Elemental Carbon Containing Patents (Class 252/502)
  • Publication number: 20120141800
    Abstract: Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein said diamond coating conductivity is increased in order to reduce dust attraction by the coated component when used in said micromechanical system. Corresponding micromechanical components and systems are also provided.
    Type: Application
    Filed: June 3, 2010
    Publication date: June 7, 2012
    Applicant: The Swatch Group Research and Development Ltd.
    Inventors: Detlef Steinmüller, Doris Steinmüller, Herwig Drexel, Slimane Ghodbane, David Richard, Pierre Cusin
  • Publication number: 20120138592
    Abstract: The present application is directed to a composition for generating heat from an applied current, comprising a mixture of graphite particles and dielectric particles. The graphite particles have a diameter from 1 to 1500 microns. The dielectric particles have a diameter from 1 to 1500 microns. The mixture has a resistivity from 0.015 ohm-meters to 2.3 megaohm-meters. The mixture is incorporated into heat generation devices and exchange devices. The devices include at least one pair of electrodes disposed within the mixture to direct an applied current through the mixture to resistively heat the mixture.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Inventors: Michael G. Colburn, Stephen J. Bogner, David R. McCloskey
  • Publication number: 20120135291
    Abstract: A method for preparing a mixture of a powder of an electrode active compound and of a powder of an electron conducting compound, wherein the following successive steps are performed: a liquid medium is prepared containing the powder of the electrode active compound and the powder of the electron conducting compound; the liquid medium containing the powder of the electrode active compound and the powder of the electron conducting compound is subjected to the action of high energy ultrasonic waves; the liquid medium is removed; the mixture of the powder of the electrode active compound and of the powder of the electron conducting compound is collected. The thereby obtained mixture. An electrode comprising said mixture as an electrochemically active material. A cell comprising at least such an electrode, and an accumulator or battery comprising one or more of these cells.
    Type: Application
    Filed: February 9, 2010
    Publication date: May 31, 2012
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Sébastien Patoux, Carole Bourbon, Lise Daniel
  • Publication number: 20120132859
    Abstract: “A composite electrode includes a mixture of active matter (AM) particles and EC material particles generating an electronic conductivity, the mixture being supported by an electrical lead forming a DC current collector. The electrode can be manufactured by a method which consists of modifying the AM particles and the EC particles so as to react with each other and with the material of the collector in order to form covalent and electrostatic bonds between said particles, as well as between the particles and the current collector, and then placing the different constituents in contact.
    Type: Application
    Filed: April 6, 2010
    Publication date: May 31, 2012
    Inventors: Bernard Lestriez, Dominique Guyomard, Joël Gaubicher
  • Publication number: 20120132358
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 31, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaeyoung CHOI, Keun Soo KIM, Byung Hee HONG
  • Patent number: 8187502
    Abstract: Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: May 29, 2012
    Assignee: Nantero Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent M. Segal
  • Publication number: 20120127418
    Abstract: A conductive light absorption layer composition, a conductive light absorption layer, and a liquid crystal display employing the same are provided. The conductive light absorption layer composition includes: 10-40 parts by weight of an adhesion agent; 40-50 parts by weight of a non-conductive nano-pigment; 10-25 parts by weight of a conductive material; 10-25 parts by weight of a surfactant; and 0.1-1.0 parts by weight of an interface modifying agent.
    Type: Application
    Filed: February 23, 2011
    Publication date: May 24, 2012
    Inventors: Chin-Cheng WENG, Yu-Chin Lin, I-Jein Cheng, Kuo-Tung Huang
  • Publication number: 20120129033
    Abstract: In accordance with the present invention, a powdery material and a positive electrode mixture for providing a nonaqueous electrolyte secondary battery capable of exhibiting a higher output under high current rate conditions are provided. The powdery material according to the present invention comprises a positive electrode active material powder having an average particle diameter of from 0.05 ?m to 1 ?m and two or more types of graphite powder wherein the average particle diameters of the two or more types of the graphite powder are different from each other and each graphite powder has an average particle diameter of from 0.01 ?m to 20 ?m. The positive electrode mixture according to the present invention comprises the powdery material, a binder, and a solvent.
    Type: Application
    Filed: August 2, 2010
    Publication date: May 24, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuyuki Tanino
  • Publication number: 20120119158
    Abstract: A method for producing a composite sulphur/carbon conductive material obtained solely from an initial sulphur and an initial carbon which includes the following successive steps between 50% and 90% by weight of initial sulphur and between 50% and 10% by weight of initial carbon having a specific surface smaller than or equal to 200 m2/g are placed in a reactor at atmospheric pressure, the sum of the proportions respectively of the initial sulphur and carbon attaining 100%, the reactor is hermetically sealed at atmospheric pressure, and the composite sulphur/carbon conductive material is formed, in powder form, by heat treatment by heating said reactor to a heating temperature comprised between 115° C. and 400° C., without external regulation of the pressure inside the reactor, and keeping said reactor at said heating temperature during a predetermined time.
    Type: Application
    Filed: July 7, 2010
    Publication date: May 17, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Celine Barchasz, Yves-Gregoire Assouan, Carole Bourbon, Sébastien Patoux
  • Publication number: 20120119162
    Abstract: The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
    Type: Application
    Filed: October 11, 2011
    Publication date: May 17, 2012
    Applicants: NATCORE TECHNOLOGY INC., WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Dennis J. Flood, Elizabeth Whitsitt
  • Patent number: 8178006
    Abstract: A fiber aggregate contains fine carbon fibers and fine boron nitride fibers. Desirably the boron nitride fibers form an outer layer portion of the fiber aggregate and the fine carbon fibers form a core portion of the fiber aggregate. Desirably the fine carbon fibers and the fine boron nitride fibers are twisted with each other. Desirably the fine carbon fibers are carbon nanotubes and the fine boron nitride fibers are boron nitride nanotubes. Desirably the fiber aggregate further contains boron-containing fine carbon fibers. The fine boron nitride fibers are formed by substituting carbon atoms of fine carbon fibers by boron atoms and nitrogen atoms. The fiber aggregate is fabricated by mixing a fiber aggregate that contains fine carbon fibers with boron and heating the fiber aggregate mixed with the boron in a nitrogen atmosphere to transform some of the fine carbon fibers into fine boron nitride fibers.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 15, 2012
    Assignee: DENSO CORPORATION
    Inventors: Tomohiro Shimazu, Yoshinobu Suzuki, Hisayoshi Oshima
  • Publication number: 20120111599
    Abstract: Systems and methods for forming conductive materials. The conductive materials can be applied using a printer in single or multiple passes onto a substrate. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes), grapheme, a polycyclic aromatic hydrocarbon (e.g. pentacene and bisperipentacene), metal nanoparticles, an inherently conductive polymer (ICP), and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. The adherent conductive materials can be used in applications such as damage detection, particle removal, and smart coating systems.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 10, 2012
    Applicant: United States Of America as Represented by the Administrator of the National Aeronautics and Spac
    Inventors: Luke B. Roberson, Martha K. Williams, Tracy L. Gibson, LaNetra C. Tate, Sarah J. Snyder, Craig R. Fortier
  • Publication number: 20120112134
    Abstract: Provided area carbon nanotube composite material obtained by treating a mixture including carbon nanotubes, at least one carbon compound other than carbon nanotubes and a dispersion medium under a sub-critical or super-critical condition of 50-400 atm, and a method for producing the same. More particularly, the method for producing a carbon nanotube composite material, includes: introducing a mixture including carbon nanotubes, at least one carbon compound other than carbon nanotubes and a dispersion medium into a preheating unit under a pressure of 1-400 atm to preheat the mixture; treating the preheated mixture under a sub-critical or super-critical condition of 50-400 atm; cooling and depressurizing the resultant product to 0-1000 C and 1-10 atm; and recovering the cooled and depressurized product. Provided also is an apparatus for producing a carbon nanotube composite material in a continuous manner.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Man Woo Jung, Seong Yun Jeon, Seong Cheol Hong, Joo Hee Han, Joo Seok Oh, Jin Seo Lee, Seung Hoe Do
  • Publication number: 20120114549
    Abstract: A method for separating metal carbon nanotubes with a single graphene layer (m-SWNT) and semiconductor nanotubes with a single graphene layer (sc-SWNT) is provided. The method may comprise a step for grafting, notably by radical chemical grafting, a diazonium salt derivative on a mixture of m-SWNTs and sc-SWNTs so as to obtain a mixture of grafted m-SWNTs, and non-grafted sc-SWNTs, whereby the grafted m-SWNTs and the non-grafted sc-SWNTs separate because of differential chemical and/or physical properties caused by said grafting. In addition, a kit for separating m-SWNTs and sc-SWNTs is provided.
    Type: Application
    Filed: February 8, 2010
    Publication date: May 10, 2012
    Applicant: Commissariat a l"energie atomique et aux energies alternatives
    Inventor: Pascale Chenevier
  • Patent number: 8173048
    Abstract: A composition for a circuit connection film and a circuit connection film using the same, the composition including a binder resin including an acrylate modified urethane resin, a carboxyl modified acrylonitrile butadiene rubber, and an acrylic copolymer, the acrylic copolymer having an acid value of about 1 to about 100 mg KOH/g, a radical polymerizable compound including at least one of an isocyanurate acrylate compound and a compound having a (meth)acrylate group, and an organic peroxide.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: May 8, 2012
    Assignee: Cheil Industries, Inc.
    Inventors: Hyun Hee Namkung, Kyoung Soo Park, Bong Yong Kim, Kang Bae Yoon, Sang Sik Bae, Hyun Joo Seo
  • Publication number: 20120104328
    Abstract: According to example embodiments, a method includes dispersing carbon nanotubes in a mixed solution containing a solvent, the carbon nanotubes, and a dispersant, the carbon nanotubes including semiconducting carbon nanotubes, the dispersant comprising a polythiophene derivative including a thiophene ring and a hydrocarbon sidechain linked to the thiophene ring. The hydrocarbon sidechain includes an alkyl group containing a carbon number of 7 or greater. The hydrocarbon sidechain may be regioregularly arranged, and the semiconducting carbon nanotubes are selectively separated from the mixed solution. An electronic device includes semiconducting carbon nanotubes and the foregoing described polythiophene derivative.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 3, 2012
    Applicants: The Board of Trustees of the Leland Stanford Junior University, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-jun Park, Jong-min Kim, Hang-Woo Lee, Zhenan Bao
  • Publication number: 20120104325
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Application
    Filed: April 23, 2010
    Publication date: May 3, 2012
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang
  • Publication number: 20120107597
    Abstract: According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.
    Type: Application
    Filed: April 23, 2007
    Publication date: May 3, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Myung Jong Kim, Nolan Walker Nicholas, W. Carter Kittrell, Howard K. Schmidt
  • Publication number: 20120107683
    Abstract: A composite of electrode active material including aggregates formed by self-assembly of electrode active material nanoparticles and carbon nanotubes, and a fabrication method thereof are disclosed. This composite is in the form of a network in which at least some of the carbon nanotubes connect two or more aggregates that are not directly contacting each other, creating an entangled structure in which a plurality of aggregates and a plurality of carbon nanotube strands are intertwined. Due to the highly conductive properties of the carbon nanotubes in this composite, charge carriers can be rapidly transferred between the self-assembled aggregates. This composite may be prepared by preparing a dispersion in which the nanoparticles and/or carbon nanotubes are dispersed without any organic binders, simultaneously spraying the nanoparticles and the carbon nanotubes on a current collector through electrospray, and then subjecting the composite material formed on the current collector to a heat treatment.
    Type: Application
    Filed: October 20, 2011
    Publication date: May 3, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Il Doo KIM, Jin Hoon CHOI
  • Patent number: 8163663
    Abstract: The invention provides a conductive powder composite including a bamboo charcoal powder pre-processed with a pulverizing procedure and a refining procedure of 900 to 1500° C. and a conductive carbon black powder, wherein the bamboo charcoal powder and the conductive carbon black powder are blended by a high speed mechanical granulating machine to form the conductive powder composite. The conductive powder composite can simultaneously and effectively improve the poor conductivity of the bamboo charcoal powder and the embrittlement characteristic of the conductive carbon black powder in the conventional technology. The invention also provides a conductive masterbatch and a fabrication method thereof, and a multifunctional antistatic non-woven fabric and a fabrication method thereof.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: April 24, 2012
    Assignee: Taiwan Textile Research Institute
    Inventors: Wei-Jen Lai, Sheng-Shan Chang
  • Patent number: 8163205
    Abstract: A method of preparing a transparent conductor for application on a polymeric substrate is described. The method includes introducing a functional group onto a surface of the conductor to form a modified conductor, and mixing the modified conductor with a dispersant at slightly elevated temperatures to form a conductive material composition. The dispersant is at least bifunctional. The conductive material composition may then be applied to the polymeric substrate. The dispersant acts as a linker, bonding the transparent conductor and polymeric substrate such that they are fully integrated.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: April 24, 2012
    Assignee: The Boeing Company
    Inventors: Chaoyin Zhou, Richard W. Burns
  • Publication number: 20120091387
    Abstract: A method of and an apparatus for making a composite material is provided. The composite is able to be formed by mixing a binder and a physical property enhancing material to form a mixer. The binder is able to be pitch, such as mesophase pitch. The physical property enhancing material is able to be fiber glass. The mixer is able to be processed through a lamination process, stabilization/cross-link process, and carbonization. The composite material is able to be applied in the field of electronic components and green technology, such as a substrate of a photovoltaic cell.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Inventors: Cyprian Emeka Uzoh, Emeka Nchekwube
  • Publication number: 20120088156
    Abstract: An energy storage device having high capacity per weight or volume and a positive electrode active material for the energy storage device are manufactured. A surface of a main material included in the positive electrode active material for the energy storage device is coated with two-dimensional carbon. The main material included in the positive electrode active material is coated with a highly conductive material which has a structure expanding two-dimensionally and whose thickness is ignorable, whereby the amount of carbon coating can be reduced and an energy storage device having capacity close to theoretical capacity can be obtained even when a conduction auxiliary agent is not used or the amount of the conduction auxiliary agent is extremely small. Accordingly, the amount of carbon coating in a positive electrode and the volume of the conduction auxiliary agent can be reduced; consequently, the volume of the positive electrode can be reduced.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 12, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kuniharu NOMOTO, Takuya MIWA, Masaki YAMAKAJI, Takahiro KAWAKAMI
  • Publication number: 20120081838
    Abstract: The present application is generally directed to energy storage materials such as activated carbon comprising enhanced particle packing properties and devices containing the same. The energy storage materials find utility in any number of devices, for example, in electric double layer capacitance devices and batteries. Methods for making the energy storage materials are also disclosed.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: EnerG2 Technologies, Inc.
    Inventors: Henry R. Costantino, Chad Goodwin, William D. Scott, Aaron M. Feaver
  • Publication number: 20120082806
    Abstract: Coatings and heatable coatings containing electrically conductive nanomaterial; methods for making such a coating; items with such a coating; and methods for applying such a coating. In one aspect, such a coating is a deicing coating. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b).
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Inventors: Kyle Ryan Kissell, James Bruce Sinclair Slfton, William Doyle Stringfellow, John Bready Stuart
  • Publication number: 20120083408
    Abstract: There is provided a high-purity carbon nanotube, which can be produced with simple purification by causing graphite to be hardly contained in crude soot obtained immediately after being synthesized by arc-discharge, and a method for producing the same. Soot containing carbon nanotubes produced by arc-discharge using an anode which contains amorphous carbon as a main component is heated at a temperature of not lower than 350° C. to be burned and oxidized, immersed in an acid, heated at a temperature, which is not lower than the heating temperature in the previous burning and oxidation and which is not lower than 500° C., to be burned and oxidized, and immersed in an acid again.
    Type: Application
    Filed: May 28, 2010
    Publication date: April 5, 2012
    Applicants: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Yoshinori Sato, Kazuyuki Tohji, Masaru Namura
  • Patent number: 8147722
    Abstract: Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1×1018 atoms/cm3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 3, 2012
    Assignee: Nantero Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent M. Segal
  • Patent number: 8147791
    Abstract: A method of creating graphene comprising the steps of dispersing graphene oxide into water to form a dispersion. Where the method further comprises adding a solvent to the dispersion to form a solution, and controlling a temperature of the solution to form graphene.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 3, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventor: S. Scott Gilje
  • Patent number: 8148685
    Abstract: A transmission electron microscope (TEM) micro-grid includes a base and a plurality of electron transmission portions. The base includes a plurality of first carbon nanotubes and the first carbon nanotubes have a first density. Each electron transmission portions includes a hole defined in the base and a plurality of second carbon nanotubes located in the hole. The second carbon nanotubes have a second density. The second density is less than the first density. The base and the electron transmission portions form the TEM micro-grid for observation of a sample using a TEM microscope.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 3, 2012
    Assignee: Beijing FUNATE Innovation Technology Co., Ltd.
    Inventors: Li Qian, Li Fan, Liang Liu, Chen Feng, Yu-Quan Wang
  • Publication number: 20120077035
    Abstract: A non-exfoliated graphite powder comprises highly oriented grain aggregates (HOGA) having a new morphology and surface chemistry. Methods for the production of such graphite powders as well as products comprising such novel graphite particles is also disclosed.
    Type: Application
    Filed: February 3, 2010
    Publication date: March 29, 2012
    Applicant: TIMCAL S.A.
    Inventors: Michael E. Spahr, Curzio Nessi, Salvatore Stallone, Eberhard Waldhör, Grivei Eusebiu, Nicolas Probst
  • Publication number: 20120077087
    Abstract: The present invention relates to negative-electrode active material for rechargeable lithium battery comprising: a core comprising material capable of doping and dedoping lithium; and, a carbon layer formed on the surface of the core, wherein the carbon layer has a three dimensional porous structure comprising nanopores regularly ordered on the carbon layer with a pore wall of specific thickness placed therebetween.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 29, 2012
    Applicants: UNIST ACADEMY-INDUSTRY RESEARCH CORPORATION, LG CHEM, LTD.
    Inventors: Jaephil Cho, Jae-Bum Choo, Byung-Hee Han, Hyun-Jung Kim, Ki-Tae Kim, Je-Young Kim
  • Publication number: 20120068122
    Abstract: In one embodiment, a method for producing a graphene-containing composition is provided, the method comprising: (i) mixing a graphene oxide with a medium to form a mixture; and (ii) heating the mixture to a temperature above about 40° C., whereby a graphene-containing composition is formed from the mixture. Composites of polymers with disperse functionalized graphene sheets and the applications thereof are also described.
    Type: Application
    Filed: May 28, 2010
    Publication date: March 22, 2012
    Inventors: David Kranbuehl, Sarah Cotts, Hannes C. Schniepp, Minzhin Cai, Arthur Jaeton Glover
  • Patent number: 8137591
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube containing multi-component support materials of amorphous Si, Mg and Al as well as a bulk scale preparation process for preparing carbon nanotube using said catalyst composition. More specifically, this invention relates to a process for preparing carbon nanotube using the catalyst composition comprising a transition metal catalyst and support materials of amorphous Si, Mg and Al.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 20, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Dong Hwan Kim, Sang-Hyo Ryu, Wan Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Publication number: 20120064409
    Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
  • Patent number: 8133969
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: March 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeyoung Choi, Keun Soo Kim, Byung Hee Hong
  • Patent number: 8133465
    Abstract: A polymer-carbon nanotube composite film is provided for use as a sensor for detecting chemical vapors. The composite film is formed by coating perpendicularly-aligned carbon nanotubes with a polymer selected from poly(vinyl acetate), poly(isoprene), or blends thereof. The sensor may be formed by attaching at least two electrodes to the polymer-carbon nanotube composite film. The sensor may be used in any applications where the sensor is capable of detecting a change in conductivity in the composite.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: March 13, 2012
    Assignee: University of Dayton
    Inventors: Liming Dai, Wei Chen
  • Publication number: 20120058397
    Abstract: A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 ?m (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10?4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Ming C. Wang, Bor Z. Jang
  • Publication number: 20120058889
    Abstract: Disclosed is a composition containing carbon nanotubes which meets all of the following conditions (1) to (4). (1) When observed via transmission electron microscopy, at least 50 out of every 100 carbon nanotubes are double-walled carbon nanotubes. (2) The carbon nanotubes have an average outer diameter in the range of 1.0 to 3.0 nm. (3) During thermogravimetric analysis under atmosphere at a temperature increase rate of 10° C./minute, a high temperature combustion peak is at 700 to 850° C., and the relationship between low temperature weight loss (TG(L)) and high temperature weight loss (TG(H)) is TG(H)/(TG(L)+TG(H))?0.75. (4) The composition containing carbon nanotubes has a volume resistance value between 1.0×10?2 ?·cm and 1.0×10?4 ?·cm, inclusive. The disclosed composition containing carbon nanotubes primarily has double-walled carbon nanotubes with high electrical conductivity and high heat resistance.
    Type: Application
    Filed: March 4, 2010
    Publication date: March 8, 2012
    Inventors: Hidekazu Nishino, Hajime Kato, Naoyo Okamoto, Shuko Ikeuchi, Kenichi Sato, Shiho Tanaka, Kazuyoshi Higuchi
  • Patent number: 8127440
    Abstract: A method for producing a circuit assembly having a non-conductive substrate upon which printed conductors may be easily and selectively interconnected to another circuit assembly device, and/or apparatus.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: March 6, 2012
    Inventor: Joel S. Douglas
  • Publication number: 20120052662
    Abstract: A process of forming a semiconductive carbon nanotube structure includes imposing energy on a mixture that contains metallic carbon nanotubes and semiconductive carbon nanotubes under conditions to cause the metallic carbon nanotubes to be digested or to decompose so that they may be separated away from the semiconductive carbon nanotubes.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Inventors: Eugene P. Marsh, Gurtej S. Sandhu
  • Publication number: 20120052511
    Abstract: In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In one approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.
    Type: Application
    Filed: July 11, 2011
    Publication date: March 1, 2012
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, JR., Tammy Y. Olson, Joshua D. Kuntz, Klint A. Rose
  • Publication number: 20120052308
    Abstract: Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 1, 2012
    Applicants: EGYPT NANOTECHNOLOGY CENTER, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mostafa M. El-Ashry, Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski
  • Patent number: 8123984
    Abstract: A positive temperature coefficient polymer composition includes a polymer system and a conductive particulate filler. The polymer system includes a non-ionic copolymer of a substituted or non-substituted olefin monomer and an anhydride monomer. The olefin monomer and the anhydride monomer form a linear polymer chain.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 28, 2012
    Assignee: Fuzetec Technology Co., Ltd.
    Inventors: Jack Jih-Sang Chen, Chi-Hao Gu
  • Publication number: 20120045865
    Abstract: Techniques for increasing conductivity of graphene films by chemical doping are provided. In one aspect, a method for increasing conductivity of a graphene film includes the following steps. The graphene film is formed from one or more graphene sheets. The graphene sheets are exposed to a solution having a one-electron oxidant configured to dope the graphene sheets to increase a conductivity thereof, thereby increasing the overall conductivity of the film. The graphene film can be formed prior to the graphene sheets being exposed to the one-electron oxidant solution. Alternatively, the graphene sheets can be exposed to the one-electron oxidant solution prior to the graphene film being formed. A method of fabricating a transparent electrode on a photovoltaic device from a graphene film is also provided.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ageeth Anke Bol, George Stojan Tulevski
  • Publication number: 20120045642
    Abstract: Provided are a graphite material suitable as an electrode material for nonaqueous electrolyte secondary batteries, a carbonaceous material for battery electrodes, and secondary batteries which exhibit excellent charge-discharge cycle characteristics and excellent severe-current-load characteristics. A graphite material which has specific sizes of optically anisotropic and isotropic structures, a specific content ratio between both structures, and various orientation of crystallization; and a carbonaceous material for battery electrodes which is made using the graphite material and which exhibits a large discharge capacity and a small irreversible capacity with the severe-current-load characteristics and cycle characteristics being kept at high levels.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 23, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yoshiyuki Nishimura, Akinori Sudoh, Shunsuke Yoshioka
  • Patent number: 8119095
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powers, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powers, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: February 21, 2012
    Assignee: C & Tech Co., Ltd.
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8119033
    Abstract: The present invention provides a granulated acetylene black which can be easily and well dispersed when it is incorporated in at least one of a resin and a rubber, the process for producing it, and its composition. A granulated acetylene black has an average aspect ratio of at most 1.1, an average maximum particle size of from 0.2 mm to 1 mm and an average particle size of from 0.2 to 0.6 mm. The granulated acetylene black is produced, after stirring and granulating a mixture containing from 35 to 50 mass % of an acetylene black original powder having an iodine adsorption amount of from 80 to 100 mg/g and a DBP absorption amount of from 140 to 220 ml/100 g and from 50 to 65 mass % of water, and subjecting to selection treatment, classification treatment or both treatments.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 21, 2012
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventor: Hiroshi Sakashita
  • Patent number: 8119032
    Abstract: The invention provides methods functionalizing a planar surface of a graphene layer, a graphite surface, or microelectronic structure. The graphene layer, graphite surface, or planar microelectronic structure surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the graphene layer, a graphite surface, or planar microelectronic surface while providing a functionalization layer of chemically functional groups, to produce a functionalized graphene layer, graphite surface, or planar microelectronic surface.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 21, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer, Charles M. Marcus, James R. Williams
  • Publication number: 20120031852
    Abstract: An electrode is described completely made of graphenes or containing high amounts of these compounds in mixture with nanostructured or non-nanostructured carbon-based materials. An electrooxidation process for the removal of contaminants from liquids, and a reactor for performing the process, based on the use of said electrodes, are also described.
    Type: Application
    Filed: April 6, 2010
    Publication date: February 9, 2012
    Applicant: SA ENVITECH S.R.L.
    Inventor: Ivano Aglietto
  • Patent number: 8110125
    Abstract: The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 7, 2012
    Assignee: Northwestern University
    Inventors: Mark C. Hersam, Samuel I. Stupp, Michael S. Arnold