Noble Metal (gold, Silver, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Platinum) Patents (Class 252/514)
  • Patent number: 10790497
    Abstract: A method for making lithium ion battery anode includes: scrapping a carbon nanotube array to obtain a carbon nanotube source, and adding the carbon nanotube source into water to form a carbon nanotube dispersion; providing a transition metal nitrate, adding the transition metal nitrate to the carbon nanotube dispersion to form a mixture of a carbon nanotube floccule and a transition metal nitrate solution; freeze-drying the mixture of the carbon nanotube floccule and the transition metal nitrate solution under vacuum condition to form a lithium ion batter anode preform; and, heat-treating the lithium ion battery anode preform to form the lithium ion battery anode.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 29, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Feng Luo, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10784383
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, a first oxide component, a second, non-oxide, magnesium-containing component, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor device substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and establish electrical contact between it and the substrate.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 22, 2020
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Lapkin K Cheng, Kurt Richard Mikeska
  • Patent number: 10770601
    Abstract: An electro-conductive paste which includes an electro-conductive powder, a multiple oxide containing tellurium oxide, and an organic vehicle. The electro-conductive paste contains 0.1 parts by weight to 10 parts by weight of the multiple oxide based on 100 parts by weight of the electro-conductive powder, and the content ratio of the tellurium oxide in 100% by weight of the multiple oxide as TeO2 is 3% by weight to 30% by weight.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: September 8, 2020
    Assignee: NAMICS CORPORATION
    Inventor: Seiya Konno
  • Patent number: 10748869
    Abstract: A method includes providing a die having a contact pad on a top surface and forming a conductive protective layer over the die and covering the contact pad. A molding compound is formed over the die and the conductive protective layer. The conductive protective layer is exposed using a laser drilling process. A redistribution layer (RDL) is formed over the die. The RDL is electrically connected to the contact pad through the conductive protective layer.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Tsei-Chung Fu, Jing-Cheng Lin
  • Patent number: 10726997
    Abstract: A multilayer capacitor includes a capacitor body having a first surface and a second surface opposing each other, and a third surface and a fourth surface opposing each other while being connected to the first surface and the second surface. The multilayer capacitor includes dielectric layers, and a first internal electrode and a second internal electrode disposed alternately with the dielectric layers interposed therebetween and being exposed to the first and second surfaces, respectively; and an amorphous dielectric film disposed on at least the third and fourth surfaces of the capacitor body. The amorphous dielectric film may be in direct contact with the first and second internal electrodes.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 28, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Young Wook Kim, Sung Min Cho, Seung Mo Lim, Jung Min Kim
  • Patent number: 10723902
    Abstract: A method of forming transparent electrodes using printable conductive ink containing conductive materials dispersed in a viscous liquid which upon printing and thermal treatment will vaporise fully leaving behind the conductive material only. The viscous liquid acts as a medium by which conductive material dispersions are made processable for use in various printing techniques, allowing conductive patterns to be printed onto substrates (e.g. plastics, glass, metals, ceramics).
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 28, 2020
    Assignee: DST Innovations Limited
    Inventors: Anthony Miles, Benjamin John Masheder
  • Patent number: 10720260
    Abstract: A paste for solar cell electrodes includes a conductive powder, a glass frit, and an organic vehicle. The glass frit includes bismuth (Bi), tellurium (Te), and antimony (Sb), and has a mole ratio of bismuth (Bi) to tellurium (Te) of about 1:1 to about 1:30.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: July 21, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Dong Suk Kim, JuHee Kim, Min Su Park, Young Ki Park, Sang Hyun Yang, Seok Hyun Jung
  • Patent number: 10717661
    Abstract: This invention falls within the scope of sanitary and hygiene, and of antiseptic formulations in particular, including disinfectants intended for disinfection of water in swimming-pools and other artificial reservoirs, for sanitary and hygienic treatment of rooms, household equipment, furniture, household appliances and industrial equipment, as well as for disinfection of rinse and waste water. An antiseptic formulation contains nanosized particles containing both silver and silver chloride. An antiseptic formulation can additionally contain at least one amphoteric surface-active substance. In order to perform disinfection of water, nanosized particles containing silver and silver chloride are added into water at least once.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: July 21, 2020
    Assignee: OBSHCHESTVO S ORGANICHENNOY OTVETSTVENNOSTYU “NANOBIOTEKH”
    Inventors: Albert Nikolaevich Denisov, Yuriy Andreevich Krutyakov, Aleksey Aleksandrovich Kudrinskiy, Pavel Mikhailovich Zherebin, Aleksey Igorevich Klimov
  • Patent number: 10702954
    Abstract: A conductive paste including (A) a silver powder, (B) a glass frit, (C) an organic binder and (D) a powder containing Cu and at least one metal element selected from the group consisting of V, Cr, Mn, Fe and Co. The powder (D) may thus contain Cu and Mn, Cu and Fe or Cu and Co. The conductive paste has a desirable electromigration resistance, solder heat resistance and adhesiveness to a substrate.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: July 7, 2020
    Assignee: NAMICS CORPORATION
    Inventor: Yoshiaki Yoshii
  • Patent number: 10690606
    Abstract: In order to provide a hydrogen sensor for measuring a hydrogen concentration with high sensitivity and excellent mass-productivity, the hydrogen sensor includes: at least a first quartz vibrator and a second quartz vibrator formed in a quartz plate; a hydrogen reaction catalytic layer including a platinum film of platinum black formed on both sides of the first quartz vibrator; and a hydrogen non-reactive layer formed in the second quartz vibrator, wherein a hydrogen concentration is measured by measuring a temperature of the first quartz vibrator increasing by heat of combustion caused by oxidization of hydrogen by the hydrogen reaction catalytic layer as a change of a natural frequency of the first quartz vibrator with respect to a natural frequency of the second quartz vibrator.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: June 23, 2020
    Assignee: KOA CORPORATION
    Inventors: Toshitsugu Ueda, Hiroshi Oigawa
  • Patent number: 10679764
    Abstract: A method of manufacturing a metal nanowire electrode, the method including: forming a plurality of metal nanowires on a preliminary substrate; forming a metal nanowire layer by chemically reducing the plurality of metal nanowires; separating the metal nanowire layer from the preliminary substrate; transferring the separated metal nanowire layer to a surface of a carrier substrate, wherein the surface of the carrier substrate comprises a hydrophobic treatment; forming an adhesive pattern on a target substrate; and forming the metal nanowire electrode by transferring the separated metal nanowire layer to the target substrate.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: June 9, 2020
    Assignees: SAMSUNG DISPLAY CO., LTD., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae Ho Ahn, Sang Youn Han, Jung Yong Lee
  • Patent number: 10665732
    Abstract: Disclosed are a paste composition for forming a solar cell electrode, a solar cell electrode, and a solar cell. The paste composition includes a conductive powder, an organic vehicle and a glass frit, wherein the glass frit contains 0.1-20 wt % of PbO, 30-60 wt % of Bi2O3, 1.0-15 wt % of TeO2 and 8-30 wt % of WO3, and a mass ratio of TeO2 to WO3 is 0.5:1 to 1.75:1. The solar cell electrode formed of the paste composition of the present invention has excellent adhesive strength with respect to a soldering ribbon and minimizes serial resistance (Rs), thus provides high conversion efficiency.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: May 26, 2020
    Assignee: DK Electronic Materials, Inc.
    Inventor: Young-Wook Choi
  • Patent number: 10615144
    Abstract: Provided are: a conductive paste in which sinterability of silver particles the conductive paste can be easily controlled by using silver particles having predetermined crystal transformation characteristics defined by an XRD analysis, and after a sintering treatment, excellent electrical conductivity and thermal conductivity can be stably obtained; and a die bonding method using the conductive paste. Disclosed is a conductive paste which includes silver particles having a volume average particle size of 0.1 to 30 ?m as a sinterable conductive material, and a dispersing medium for making a paste-like form, and in which when the integrated intensity of the peak at 2?=38°±0.2° in the X-ray diffraction chart obtainable by an XRD analysis before a sintering treatment of the silver particles is designated as S1, and the integrated intensity of the peak at 2?=38°±0.2° in the X-ray diffraction chart obtainable by an XRD analysis after a sintering treatment (250° C.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 7, 2020
    Assignee: KAKEN TECH CO., LTD.
    Inventors: Shigeo Hori, Hirohiko Furui, Akira Fujita
  • Patent number: 10580910
    Abstract: There is provided a silver-coated copper powder which can improve the conversion efficiency of a solar cell in comparison with conventional silver-coated copper powders when it is used in an electrically conductive paste used for forming the busbar electrodes of the solar cell, the silver-coated copper powder being capable of producing a solar cell having a high conversion efficiency which is the same degree as that of a solar cell using silver powder, and a method for producing the same.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: March 3, 2020
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Hiroshi Kamiga, Noriaki Nogami, Aiko Hirata
  • Patent number: 10570054
    Abstract: A composition for solar cell electrodes includes a conductive powder, a glass frit, and an organic vehicle. The glass frit contains about 20 mol % to about 40 mol % of an alkali metal, about 20 mol % to about 30 mol % of zinc (Zn), and about 7 mol % to about 20 mol % of magnesium (Mg) in terms of oxide content.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: February 25, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ryun Min Heo, Young Kwon Koo, Sang Hoon Yoo, Jung Chul Lee, Ye Jin Kim, Chul Kyu Kim, Sung Eun Lee, Ji Seon Lee
  • Patent number: 10570561
    Abstract: The present invention relates to a sizing agent for carbon fibers, a carbon fiber with improved interfacial adhesion, a polymerization reaction type carbon fiber-reinforced polymer composite material using the same, and a production method therefor and, more specifically, to a sizing agent for carbon fibers, comprising a phenoxy resin and a block isocyanate compound prepared through a reaction of ?-caprolactam with one of two isocyanate groups of a diisocyanate compound, and the production of a carbon fiber with improved interfacial adhesion using the same, a polymerization reaction type carbon fiber-reinforced polymer composite material using the carbon fiber with improved interfacial adhesion, and a production method therefor.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: February 25, 2020
    Assignee: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Sangwoo Kim, Jin Woo Yi, Dong Gi Seong, Moon-Kwang Um, Kangeun Lee, Taehoon Park, Youngseok Oh
  • Patent number: 10566471
    Abstract: A composition for solar cell electrodes includes a silver (Ag) powder, a glass frit containing silver (Ag), tellurium (Te) and zinc (Zn), and an organic vehicle, wherein the glass frit has a mole ratio of Ag to Te ranging from about 1:0.1 to about 1:50 and a mole ratio of Ag to Zn ranging from about 1:0.1 to about 1:40.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: February 18, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang Hee Park, Hyun Jin Koo, Dae Sub Song
  • Patent number: 10539807
    Abstract: An apparatus, including: a lens layer comprising a plurality of lenticular lenses, wherein the plurality of lenticular lenses comprise a predetermined focal length, an image layer comprising printed media; wherein the image layer is disposed behind the lens layer; and a pane layer comprising at least one illumination source; wherein the at least one illumination source illuminates the lens layer, image layer, and pane layer, generating a visualization of a three-dimensional image of the printed media. Other embodiments are claimed and described herein.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: January 21, 2020
    Assignee: SOLIDDD CORP.
    Inventor: Neal Weinstock
  • Patent number: 10519042
    Abstract: A method of making stable aqueous dispersions and concentrates of cobalt oxide nanoparticles is described, wherein a reaction mixture comprising cobalt(II) ion, a carboxylic acid, a base, an oxidant and water is formed, and in which cobalt oxide nanoparticles are formed. Cobalt oxide nanoparticles ranging in average crystallite size from about 4 nm to 15 nm are described. The cobalt oxide nanoparticles may be isolated and redispersed to form stable, homogeneous, aqueous dispersions of cobalt oxide nanoparticles containing from about 1 to about 20 weight percent cobalt oxide.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: December 31, 2019
    Assignee: Cerion, LLC
    Inventor: David Wallace Sandford
  • Patent number: 10502414
    Abstract: In accordance with one embodiment of the present disclosure, an oxygen carrying material may include a primary active mass, a primary support material, and a secondary support material. The oxygen carrying material may include about 20% to about 70% by weight of the primary active mass, the primary active mass including a composition having a metal or metal oxide selected from the group consisting of Fe, Co, Ni, Cu, Mo, Mn, Sn, Ru, Rh, and combinations thereof. The oxygen carrying material may include about 5% to about 70% by weight of a primary support material. The oxygen carrying material may include about 1% to about 35% by mass of a secondary support material.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 10, 2019
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Liang-Shih Fan, Deepak Sridhar, Fanxing Li
  • Patent number: 10505160
    Abstract: A pre-cut glass body is employed as a separator between an anode current collector and a cathode current collector of a micro-battery. The use of a pre-cut glass body in micro-battery applications provides excellent insulation for the micro-battery and can also result in enhanced battery reliability and lifetime.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: December 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Qianwen Chen, Yang Liu, Li-Wen Hung
  • Patent number: 10494720
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 3, 2019
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Patent number: 10486235
    Abstract: The present invention provides a method for producing silver particles, including the steps of: mixing a thermally decomposable silver compound and an amine compound to prepare a silver-amine complex as a precursor; and heating the silver-amine complex at a heating temperature equal to or higher than the decomposition temperature of the silver-amine complex to precipitate silver particles, the silver compound being silver carbonate, the amine compound being terminated with a primary amino group on at least one end and containing a predetermined hydrocarbon group R with a carbon number of 4 to 10. In the method of the present invention, silver particles with the particle size controlled to fall within the range of 20 nm to 200 nm in terms of an average particle size can be produced.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: November 26, 2019
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yuichi Makita, Yuusuke Ohshima, Hidekazu Matsuda, Junichi Taniuchi, Noriaki Nakamura, Hitoshi Kubo
  • Patent number: 10465081
    Abstract: Disclosed herein are purified surfactant formulations including purified short-chain fluorosurfactant and iodide additive and a two-part coating kit having the same and a silver nanowire formulation.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: November 5, 2019
    Assignee: Cambrios Film Solutions Corporation
    Inventors: Teresa Ramos, Lin Zhang, Lily Pay
  • Patent number: 10446518
    Abstract: An objective of the present invention is to provide a sinterable bonding material capable of providing a bonded article having a long-term reliability. The present invention relates to a sinterable bonding material comprising a silver filler and resin particles, wherein the silver filler comprises a flake-shaped filler having an arithmetic average roughness (Ra) of 10 nm or less; and the resin particles have an elastic modulus (E) of 10 GPa or less, and a heat decomposition temperature of 200° C. or more. The sintered product of the sinterable bonding material of the present invention is excellent in bonding strength and heat-release characteristics, and has an improved stress relaxation ability.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 15, 2019
    Assignees: HENKEL AG & CO. KGAA, HENKEL IP & HOLDING GMBH
    Inventors: Hajime Inoue, Tadashi Takano
  • Patent number: 10418180
    Abstract: In an electronic component, a first outer electrode includes a first conductive layer provided on a first end surface. A second outer electrode includes a second conductive layer provided on a second end surface. A first inner electrode passes through the first conductive layer. A second inner electrode passes through the second conductive layer.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: September 17, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Tomohiro Kageyama, Tetsuo Kawakami, Manabu Sakai, Takashi Ohara, Takahiro Hirao, Ryuki Kakuta
  • Patent number: 10403769
    Abstract: The invention relates to an electro-conductive paste comprising Ag nano-particles and spherical Ag micro-particles in the preparation of electrodes, particularly in electrical devices, particularly in temperature sensitive electrical devices or solar cells, particularly in HIT (Heterojunction with Intrinsic Thin-layer) solar cells. In particular, the invention relates to a paste, a process for preparing a paste, a precursor, a process for preparing an electrical device and a module comprising electrical devices. The invention relates to a paste comprising the following paste constituents: a. Ag particles, b. a polymer system; wherein the Ag particles have a multi-modal distribution of particle diameter with at least a first maximum in the range from about 1 nm to about less than 1 ?m and at least a further maximum in the range from about 1 ?m to about less than 1 mm; wherein the difference between the first and the further maximum is at least about 0.3 ?m; wherein at least 50 wt.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: September 3, 2019
    Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KG
    Inventors: Christian Muschelknautz, Matthias Horteis, Isao Tanaka, Klaus Kunze, Roupen Keusseyan, Toshinori Wada, Aziz S. Shaikh
  • Patent number: 10381167
    Abstract: Provided herein is a capacitor, and method for forming a capacitor, comprising an anode, a dielectric over the anode; a cathode over the dielectric; and the cathode comprises core shell particles.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 13, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, John Joseph Ols
  • Patent number: 10374015
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: August 6, 2019
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yuta Hasegawa, Nobuyuki Matsuzawa, Yoshiaki Obana, Ichiro Takemura, Norikazu Nakayama, Masami Shimokawa, Tetsuji Yamaguchi, Iwao Yagi, Hideaki Mogi
  • Patent number: 10351677
    Abstract: A graphene-containing composite material comprises components of a composite functional material with a double-conductive channel and a polymer matrix. The composite functional material with a double-conductive channel is sulfonated graphene surface grafted conductive polymer poly-3,4-(ethylenedioxythiophene). The composite functional material with a double-conductive channel and the graphene-containing composite material can be used for preparing a piezoresistance response material or an antistatic or electromagnetic shielding material and the like, and have excellent piezoresistance response, piezoresistance repeatability and electromagnetic shielding effect. The present invention is simple and easy to operate, can be used in large scale production, has excellent piezoresistance performance and very sensitive piezoresistance response, with the percolation threshold being only 0.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: July 16, 2019
    Assignee: SHANGHAI UNIVERSITY OF ENGINEERING SCIENCE
    Inventors: Chao Zhou, Sihao Chen, Jianzhong Lou
  • Patent number: 10329445
    Abstract: A method for preparing nano-silver powder dispersible in environment friendly weak solvents, and an electrically conductive ink comprising the nano-silver powder are disclosed. The disclosure describes a disperser dissoluble in water and weak solvents and an alcohol amine as reducing agent to prepare mono-dispersed nano-silver, and employs ultrafiltration for purification and spray drying process to obtain a nano-silver powder dispersible in weak solvents, and thereby obtain an eco-solvent nano-silver electrically conductive ink. The electrically conductive ink in accordance with the disclosure has advantages of high safety, low volatility, low toxicity, high flash point, resistant to ultraviolet radiation and moisture etc., and can be used with uncoated bearing substrates, and is suitable for use in outdoor environments.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: June 25, 2019
    Assignee: Institute Of Chemistry, Chinese Academy of Sciences
    Inventors: Xingye Zhang, Yanlin Song
  • Patent number: 10329424
    Abstract: The silicone composition is one that contains liquid silicone, at least one insoluble functionalizing filler, such as a thermally or electrically conductive filler, and a non-liquid anti-thickening or non-thickening anti-settling material, such as a cellulose compound or polysaccharide. In a system that contains liquid silicone and insoluble functionalizing filler(s), a polysaccharide functions as an anti-thickening or non-thickening anti-settling material, providing a low-viscosity and filler-rich silicone composition.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: June 25, 2019
    Assignee: POLYMATECH JAPAN CO., LTD.
    Inventors: Yasuyoshi Watanabe, Gaku Kitada
  • Patent number: 10329156
    Abstract: The present describes an oxygen functionalized nanoflake (O-GNF), a stable nanofluid in which the graphene nanoflakes remain dispersed or in suspension free of surfactants, and the method of making the oxygen-functionalized nanoflake. The oxygen-functionalized graphene nanoflake (O-GNF and/or O—N-GNF) comprises a single-crystal graphene nanoflake of 5-20 atomic planes comprising a surface oxygen-functionalization, wherein the O-GNF comprise a degree of oxygen functionalization from about 6 to about 25 at. % oxygen by weight of the GNF with a preferred oxygen functionalization of about 14 at. % oxygen.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: June 25, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Jean-Luc Meunier, Dimitrios Berk, Ulrich Legrand, Norma-Yadira Mendoza Gonzalez, Pierre-Alexandre Pascone
  • Patent number: 10315950
    Abstract: A composition for solar cell electrodes including a conductive powder, a glass frit, and an organic vehicle. The glass frit contains tellurium (Te), sodium (Na), zinc (Zn), and at least one of lead (Pb) and bismuth (Bi). A molar ratio of the sum of lead and bismuth to zinc ranges from about 1 to about 20. A molar ratio of tellurium to sodium ranges from about 1 to about 15.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: June 11, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae Hwi Cho, Dong Suk Kim, Seok Hyun Jung
  • Patent number: 10301496
    Abstract: Provided herein are conductive ink compositions having a good balance between adhesion to substrate, stability of submicron-sized particles, the ability to be sintered at relatively low temperatures, and good electrical conductivity. In one aspect, there are provided conductive networks prepared from compositions according to the present invention. In certain aspects, such conductive networks are suitable for use in touch panel displays. In certain aspects, the invention relates to methods for adhering submicron silver particles to a non-metallic substrate. In certain aspects, the invention relates to methods for improving the adhesion of a submicron silver-filled composition to a non-metallic substrate.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 28, 2019
    Assignees: HENKEL IP & HOLDING GMBH, HENKEL AG & CO. KGAA
    Inventors: Bo Xia, Rudolf W. Oldenzijl, Jianping Chen, Gunther Dreezen
  • Patent number: 10273158
    Abstract: A method for manufacturing a graphene composite film includes preparing a zeolite suspension containing zeolite nanocrystals with a concentration of 50-100 ppm and with a particle size of 50-80 nm. The zeolite suspension has a pH value of 11-13. A graphene oxide suspension containing graphene oxide with a concentration of 50-200 ppm is mixed with the zeolite suspension to form a composite solution. The composite solution is transferred into a 15° C. water bath when a color of the composite solution turns from brownish-yellow into deep brown. A surfactant is added into the composite solution in the 15° C. water bath. The composite solution is then sonicated for 5-30 minutes and removed out of the 15° C. water bath, with the color of the composite solution turning from deep brown into black. The composite solution is further processed to form a graphene composite film having not more than 5 layers.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 30, 2019
    Assignee: I-Shou University
    Inventor: Chiung-Fang Lin
  • Patent number: 10272490
    Abstract: A silver powder, wherein the silver powder satisfies D50-IPA>D50-W, where in measurement of a volume-based particle size distribution of the silver powder by a laser diffraction particle size distribution analysis, D50-IPA (?m) is a cumulative 50% point of particle diameter of the silver powder when isopropyl alcohol (IPA) is used as a measurement solvent for dispersing the silver powder, and D50-W (?m) is a cumulative 50% point of particle diameter of the silver powder when water is used as a measurement solvent for dispersing the silver powder, and wherein a phosphorus content in the silver powder is 0.01% by mass or more but 0.3% by mass or less.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 30, 2019
    Assignee: DOWA Electronics Materials Co., Ltd.
    Inventors: Naoki Tahara, Noriaki Nogami, Hiroshi Kamiga
  • Patent number: 10224128
    Abstract: A flexible flat cable and a method of manufacturing the flexible flat cable, may include an insulating film forming an external appearance of the flexible flat cable; a conductor disposed inside the insulating film; and an adhesion layer configured to bond the insulating film to the conductor, wherein the adhesion layer contains metal particles, and when a crack occurs in the conductor, the metal particles connect the conductor in which the crack occurs.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 5, 2019
    Assignee: Hyundai Motor Company
    Inventor: Hoseung Lee
  • Patent number: 10217870
    Abstract: A highly reliable semiconductor device including an oxide semiconductor is provided. Oxygen is supplied from a base insulating layer provided below an oxide semiconductor layer to a channel formation region, whereby oxygen vacancies which might be generated in the channel formation region are filled. Further, a protective insulating layer containing a small amount of hydrogen and functioning as a barrier layer having a low permeability to oxygen is formed over the gate electrode layer so as to cover side surfaces of an oxide layer and a gate insulating layer that are provided over the oxide semiconductor layer, whereby release of oxygen from the gate insulating layer and/or the oxide layer is prevented and generation of oxygen vacancies in a channel formation region is prevented.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sachiaki Tezuka, Hideomi Suzawa, Akihisa Shimomura, Tetsuhiro Tanaka
  • Patent number: 10193005
    Abstract: The invention discloses an all-aluminum back surface field aluminum paste for a crystalline silicon solar cell and a preparation method thereof. The all-aluminum back surface field paste mainly comprises 60-70% aluminum powder, 5-10% nanometer metal oily solution, 1-10% inorganic binder, 10-20% organic binder, 5-30% organic solvent and 1-5% accessory ingredient. According to the aluminum paste prepared by the present invention, the back surface preparing process of an all-aluminum back surface field can be implemented preferably; moreover, the paste has great adhesive force, is easy to be better adhered to silver paste printed afterwards; meanwhile, the paste can be in good contact with a silicon chip through the nanometer metal oily solution added into the paste, the aluminum back surface is prevented from falling off, and good ohm contact can be formed, so that the photoelectric conversion efficiency is increased, and the economic benefits of enterprises are increased.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: January 29, 2019
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventor: Peng Zhu
  • Patent number: 10144095
    Abstract: A mixture contains metal oxide particles that are coated with an organic compound. The organic compound is represented by Formula I: R1—COR2??(I), wherein R1 is an aliphatic residue having 8 to 32 carbon atoms, wherein R2 is either —OM or comprises the moiety —X—R3, wherein X is selected from the group consisting of O, S, N—R4, wherein R4 is a hydrogen atom or an aliphatic residue, wherein R3 is a hydrogen atom or an aliphatic residue, and wherein M is a cation. The mixture may be used to connect components and/or to produce a module. A method for producing the mixture is also provided.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: December 4, 2018
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Michael Schäfer, Wolfgang Schmitt, Susanne Klaudia Duch
  • Patent number: 10144066
    Abstract: A method for producing silver nanoparticles according to the present invention includes the steps of: mixing an amine mixture and a silver compound to yield a complex compound; and heating and decomposing the complex compound to form silver nanoparticles. The amine mixture contains: a primary amine (A) having 8 or more carbon atoms and a melting point of 20° C. or lower; a diamine (B) having a primary amino group, a tertiary amino group, 4 or more carbon atoms, and a melting point of 20° C. or lower; and a cis-unsaturated primary amine (C) having 12 or more carbon atoms and a melting point of 30° C. or lower.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: December 4, 2018
    Assignee: NATIONAL UNIVERSITY CORPORATION YAMAGATA UNIVERSITY
    Inventors: Daisuke Kumaki, Shizuo Tokito
  • Patent number: 10141283
    Abstract: An objective of the present invention is to provide a sinterable bonding material excellent in sinterability. The present invention relates to a sinterable bonding material comprising a silver filler and an organic base compound as a sintering promoter.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 27, 2018
    Assignees: Henkel AG & Co. KGaA, Henkel IP & Holding GmbH
    Inventors: Hajime Inoue, Tadashi Takano
  • Patent number: 10130995
    Abstract: A method for manufacturing metal powder comprising: providing a basic metal salt solution; contacting the basic metal salt solution with a reducing agent to precipitate metal powder therefrom; and recovering precipitated metal powder from the solvent.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: November 20, 2018
    Assignee: Alpha Assembly Solutions Inc.
    Inventors: Nirmalya Kumar Chaki, Poulami Sengupta Roy, Siuli Sarkar, Sutapa Mukherjee
  • Patent number: 10115836
    Abstract: An inorganic reaction system comprising a lead-bismuth-tellurium-silicate composition of Formula (I): Pba—Bib—Tec—Sig-Md-Oe, wherein 0<a, b, c, d, or g?1, 0?d, e?1, and the sum of a, b, c, d and g is 1, 0<a?0.05, 0.2<b?0.95, 0<c?0.5, 0<d?0.2, 0<g?0.5, a:b is between about 0.1:99.9 to about 5:95, b:c is between about 50:50 to 99:1, a:c is between about 1:99 to about 10:90, b:g is between about 50:50 to about 98:2, M is one or more elements, and e is a number sufficient to balance the Pb, Bi, Te, Si, and M components.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 30, 2018
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Lei Wang, Cuiwen Guo, Raymond M. Cosimano, Li Yan, Brenton Yancey
  • Patent number: 10109606
    Abstract: A remapped extracted die is provided. The remapped extracted die includes an extracted die removed from a previous integrated circuit package. The extracted die includes a plurality of original bond pads having locations that do not correspond to desired pin assignments of a new package base and an interposer, bonded to the extracted die. The interposer includes first bond pads configured to receive new bond wires from the plurality of original bond pads, and second bond pads corresponding to desired pin assignments of the new package base, each individually electrically coupled to one of the first bond pads and configured to receive new bond wires from package leads or downbonds of the new package base.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: October 23, 2018
    Assignee: Global Circuit Innovations, Inc.
    Inventor: Erick Merle Spory
  • Patent number: 10100213
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: October 16, 2018
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Authur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Patent number: 10096727
    Abstract: A method of manufacturing a finger electrode for a solar cell, the method including printing a conductive paste on a front surface of a substrate using a printing mask having an opening rate of about 65% or more and baking the printed conductive paste. The conductive paste includes a conductive powder, a glass frit including about 30 mol % to about 60 mol % of tellurium oxide and about 0.1 mol % to about 10 mol % of tungsten oxide, and an organic vehicle.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 9, 2018
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok Hyun Jung, Min Jae Kim, Sang Hyun Yang, Hyun Jin Koo, Dong Suk Kim, Ju Hee Kim, Young Ki Park, Min Young Lee
  • Patent number: 10072419
    Abstract: A scrim reinforced roofing membrane comprising a coated scrim layer having a first side and a second side and a first polyvinyl chloride layer on the first side of the coated scrim layer. The coated scrim layer contains a scrim fabric which contains a plurality of warp yarns in a first direction and a plurality of weft yarns in a second direction approximately perpendicular to the first direction. The warp yarns cross the weft yarns at crossing points. The scrim fabric has a polyvinyl acetate coating which is located along the length of the warp yarns and the weft yarns and between the warp and weft yarns at the crossing points. The coated scrim is at least partially embedded in the first polyvinyl chloride layer.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 11, 2018
    Assignee: Milliken & Company
    Inventors: David W. Martin, James D. Pinson
  • Patent number: 10041207
    Abstract: A scrim reinforced roofing membrane comprising a coated scrim layer having a first side and a second side and a first TPO layer on the first side of the coated scrim layer. The coated scrim layer contains a scrim fabric which contains a plurality of warp yarns in a first direction and a plurality of weft yarns in a second direction approximately perpendicular to the first direction. The warp yarns cross the weft yarns at crossing points. The scrim fabric has a polyvinyl acetate coating which is located along the length of the warp yarns and the weft yarns and between the warp and weft yarns at the crossing points. The coated scrim is at least partially embedded in the first TPO layer.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: August 7, 2018
    Assignee: Milliken & Company
    Inventor: David W. Martin