
  • Publication number: 20130204065
    Abstract: A method of removing mercury and/or sulfur from a fluid stream comprising contacting the fluid stream with a sorbent comprising a core and a porous shell formed to include a plurality of pores extending therethrough and communicating with the core. The core comprises a copper compound selected from the group consisting of a basic copper oxysalt, a copper oxide, and a copper sulfide.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Applicant: UOP LLC
    Inventors: Vladislav Ivanov Kanazirev, Dante A. Simonetti
  • Publication number: 20130193375
    Abstract: A process for the regeneration of an acid gas absorbent comprising an amine and heat stable salts by phase separation, comprising a) mixing the acid gas absorbent with an alkaline solution, to form a mixture with a pH above the pH equivalence point of the amine; b) cooling the mixture to a temperature below 500 C; c) separating the mixture into a regenerated acid gas absorbent and a waste stream; d) collecting the regenerated acid gas absorbent separate from the waste stream.
    Type: Application
    Filed: March 17, 2011
    Publication date: August 1, 2013
    Inventors: Vijay Bhambhani Godhwani, John Nicholas Sarlis
  • Publication number: 20130108532
    Abstract: A process for separating at least a portion of an acid gas from a gaseous mixture, said process comprising contacting the gaseous mixture with an absorption medium and/or adsorption medium, wherein said medium absorbs and/or adsorbs at least a portion of the acid gas to form a rich medium; and separating at least a portion of the acid gas from the rich medium to form a lean medium; wherein the separation step is performed in the presence of an acid catalyst.
    Type: Application
    Filed: March 29, 2011
    Publication date: May 2, 2013
    Applicant: UNIVERSITY OF REGINA
    Inventors: Raphael Idem, Huancong Shi, Don Gelowitz, Paitoon Tontiwachwuthikul
  • Publication number: 20130056677
    Abstract: A solvent for absorbing H2S and CO2 is regenerated using two regenerators. Rich solvent is fed to a first regenerator producing a first acid gas stream from the top, and a partially regenerated solvent from the bottom. The partially regenerated solvent is fed to a second regenerator producing an overhead vapor stream from the top and a lean solvent stream from the bottom. A portion of the second regenerator overhead vapor stream is cascaded to the first regenerator to contact rich solvent. The first acid gas stream and the remaining second regenerator overhead vapor stream are respectively fed to the first and second reaction zones of a two-stage Claus reaction furnace. Substantially all volatile organic contaminants are stripped in the first regenerator, and thus favorably destroyed in the first reaction furnace zone by virtue of higher local combustion temperatures and closer approach to oxidizing conditions.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 7, 2013
    Inventor: Frank Bela
  • Publication number: 20120308451
    Abstract: There is provided an acid gas absorbent having excellent performance of absorbing acid gas such as carbon dioxide, and an acid gas removal device and an acid gas removal method using the acid gas absorbent. An acid gas absorbent of an embodiment contains at least one type of tertiary amine compound represented by the following general formula (1). (In the above formula (1), the cycle A represents acyclic structure whose carbon number is not less than 3 nor more than 8. R1, R2 and R3 each represent an alkyl group whose carbon number is 1 to 4, and R4 represents a hydroxyalkyl group. R1 and R2 are groups coupled to carbon atoms adjacent to a carbon atom forming the cycle A and coupled to a nitrogen atom.
    Type: Application
    Filed: May 18, 2012
    Publication date: December 6, 2012
    Inventors: Shinji MURAI, Yukishige Maezawa, Yasuhiro Kato, Takehiko Muramatsu, Masatoshi Hodotsuka
  • Publication number: 20120308452
    Abstract: The degradation of an absorbent solution comprising organic compounds provided with an amine function in aqueous solution is reduced considerably in the presence of a small amount of degradation inhibiting additives whose structure comprises a 5-atom heterocycle composed of a nitrogen atom, a sulfur atom or an oxygen atom, and 3 carbon atoms, at least one of which is joined to a sulfur atom not belonging to the ring. The absorbent solution is employed for deacidifying a gaseous effluent.
    Type: Application
    Filed: November 19, 2010
    Publication date: December 6, 2012
    Inventors: P-Louis Carrette, Bruno Delfort
  • Publication number: 20120308457
    Abstract: The present invention relates to a carbon dioxide absorbent, and more particularly, to an alkali carbonate-based carbon dioxide absorbent containing added sterically hindered cyclic amines, and to a method for removing carbon dioxide using same. By adding sterically hindered cyclic amines to an alkali carbonate material, the rate of carbon dioxide absorption is increased, renewable energy is reduced, and salt production and phase separation do not occur.
    Type: Application
    Filed: December 29, 2009
    Publication date: December 6, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Yeo-Il Yoon, Sung-Chan Nam, Young-Eun Kim, Il-Hyun Baek, Sang-Do Park
  • Publication number: 20120308458
    Abstract: CO2 is absorbed from a gas mixture by bringing the gas mixture into contact with an absorbent that comprises water and at least one amine of the formula (I), wherein R1 and R2, independently of each other, are hydrogen or an alkyl group. According to the invention, absorption media comprise sulfolane or an ionic liquid in addition to water and an amine of the formula (1). A device according to the invention for removing CO2 from a gas mixture comprises an absorption unit, a desorption unit, and an absorption medium according to the invention that is conducted in the circuit.
    Type: Application
    Filed: August 19, 2012
    Publication date: December 6, 2012
    Applicant: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Jörn Rolker, Rolf Schneider, Bernd Glöckler, Axel Kobus, Wolfgang Benesch, Thomas Riethmann, Hermann Winkler, Jens Reich, Helmut Brüggemann
  • Publication number: 20120292565
    Abstract: The degradation of an absorbent solution comprising organic compounds provided with an amine function in aqueous solution is reduced considerably in the presence of a small amount of degradation-inhibiting additives belonging to the class of derivatives of pyrimidine or of triazine, at least one substituent of which contains a sulfur atom. The absorbent solution is employed for deacidifying a gaseous effluent.
    Type: Application
    Filed: November 19, 2010
    Publication date: November 22, 2012
    Inventors: Bruno Delfort, P - Louis Carrette
  • Publication number: 20120288429
    Abstract: The invention generally relates to a bi-directional reactor and supported amine sorbent, and more particularly to a method and system for carbon dioxide sequestration utilizing a bi-directional reactor and monoethenalamine (MEA) on a substrate. The bi-directional reactor is configured to reclaim the sorbent material as the sorbent is immobilized during the sorption phase, but is mobilized during desorption phased. The immobilized sorbent reacts with the desired contaminate to absorb and is transported to another reactor during desorption phase, thereby permitting reclamation of the sorbent.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Inventor: Maohong Fan
  • Patent number: 8309034
    Abstract: Disclosed are methods for treating hazardous materials, such as those which result from an unwanted spill or leak, which comprise one or more of the steps or effects of: neutralizing the dispersed material; solidifying the dispersed material; immobilizing the material; and/or reducing the evolution of harmful or unwanted gaseous forms from the spillage, preferably using a binding agent which comprises a polyacrylate-polyacrylamide cross-linked copolymer.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: November 13, 2012
    Assignee: Honeywell International Inc.
    Inventors: Rajiv R. Singh, Ian Shankland
  • Publication number: 20120280176
    Abstract: A composition for removing mercaptan from a gas stream containing at least one acid gas in addition to a mercaptan, the composition comprising a physical and/or chemical solvent for H2S and an inclusion compound for the mercaptan. A process of treating gas stream using the composition. The inclusion compound is selected from the group consisting of, cyclodextrin, cryptand, calixarene, cucurbituril. The chemical solvent may be monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA, diisopropylamine (DIPA), diglycolamine (DGA) and methyldiethanolamine (MDEA). Examples of useful physical solvents include cyclotetramethylene sulfone (sulfolane) and its derivatives, aliphatic acid amides, NMP (n-methylpyrrolidone), N-alkylated pyrrolidones and corresponding piperidone, methanol and mixtures of dialkethers of polyethylene glycols. The method copirses scrubbing preferably the natural gas with an aqueous solution comprising the above compounds followed by a stripping regeneration step.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicant: DOW CHEMICAL COMPANY
    Inventor: Stephen A. Bedell
  • Publication number: 20120269707
    Abstract: The present disclosure provides a scrubbing composition containing an aqueous solution of 2-(3-aminopropoxy)ethan-1-ol. The scrubbing composition is especially suited for use in removing acid gases, such as carbon dioxide and hydrogen sulfide, from gas streams.
    Type: Application
    Filed: October 18, 2011
    Publication date: October 25, 2012
    Applicants: Huntsman Corporation Hungary ZRt, Huntsman Petrochemical LLC
    Inventors: Howard P. Klein, Robert A. Grigsby, JR., Jingjun Zhou, Patrick Holub, Attila Gaspar, Zsolt Gaspar
  • Publication number: 20120235087
    Abstract: The proposed invention relates to a method and a system for the removal of heat stable amine salts from an amine absorbent used in a carbon dioxide (CO2) capture process, the method comprising: withdrawing amine absorbent containing heat stable amine salts from the CO2 capture process; subjecting the withdrawn amine absorbent containing heat stable amine salts to a residual CO2 removal step; subjecting the amine absorbent from the residual CO2 removal step to a separation step to separate heat stable amine salts from the amine absorbent; and returning the amine absorbent having a reduced concentration of heat stable amine salts to the CO2 capture process.
    Type: Application
    Filed: September 29, 2011
    Publication date: September 20, 2012
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ALSTOM TECHNOLOGY LTD.
    Inventors: Nareshkumar B. HANDAGAMA, Barath BABURAO, Frederic VITSE, Stephen A. BEDELL, Jonathan W. LEISTER, Ross DUGAS
  • Patent number: 8263976
    Abstract: A semiconductor structure consistent with certain implementations has a crystalline substrate oriented with a {111} plane surface that is within 10 degrees of surface normal. An epitaxially grown electrically insulating interlayer overlays the crystalline substrate and establishes a coincident lattice that mates with the surface symmetry of the {111} plane surface. An atomically stable two dimensional crystalline film resides on the epitaxial insulating layer with a coincident lattice match to the insulating interlayer. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 11, 2012
    Assignee: International Technology Center
    Inventors: Brian D. Schultz, Gary Elder McGuire
  • Publication number: 20120216678
    Abstract: An absorbent composition for removing CO2 and/or H2S from a gas comprising a polyamine, a monoamine and water, wherein the polyamine comprises a polyamine having 3 to 5 amine functions and has a molecular weight of less than 200 g/mol; wherein the monoamine comprises a tertiary monoamine; and wherein the weight ratio of the polyamine having 3 to 5 amine functions to the tertiary monoamine is more than 1:1. A process wherein such an absorbent composition is used and a use of a tertiary monoamine as an accelerator for accelerating the removal of CO2 and/or H2S from a CO2 and/or H2S containing polyamine having 3 to 5 amine functions.
    Type: Application
    Filed: August 11, 2010
    Publication date: August 30, 2012
    Inventors: Frank Haiko Geuzebroek, Armin Schneider, Renze Wijntje, Xiaohui Zhang
  • Patent number: 8221712
    Abstract: An absorption medium for the removal of acid gases from a fluid stream comprises an aqueous solution a) of at least one amine and b) at least one phosphonic acid, wherein the molar ratio of b) to a) is in the range from 0.0005 to 1.0. The phosphonic acid is, e.g., 1-hydroxyethane-1,1-diphosphonic acid. The absorption medium exhibits a reduced regeneration energy requirement compared with absorption media based on amines or amine/promoter combinations, without significantly decreasing the absorption capacity of the solution for acid gases.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: July 17, 2012
    Assignee: BASF SE
    Inventors: Gerald Vorberg, Torsten Katz, Georg Sieder, Christian Riemann, Erika Dengler
  • Publication number: 20120171095
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Application
    Filed: December 21, 2011
    Publication date: July 5, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Joseph O'Brien, Robert James Perry, Tunchiao Hubert Lam, Grigorii Lev Soloveichik, Sergei Kniajanski, Larry Neil Lewis, Malgorzata Iwona Rubinsztajn, Dan Hancu
  • Publication number: 20120168380
    Abstract: A composition useful for the adsorptive removal of hydrogen sulfide from a gas or liquid stream, the composition comprising ferric oxide and a zeolyte group. The zeolyte group may comprise aluminum and silicon at a ratio in the range from about 1 part aluminum to 100 parts silicon to about 100 parts aluminum to 1 part silicon, and have a mix of amorphous aluminosilicate and structured zeolyte, wherein the structured zeolyte comprises a distribution of zeolytic cells ranging in size from about 3 Angstroms to about 16 Angstroms. Also disclosed is a process for removing hydrogen sulfide from various process stream by contact with such a composition.
    Type: Application
    Filed: September 9, 2010
    Publication date: July 5, 2012
    Applicant: CLS INDUSTRIAL PURIFICATION, LLC
    Inventor: Georges N. Z. Mendakis
  • Publication number: 20120164046
    Abstract: A porous material including a clay substrate modified by a pore-generating agent and at least one oxide of a metal selected from the first transition series, and a method for obtaining the material and use of the material for desulphurizing gaseous streams, especially for the elimination of H2S.
    Type: Application
    Filed: July 9, 2010
    Publication date: June 28, 2012
    Inventors: Pedro Ávila García, Soren Birk Rasmussen, Malcolm Yates Buxcey
  • Publication number: 20120148463
    Abstract: The degradation of an absorbent solution comprising organic compounds with an amine functional group in aqueous solution is substantially reduced in the presence of a small amount of degradation inhibiting agents belonging to the family of derivatives of triazoles or of a tetrazole at least one substituent of which contains a sulfur atom. The absorbent solution is used to deacidize a gaseous effluent.
    Type: Application
    Filed: July 6, 2010
    Publication date: June 14, 2012
    Inventors: P.-Louis Carrette, Bruno Delfort
  • Publication number: 20120148466
    Abstract: A CO2 absorbent, comprising an aqueous solution of 2-amino-2-methylpropanol (AMP) and 1-(2-aminoethyl)-piperazine (AEP), wherein the molar concentration of AMP is between 4.5M and 2 M, and the molar concentration of AEP is between 0.5 M and 2 M, and a method for capturing CO2 using the absorbent, are described.
    Type: Application
    Filed: September 22, 2010
    Publication date: June 14, 2012
    Inventors: Thor Mejdell, Karl Anders Hoff, Olav Juliussen, Hallvard F. Svendsen, Andrew Tobiesen, Terje Vassbotn
  • Publication number: 20120128561
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Publication number: 20120129246
    Abstract: A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and a carbonate compound. The process includes contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption. The biocatalyst improves absorption of the mixture comprising carbonate compounds and the carbonate compound promotes release of the bicarbonate ions from the ion-rich solution during desorption, producing a CO2 gas stream and an ion-depleted solution.
    Type: Application
    Filed: August 4, 2010
    Publication date: May 24, 2012
    Applicant: CO2 SOLUTIONS INC.
    Inventors: Sylvie Fradette, Julie Gingras, Jonathan Carley, Glenn R. Kelly, Olivera Ceperkovic