Free Metal Containing Patents (Class 252/512)
  • Patent number: 8506850
    Abstract: The present invention provides a conductive fine particle capable of suppressing a blackening phenomenon during storage and thus providing high connection reliability; an anisotropic conductive material containing the conductive fine particle; and a connection structure. The conductive particle which has a base fine particle, and a conductive layer and a low-melting point metal layer that are formed in the stated order on the surface of the base fine particle, wherein the low-melting point metal layer has an arithmetic mean surface roughness of 50 nm or lower.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 13, 2013
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Taku Sasaki, Hiroshi Natsui
  • Patent number: 8506849
    Abstract: A conductive ink includes metallic nanoparticles, a polymeric dispersant, and a solvent. The polymeric dispersant may be ionic, non-ionic, or any combination of ionic and non-ionic polymeric dispersants. The solvent may include water, an organic solvent, or any combination thereof. The conductive ink may include a stabilizing agent, an adhesion promoter, a surface tension modifier, a defoaming agent, a leveling additive, a rheology modifier, a wetting agent, an ionic strength modifier, or any combination thereof.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 13, 2013
    Assignees: Applied Nanotech Holdings, Inc., Ishihara Chemical Co., Ltd.
    Inventors: Xueping Li, Yunjun Li, Peter B. Laxton, David Max Roundhill, Hidetoshi Arimura
  • Publication number: 20130200421
    Abstract: Illustrative embodiments of hybrid transparent conducting materials and applications thereof are disclosed. In one illustrative embodiment, a hybrid transparent conducting material may include a polycrystalline film and a plurality of conductive nanostructures randomly dispersed in the polycrystalline film. In another illustrative embodiment, a photovoltaic cell may include a transparent electrode comprising polycrystalline graphene that is percolation doped with metallic nanowires, where the metallic nanowires do not form a percolation network for charge carriers across the transparent electrode.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Inventors: Changwook Jeong, Mark Lundstrom, Muhammad Ashraful Alam
  • Publication number: 20130200313
    Abstract: Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: ROBERT V. FOX, RENE RODRIGUEZ, JOSHUA J. PAK, CHIVIN SUN
  • Publication number: 20130202890
    Abstract: Provided in one embodiment is a method of making an aerogel, comprising: (A) increasing a concentration of a suspension comprising a gel precursor under a condition that promotes formation of a gel, wherein the gel precursor comprises particulates having an asymmetric geometry; and (B) removing a liquid from the gel to form the aerogel, wherein the aerogel and the gel have substantially the same geometry. An aerogel comprising desirable properties are also provided.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 8, 2013
    Inventors: Jing Kong, Sung Mi Jung
  • Publication number: 20130199905
    Abstract: Provided are: a method for producing an electrode material for a vacuum circuit breaker, whereby withstand voltage, high current interruption performance and capacitor switching performance can be improved; an electrode material for a vacuum circuit breaker; and an electrode for a vacuum circuit breaker. The electrode material for a vacuum circuit breaker is produced by a method comprising a mixing step, a press sintering step, and a Cu infiltration step. In the mixing step, an Mo powder having a particle diameter of 0.8 to 6 ?m is homogeneously mixed with a thermite Cr powder having a particle diameter of 40 to 300 gm in such a manner as giving a mixing ratio (Mo:Cr) of 1:1 to 9:1 and satisfying the weight relation Mo?Cr. In the press sintering step, the resultant mixture is pressure molded under a press pressure of 1 to 4 t/cm2 to give a molded article. Next, said molded article is sintered by maintaining the same at a temperature of 1100 to 1200° C.
    Type: Application
    Filed: June 20, 2011
    Publication date: August 8, 2013
    Applicant: Meiden T & D Corporation
    Inventors: Yasushi Noda, Hiromasa Sato
  • Patent number: 8501048
    Abstract: The present invention provides a metal-graphite composite material favorable to two-dimensional diffusion of heat and having a high thermal conductivity in two axial directions, and a production method therefor. The metal-graphite composite material of the present invention includes: 20 to 80% by volume of a scaly graphite powder; and a matrix selected from the group consisting of copper, aluminum and alloys thereof, wherein the scaly graphite powder in which a normal vector to a scaly surface thereof is tilted at 20° or higher with respect to a normal vector to a readily heat-conducting surface of the metal-graphite composite material is 15% or less relative to a whole amount of the scaly graphite powder, and the metal-graphite composite material has a relative density of 95% or higher.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 6, 2013
    Assignee: Shimane Prefectural Government
    Inventors: Toshiyuki Ueno, Takashi Yoshioka
  • Patent number: 8502077
    Abstract: A conductive element suitable for the transmission of an electrical operating signal to a detonator, which conductive element comprises a conductive filler homogeneously dispersed in a polymer matrix.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 6, 2013
    Assignee: Orica Explosives Technology Pty Ltd
    Inventors: David Brian Kay, Rodney Wayne Appleby, Richard John Goodridge, Dong Yang Wu, Stuart Arthur Bateman, Carmelo Dell'Olio
  • Patent number: 8501045
    Abstract: The present invention is a circuit connecting material used for the mutual connection of a circuit member in which electrodes and insulating layers are formed adjacent to each other on the surface of a board, and a circuit member in which electrodes and insulating layers are formed adjacent to each other on the surface of a board, with the edge parts and of the insulating layers being formed with a greater thickness than the electrodes on the basis of the main surfaces, wherein this circuit connecting material contains a bonding agent composition and conductive particles that have a mean particle size of 1 ?m or greater but less than 10 ?m and a hardness of 1.961 to 6.865 GPa, and this circuit connecting material exhibits a storage elastic modulus of 0.5 to 3 GPa at 40° C. and a mean coefficient of thermal expansion of 30 to 200 ppm/° C. at from 25° C. to 100° C. when subjected to the curing treatment.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: August 6, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Motohiro Arifuku, Itsuo Watanabe, Yasushi Gotou, Kouji Kobayashi, Kazuyoshi Kojima
  • Publication number: 20130196465
    Abstract: A method for forming a conductive feature. The method includes providing a substrate and a conductive composition. The conductive composition includes metal particles, a fluxing agent and a liquid monomer. The method further includes heating the composition to a temperature from about 200 to about 300° C. to fuse metal particles, crosslink the liquid monomer, and form a conductive feature.
    Type: Application
    Filed: October 7, 2011
    Publication date: August 1, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Chun Christine Dong
  • Publication number: 20130192670
    Abstract: An aluminum paste having no or only poor fire-through capability and comprising particulate aluminum, an organic vehicle and at least one glass frit selected from the group consisting of lead-free glass frits containing 0.5 to 15 wt. % SiO2, 0.3 to 10 wt. % Al2O3 and 67 to 75 wt. % Bi2O3, and the use of such aluminum paste in the manufacture of aluminum back anodes of PERC silicon solar cells.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 1, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: KENNETH WARREN HANG, GIOVANNA LAUDISIO, ALISTAIR GRAEME PRINCE, YUELI WANG, ROSALYNNE SOPHIE WATT
  • Patent number: 8497022
    Abstract: Provided is a composite nanometal paste which, when a layer of the paste interposed between upper and lower bodies is sintered in an inert gas under no load until the layer turns to a metal layer, attains a shear bond strength between the upper and lower bodies of 10 MPa or higher. The composite nanometal paste contains, as metallic components, composite metallic nanoparticles comprising metal cores with an average particle diameter of X (nm) and an organic coating layer formed around the circumference, metallic nanofiller particles having an average particle diameter of d (nm), and metallic filler particles having an average particle diameter of D (nm), and satisfies the first relation X<d<D and the second relation X<d<100 (nm).
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: July 30, 2013
    Assignees: Applied Nanoparticle Laboratory Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Teruo Komatsu, Yoshinori Shibata, Hideo Nakamura, Masashi Furukawa, Ryosuke Gomi, Mitsuhiro Kanou, Tsukasa Sugie, Narutaka Kasuya, Shuhei Yamaguchi, Toshitaka Ishizaki, Tadashi Oshima, Hisaaki Takao, Naotoshi Tominaga
  • Patent number: 8496854
    Abstract: Positive temperature coefficient (PTC) compositions having a reduced negative temperature coefficient effect (NTC) are provided that are achieved without crosslinking the thermoplastic base material. The PTC compositions include a thermoplastic base resin, an electrically conductive filler and particles of a polymeric additive dispersed in the PTC composition.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 30, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Franciscus Petrus Maria Mercx, Sascha Ter Horst
  • Publication number: 20130189831
    Abstract: Improved silicon/germanium nanoparticle inks are described that have silicon/germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Inventors: Weidong Li, Gina Elizabeth Pengra-Leung, Uma Srinivasan, Shivkumar Chiruvolu, Masaya Soeda, Guojon Liu
  • Publication number: 20130181173
    Abstract: A sintered composite oxide 2 composed mainly of zinc, aluminum, titanium and oxygen, the atomic ratio of the elements satisfying the following equations (1) to (3), the sintered composite oxide 2 comprising particles having a hexagonal wurtzite structure containing zinc oxide as the major component and having a mean particle size of no greater than 20 ?m, and particles having a ZnTiO3-like structure and/or Zn2Ti3O8-like structure containing aluminum and titanium and having a mean particle size of no greater than 5 ?m, and containing no particles with a spinel oxide structure of zinc aluminate with zinc and aluminum in solid solution, and a manufacturing method for the same. (Al+Ti)/(Zn+Al+Ti)=0.004-0.055??(1) Al/(Zn+Al+Ti)=0.002-0.025??(2) Ti/(Zn+Al+Ti)=0.002-0.048??(3) [In the equations, Al, Ti and Zn represent the contents (atomic percents) of aluminum, titanium and zinc, respectively.
    Type: Application
    Filed: September 27, 2011
    Publication date: July 18, 2013
    Applicant: TOSOH CORPORATION
    Inventors: Hideto Kuramochi, Hitoshi Iigusa, Tetsuo Shibutami
  • Publication number: 20130180561
    Abstract: Disclosed herein include nanocomposites with improved thermoelectric performance. Also disclosed herein include methods of manufacturing and methods of using such nanocomposites.
    Type: Application
    Filed: January 28, 2011
    Publication date: July 18, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Patent number: 8486306
    Abstract: A nickel ink having nickel particles dispersed in a dispersion medium is disclosed. The dispersion medium comprises one member or a combination of two or more members selected from the group consisting of an alcohol and a glycol both having a boiling point of 300° C. or lower at atmospheric pressure. The nickel particles have an average primary particle size of 50 nm or smaller. The nickel ink provides a conductor film with a surface smoothness having an average surface roughness Ra of 10 nm or smaller and a maximum surface roughness Rmax of 200 nm or smaller.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: July 16, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yoichi Kamikoriyama, Hiroki Sawamoto, Mikimasa Horiuchi
  • Patent number: 8486305
    Abstract: A method of fabricating copper nanoparticles includes heating a copper salt solution that includes a copper salt, an N,N-dialkylethylenediamine, and a C6-C18 alkylamine in an organic solvent to a temperature between about 30° C. to about 50° C.; heating a reducing agent solution that includes a reducing agent, an N,N-dialkylethylenediamine, and a C6-C18 alkylamine in an organic solvent to a temperature between about 30° C. to about 50° C.; and adding the heated copper salt solution to the heated reducing agent solution, thereby producing copper nanoparticles. A composition includes copper nanoparticles, a C6-C18 alkylamine and an N,N?-dialkylethylenediamine ligand. Such copper nanoparticles in this composition have a fusion temperature between about 100° C. to about 200° C. A surfactant system for the stabilizing copper nanoparticles includes an N,N?-dialkylethylenediamine and a C6-C18 alkylamine.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: July 16, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Alfred A. Zinn, Paul P. Lu
  • Publication number: 20130178047
    Abstract: A population of semiconductor nanocrystals can include cores including a II-V semiconductor material, e.g., Cd3As2. The population can be monodisperse and can have a quantum yield of 20% or greater. A size-series of populations can have emission wavelengths falling in the range of about 530 nm to about 2000 nm.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Inventors: Daniel K. Harris, Moungi G. Bawendi
  • Publication number: 20130177762
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Application
    Filed: February 5, 2013
    Publication date: July 11, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Sumitomo Metal Mining Co., Ltd.
  • Publication number: 20130177812
    Abstract: A positive electrode material for a lithium battery, a positive electrode prepared from the positive electrode material, and a lithium battery including the positive electrode are disclosed. The positive electrode material includes a positive active material, an aqueous binder, and tungsten trioxide. Due to the inclusion of the positive active material, the aqueous binder, and the tungsten trioxide (WO3), the positive electrode material may substantially prevent corrosion of an aluminum substrate. The positive electrode material has high electric conductivity. Lithium batteries including positive electrodes prepared from the positive electrode material have decreased resistance of the electrode plate, high rate characteristics, and good lifespan characteristics.
    Type: Application
    Filed: August 1, 2012
    Publication date: July 11, 2013
    Inventors: Seung-Hun Han, Jun-Kyu Cha, Hye-Sun Jeong, Ki-Jun Kim
  • Patent number: 8481146
    Abstract: A polymerizable mixture for ink jetting, having liquid crystalline phases comprising the following components: a) 50-80 wt % mono-functional LCP's, b) 10-50 wt % of a higher functional LCP's, f) 0.01-5 wt % initiators, preferably below 1% g) 0.01-5 wt % inhibitors, preferably below 1% h) 0-20 wt % additives, preferably below 10 wt %, with the provision that the total amount of the components is 100 wt %, characterized in that the polymerizable mixtures has a viscosity smaller than 0.015 Pa s at 100° C. and yet remaining thermally stable.
    Type: Grant
    Filed: March 8, 2008
    Date of Patent: July 9, 2013
    Assignee: Technische Universiteit Eindhoven
    Inventors: Cees Bastiaansen, Thijs Meijer, Robert Jan Vrancken
  • Publication number: 20130171405
    Abstract: A method of obstructing metal whisker growth that includes providing a conductive structure comprised of a whisker forming metal, and forming a composite coating on the whisker forming metal. The composite coating may include a matrix phase of a polymer and a dispersed phase of reinforcing particles. The reinforcing particles are incorporated into the polymer to provide the composite coating with mechanical properties that obstruct whiskers from penetrating through the composite coating.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: BAE SYSTEMS CONTROLS INC.
    Inventors: Stephan John Meschter, Stephen Arthur McKeown
  • Publication number: 20130168612
    Abstract: This invention relates to sacrificial-metal pigments coated with an effective amount of at least one metal oxide or a combination of metal oxides such as a chromium-zirconium oxide, and the process for preparing said coated pigments and combination thereof with film-forming binders for coating metal substrates to inhibit corrosion. The coated sacrificial-metal pigments are electrically active to prevent corrosion of metal substrates that are more cathodic (electropositive) than the metal oxide coated metal pigments.
    Type: Application
    Filed: August 1, 2012
    Publication date: July 4, 2013
    Applicant: United States of America as represented by the Secretary of the Navy
    Inventors: Craig Matzdorf, William Nickerson
  • Patent number: 8475689
    Abstract: A topical composition containing galvanic particulates consisting of a first conductive material that is zinc and a second conductive material that is copper is provided.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 2, 2013
    Assignee: Johnson & Johnson Consumer Companies, Inc.
    Inventors: Ying Sun, Jue-Chen Liu, Jeffrey M. Wu, James E. Hauschild
  • Publication number: 20130160844
    Abstract: This invention provides a thick-film composition for printing the front-side of a solar cell device having one or more insulating layers. The composition comprises a bismuth oxide comprising glass frit and antimony oxide as part of the glass frit or an additive. The invention further refers to a process for preparing a semiconductor device by use of the thick-film composition and an article, especially a solar cell comprising the semiconductor device. The solar cells show improved efficiency.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventor: HERAEUS PRECIOUS METALS GMBH & CO.KG
  • Publication number: 20130161573
    Abstract: A lead-free conductive paste composition contains a source of an electrically conductive metal, a fusible material, an optional additive, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the lead-free paste composition on a semiconductor substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and fusible material.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Carmine Torardi, Paul Douglas Vernooy
  • Publication number: 20130161572
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, a fusible material, a synthetic clay additive, and an optional etchant additive, dispersed in an organic medium. An article such as a photovoltaic cell is formed by a process having the steps of deposition of the paste composition on a semiconductor substrate by a process such as screen printing and firing the paste to remove the organic medium and sinter the metal and fusible material. The synthetic clay additive aids in establishing a low resistance electrical contact between the front side metallization and underlying semiconductor substrate during firing.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven Dale Ittel, John Graeme Pepin
  • Publication number: 20130160830
    Abstract: A conductive thick-film paste composition is useful in forming conductive structures on the front side of a solar cell or other like device. The paste composition has a source of electrically conductive metal, such as silver powder, one or more glass components, and an optional zinc-containing additive, which are dispersed in an organic medium containing a surfactant.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Alex Sergey IONKIN
  • Publication number: 20130161571
    Abstract: Disclosed herein are a copper organic metal, a method for preparing a copper organic metal and a copper paste. The copper organic metal is constituted to combine a copper atom, [R—CO2] and amine based ligand (L), thereby making it possible to be subjected to a low temperature sintering process and having an improved conductivity at the time of forming a conductive pattern as compared to the related art.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Publication number: 20130160834
    Abstract: The invention relates to a back-side electrode adjacently formed on silicon layer of p-type solar cell, comprises a conductive component comprising, before firing, (a) aluminum powder, (b) organic medium and (c) metal-containing component selected from the group consisting of (i) metal selected from the group consisting of Titanium(Ti), Manganese(Mn) and Cerium (Ce), and (ii) carbide, oxide, nitride, boride, carbonate, hydroxide and resinate of (i) metal.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: AKIRA INABA, TAKESHI KONDO
  • Publication number: 20130160835
    Abstract: The invention relates to a back-side electrode adjacently formed on silicon layer of p-type solar cell comprises a conductive component comprising (a) aluminum powder, (b) organic medium and (c) metal-containing component selected from the group consisting of (i) metal selected from the group consisting of Bismuth (Bi), Molybdenum (Mo), Strontium (Sr) and Stibium (Sb), and (ii) carbide, oxide, nitride, boride, carbonate, hydroxide and resinate of (i) metal, and (iii) Copper (Cu).
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: AKIRA INABA, Takeshi Kondo, Mamoru Murakami
  • Patent number: 8470723
    Abstract: A low softening point glass composition, which is substantially free from lead, bismuth and antimony and comprises oxides of vanadium, phosphorous, tellurium and iron, a softening point of the composition being 380° C. or lower.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Keiichi Kanazawa, Shinji Yamada, Satoru Amou, Hiroki Yamamoto, Takuya Aoyagi
  • Publication number: 20130153020
    Abstract: In various embodiments, a solar cell screen-printing composition is provided, comprising aluminum; and silicon; the percentage by mass of silicon lying in a range from 5% to 95% of the sum of the percentages by mass of silicon and aluminum.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 20, 2013
    Applicant: SolarWorld Innovations GmbH
    Inventor: SolarWorld Innovations GmbH
  • Publication number: 20130155581
    Abstract: Recovery of a metal from scrap materials or other source materials containing two or more metals or other materials by iodization of the materials or parts of them to create multiple metal iodides of respective metals, separating the iodides and dissociating at least one of the iodides to recover its metal component.
    Type: Application
    Filed: July 3, 2012
    Publication date: June 20, 2013
    Applicant: ORCHARD MATERIAL TECHNOLOGY LLC
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter, Yuri V. Blagoveshchenskiy
  • Publication number: 20130154093
    Abstract: An anisotropic conductive film composition for bonding an electronic device may include a hydrogenated bisphenol A epoxy monomer represented by Formula 1 or a hydrogenated bisphenol A epoxy oligomer represented by Formula 2: where n may be an integer from 1 to about 50.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 20, 2013
    Inventors: Arum YU, Nam Ju KIM, Kyoung Soo PARK, Young Woo PARK, Joon Mo SEO, Kyung Il SUL, Dong Seon UH, Hyun Min CHOI
  • Patent number: 8465677
    Abstract: An electrically conductive composition and a fabrication method thereof are provided. The electrically conductive structure includes a major conductive material and an electrically conductive filler of an energy delivery character dispersed around the major conductive material. The method includes mixing a major conductive material with an electrically conductive filler of an energy delivery character to form a mixture, coating the mixture on a substrate, applying a second energy source to the mixture while simultaneously applying a first energy source for sintering the major conductive material to form an electrically conductive composition with a resistivity smaller than 10×10?3?·cm.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 18, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-An Lu, Hong-Ching Lin
  • Publication number: 20130146135
    Abstract: A conductive paste including a conductive powder, a metallic glass including aluminum (Al) and a first element which forms a solid solution with the aluminum (Al), and an organic vehicle.
    Type: Application
    Filed: June 27, 2012
    Publication date: June 13, 2013
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventors: Eun Sung LEE, Suk Jun KIM, Se Yun KIM, Jin Man PARK, Sang Soo JEE
  • Publication number: 20130148261
    Abstract: There are provided a conductive paste for an external electrode, a multilayer ceramic electronic component using the same, and a method of manufacturing the same. More particularly, there are provided a conductive paste for an external electrode including: a conductive metal powder; and a spherical glass frit having an average particle size of 0.05 to 3.0 ?m, a multilayer ceramic electronic component using the same, and a method of manufacturing the same. According to the present invention, a spherical glass frit having fine particles may be applied at the time of preparing the conductive paste for an external electrode, thereby realizing external electrodes having excellent compactness at a low temperature and suppressing the occurrence of cracks, and thus, a multilayer ceramic electronic component having excellent reliability can be implemented.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 13, 2013
    Inventors: Hye Seong KIM, Kyu Ha Lee, Byung Jun Jeon, Hyun Hee Gu, Jae Young Park, Da Young Choi, Eun Joo Choi, Myung Jun Park, Chang Hoon Kim
  • Publication number: 20130146342
    Abstract: The present invention relates to a pattern-forming composition used to form a conductive circuit pattern. The pattern-forming composition comprises Cu powders, a solder for electrically coupling the Cu powders, a polymer resin, a curing agent and a reductant. According to the present invention, a circuit pattern having superior conductivity can be formed at low cost.
    Type: Application
    Filed: September 12, 2012
    Publication date: June 13, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Yong Sung EOM, Kwang-Seong Choi, Hyun-cheol Bae, Jung Hyun Noh, Jong Tae Moon
  • Publication number: 20130140500
    Abstract: A paste composition for a solar cell electrode includes: a mixture of conductive powders, a glass frit, and an organic vehicle, and the mixture of conductive powders includes about 1 wt % to about 10 wt % of a first conductive powder having an average particle diameter (Dx) from about 1 nm to about 100 nm, and about 90 wt % to about 99 wt % of a second conductive powder having an average particle diameter (D50) from about 0.5 ?m to about 5 ?m.
    Type: Application
    Filed: August 23, 2012
    Publication date: June 6, 2013
    Inventors: Seok Hyun JUNG, Jung Chul LEE, Hyun Joo JUNG, Jae Ho KIM
  • Publication number: 20130140069
    Abstract: A conductive bonding material includes: copper particles coated with either gallium or gallium alloy; and either tin particles or tin alloy particles. An electronic component includes: a wiring board having electrode pads; a component mounted on the wiring board and having a plurality of electrodes; a sealing resin covering the component; and a plurality of terminals coupled to a wiring line in the wiring board to an external substrate, wherein the plurality of electrodes being coupled to the electrode pads through a conductive bonding material containing copper particles coated with either gallium or gallium alloy particles and either tin particles or tin alloy particles.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Fujitsu Limited
  • Publication number: 20130143119
    Abstract: An anode active material for a lithium rechargeable battery, the anode active material including: a base material which is alloyable with lithium and a metal nitride disposed on the base material.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 6, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventor: Samsung Elecronics Co., Ltd
  • Publication number: 20130134363
    Abstract: A paste composition for solar cell electrodes includes conductive particles, a glass frit, an organic binder and a solvent. The conductive particles include at least two groups of conductive particle having different particle diameter distributions. The conductive particle may have an average particle diameter (D50?) of about 1.85 ?m or less and a particle diameter (D90?) at 90% of the cumulative particle diameter distribution of about 3.10 ?m or less.
    Type: Application
    Filed: August 27, 2012
    Publication date: May 30, 2013
    Inventors: Dae Seop SONG, Young Wook CHOI, Sang Hyun YANG
  • Publication number: 20130133742
    Abstract: Provided are a paste for contacts and a solar cell using the same. The paste for contacts includes Al powder, glass frit, inorganic binder, and P-type oxidation containing I group elements.
    Type: Application
    Filed: August 9, 2011
    Publication date: May 30, 2013
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Sang Gon Kim, In Jae Lee, Soon Gil Kim, Jin Gyeong Park
  • Publication number: 20130133731
    Abstract: Methods for forming a resistive transparent buffer layer on a substrate are provided. The method can include depositing a resistive transparent buffer layer on a transparent conductive oxide layer on a substrate. The resistive transparent buffer layer can comprise a cadmium doped tin oxide that has an as-deposited stoichiometry where cadmium is present in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium. Zinc may also be provided in the resistive transparent buffer layer in certain embodiments. Additionally, thin film photovoltaic devices having such resistive transparent buffer layers are provided.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, George Theodore Dalakos, Anping Zhang, Allan Robert Northrup, Hong Piao, Laurie Le Tarte
  • Patent number: 8450732
    Abstract: Oxide semiconductors and thin film transistors (TFTs) including the same are provided. An oxide semiconductor includes Zn atoms and at least one of Ta and Y atoms added thereto. A thin film transistor (TFT) includes a channel including an oxide semiconductor including Zn atoms and at least one of Ta and Y atoms added thereto.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: May 28, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-jung Kim, Sang-wook Kim, Sun-il Kim
  • Publication number: 20130126798
    Abstract: The problems can be solved by using a method for producing a metal nanoparticle colloid, which comprises the steps of S1: mixing, into a nonpolar hydrocarbon oil having a vapor pressure of 10?3 Torr or less at room temperature, organic molecules having both a hydrophilic group and a lipophilic group and having in the end of the hydrophilic group an N, S, P, or O atom or having at the hydrophilic group a functional group of an NH2 group, an NH group, an SH group, a PO group, or an OH group to prepare a base liquid, and S2: placing the base liquid in a rotatable vacuum drum and charging a non-magnetic metal material in a crucible provided in the vacuum drum, and depositing the vapor of the non-magnetic metal material on the base liquid which adheres to the inner wall of the vacuum drum and rotates together with the rotating drum under conditions such that the inside of the vacuum drum is under a reduced pressure and the vacuum drum is rotated, and a task of the present invention is to provide a method for produ
    Type: Application
    Filed: May 31, 2011
    Publication date: May 23, 2013
    Inventor: Isao Nakatani
  • Publication number: 20130126796
    Abstract: Provided is a production method for a transparent conductive film wherein: a substrate has formed thereon a transparent conductive oxide, a conductive metal body, and a conductive polymer comprised in a transparent composite conductive layer; or else a substrate has formed thereon a transparent conductive oxide layer; a conductive metal body layer, and a conductive polymer layer comprised in a transparent composite conductive layer; or a substrate has formed thereon a transparent conductive oxide layer, and also a conductive metal body and a conductive polymer comprised in an organic-inorganic hybrid layer in a transparent composite conductive layer. Also provided is a transparent conductive film produced by means of the method.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 23, 2013
    Applicant: INKTEC CO., LTD.
    Inventors: Kwang Choon Chung, Hyun-Nam Cho, Ji Hoon Yoo, Yun-Ho Jung
  • Publication number: 20130126799
    Abstract: An electroconductive film including: electroconductive fibers, wherein the electroconductive film satisfies the following expression: 0.01<X/A<0.9, where X/A is an atomic ratio of X to A, where X is an amount of elements constituting the electroconductive fibers in the electroconductive film and X is an amount of halogen elements in the electroconductive film.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 23, 2013
    Applicant: FUJIFILM CORPORATION
    Inventor: FUJIFILM CORPORATION