Iron Group Metal (iron, Cobalt, Nickel) Patents (Class 252/513)
  • Patent number: 8440110
    Abstract: Disclosed is a method for producing a metal particle dispersion wherein a metal compound is reduced by using carbodihydrazide represented by the formula (1) below or a polybasic acid polyhydrazide represented by the formula (2) below (wherein R represents an n-valent polybasic acid residue) in a liquid medium. By reducing the metal compound in the presence of a compound having a function preventing discoloration of the metal, there can be obtained a metal particle dispersion having excellent discoloration preventing properties. Metal particles produced by such methods have a uniform particle diameter and are excellent in dispersion stability. By using a conductive resin composition or conductive ink containing a metal particle dispersion obtained by such production methods, there can be formed a conductive coating film, such as a conductive circuit or an electromagnetic layer, having good characteristics.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: May 14, 2013
    Assignee: Toyo Ink Mfg Co., Ltd.
    Inventors: Kaori Sakaguchi, Kinya Shiraishi
  • Patent number: 8435424
    Abstract: A solvent-free conductive paste composition including (a) a binder, (b) an initiator, (c) a glass powder and (d) a conductive powder; and a solar cell element having an electrode or wire made by coating and sintering the conductive paste composition coated on a silicon semiconductor substrate. The conductive paste composition is solvent-free so that it will not cause environmental problems with respect to the evaporation of solvents and will not be easy to spread out. The conductive paste composition facilitates the development of fine wire and high aspect ratio designs and can efficiently enhance the photoelectric conversion efficiency.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 7, 2013
    Assignee: Eternal Chemical Co., Ltd.
    Inventor: Tsai-Fa Hsu
  • Publication number: 20130109123
    Abstract: Provided is a diffusing agent composition used for the printing of a dopant component on a semiconductor substrate, the diffusing agent composition including a silicon compound (A), a dopant component (B), and a non-dopant metal component (C). Among these components, the content of Na contained as the non-dopant metal component (C) is less than 60 ppb relative to the total amount of the composition.
    Type: Application
    Filed: July 6, 2011
    Publication date: May 2, 2013
    Applicant: TOKYO OHKA KOGYO CO., LTD.
    Inventors: Toshiro Morita, Takashi Kamizono, Tadashi Miyagi
  • Publication number: 20130105841
    Abstract: A light-reflective conductive particle for an anisotropic conductive adhesive used for connecting a light-emitting element to a wiring board by anisotropic conductive connection includes a core particle covered with a metal material and a light reflecting layer formed of a light-reflective inorganic particle having a refractive index of 1.52 or greater on the surface of the core particle. Examples of the light-reflective inorganic particles having a refractive index of 1.52 or greater include a titanium oxide particle, a zinc oxide particle, and an aluminum oxide particle. The coverage of the light reflecting layer on the surface of the core particle is 70% or more.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 2, 2013
    Applicant: SONY CHEMICAL & INFORMATION DEVICE CORPORATION
    Inventors: Hidetsugu Namiki, Shiyuki Kanisawa, Hideaki Umakoshi
  • Publication number: 20130108931
    Abstract: An embodiment of this invention is directed to a positive electrode composition that includes a first group of granules that contain about 30% by volume of at least one metal or electrically-conductive carbon, or combinations thereof; and a second group of granules that contain at least about 60% by volume of a metallic salt, and less than about 30% by volume of a metal. A porous structure based on a material that is resistant to non-passivating oxidation and alkaline electrolysis may be used in place of the second group of granules. An article that includes a positive electrode based on such a composition is also described, as well as related energy storage devices.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard Louis Hart, Michael Alan Vallance, Karthick Vilapakkam Gourishankar, Hari Nadathur Seshadri, Anbarasan Viswanathan
  • Publication number: 20130108945
    Abstract: The invention provides stainless steel for conductive members which exhibits excellent electrical conductivity (namely, low contact electric resistance), and a method for producing such stainless steel. In an exemplary embodiment of the method, stainless steel is dipped into a solution containing fluoride ions at a rate of dissolution of not less than 0.002 g/(m2·s) to less than 0.50 g/(m2·s), thereby incorporating fluorine into a passive film on the steel surface.
    Type: Application
    Filed: January 20, 2010
    Publication date: May 2, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Tomohiro Ishii, Shinsuke Ide, Shin Ishikawa, Yasushi Kato, Takumi Ujiro
  • Publication number: 20130104973
    Abstract: A conductive paste includes a conductive powder, a metallic glass, an inorganic additive for fire-through, and an organic vehicle, and an electronic device and a solar cell including an electrode formed using the conductive paste.
    Type: Application
    Filed: September 6, 2012
    Publication date: May 2, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang Soo JEE, Suk Jun KIM, Haeng Deog KOH, Yun Hyuk CHOI, Eun Sung LEE
  • Publication number: 20130098431
    Abstract: An electroconductive paste composition, particularly for solar cells, contains silver particles, glass frit, an organic vehicle, and a nanoparticle additive. The additive contains electrically conductive metal, metal alloy, and/or metal silicide nanoparticles, such as nickel, chromium, cobalt, titanium, or alloys, silicides, and mixtures thereof. When used to form an electrical contact on a solar cell, such a paste provides for decreased contact resistance between the paste and the substrate and improved efficiency of the solar cell.
    Type: Application
    Filed: October 25, 2012
    Publication date: April 25, 2013
    Applicant: Heraeus Precious Metals North America Conshohocken LLC
    Inventor: Heraeus Precious Metals North America Conshoh
  • Patent number: 8419978
    Abstract: An anisotropic conductive film (ACF) composition includes a binder having a thermoplastic resin and a styrene-acrylonitrile (SAN) copolymer resin, a curing composition, and conductive particles.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: April 16, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: Hyoun Young Kim, Chang Bum Chung, Jeong Ku Kang, Jung Sik Choi
  • Publication number: 20130087373
    Abstract: In an anisotropic conductive adhesive including a magnetic powder such as nickel-coated resin particles used as conductive particles, the conductive particles are present in an insulating adhesive composition without being aggregated. The magnetic powder used as the conductive particles is at least partially composed of a magnetic material. In this case, demagnetization has been performed on the conductive particles in a powder form that have not been dispersed in the insulating adhesive composition, the conductive particles in a paste obtained by dispersing the conductive particles in the insulating adhesive composition, or the conductive particles in a film formed from the paste, before establishment of an anisotropic conductive connection using the anisotropic conductive adhesive.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 11, 2013
    Applicant: DEXERIALS CORPORATION
    Inventors: Jun Sakamoto, Misao Konishi
  • Publication number: 20130089707
    Abstract: Provided are construction material granules. In one embodiment, the granules include a core enclosed by a layer comprising a conductive material and a layer comprising a dielectric material. Also provided are related methods of constructing such materials.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 11, 2013
    Applicant: Certainteed Corporation
    Inventor: Regine Faure
  • Publication number: 20130084498
    Abstract: The present invention relates to a negative electrode active material including an Si—Sn—Fe—Cu based alloy, in which an Si phase has an area ratio in a range of from 35 to 80% in the entire negative electrode active material, the Si phase is dispersed in a matrix phase, the matrix phase contains an Si—Fe compound phase crystallized around the Si phase and further contains an Sn—Cu compound phase crystallized to surround the Si phase and the Si—Fe compound phase, the Si—Fe compound phase is crystallized in a ratio of from 35 to 90% in terms of an area ratio in the entire matrix phase, and the matrix phase further contains an Sn phase unavoidably crystallized in the matrix phase in a ratio of 15% or less in terms of an area ratio in the entire matrix phase,
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Inventors: Yuta Kimura, Yuichiro Tago, Kozo Ozaki
  • Publication number: 20130082215
    Abstract: Free radically crosslinked, electrically conductive compositions exhibiting a highly stable volume resistivity comprise an olefin multiblock copolymer (OBC) having a high, e.g., greater than 20 mole percent comonomer content, e.g., butylene or octene, and carbon black. These compositions exhibit a highly stable volume resistivity relative to a composition similar in essentially all aspects save that the high comonomer OBC is replaced with a low comonomer OBC of similar density and melt index.
    Type: Application
    Filed: May 26, 2011
    Publication date: April 4, 2013
    Inventors: Mohamed Esseghir, Gary R. Marchand
  • Publication number: 20130076572
    Abstract: The ink for printing an antenna pattern for a mobile phone according to an embodiment of the present invention includes a mixture of one of silver (Ag) powder, nickel (Ni) powder, copper (Cu) powder, and gold (Au) powder, liquid acrylonitrile, liquid polystyrene, liquid butadiene, and methyl ethyl ketone (MEK) as a diluent. The present invention does not include a plating process, and thus allows a significant improvement in productivity.
    Type: Application
    Filed: July 5, 2010
    Publication date: March 28, 2013
    Applicants: MOBITECH CORP, YEN AN TECHNOLOGY CO., LTD
    Inventors: Kyung-Sook Lee, Se-Yong Park, Chul-An Lim, Byoung-Nam Kim
  • Publication number: 20130078759
    Abstract: The composition for forming an n-type diffusion layer in accordance with the present invention contains a glass powder and a dispersion medium, in which the glass powder includes an donor element and a total amount of the life time killer element in the glass powder is 1000 ppm or less. An n-type diffusion layer and a photovoltaic cell having an n-type diffusion layer are prepared by applying the composition for forming an n-type diffusion layer, followed by a thermal diffusion treatment.
    Type: Application
    Filed: April 22, 2011
    Publication date: March 28, 2013
    Inventors: Yoichi Machii, Masato Yoshida, Takeshi Nojiri, Kaoru Okaniwa, Mitsunori Iwamuro, Shuichiro Adachi, Tetsuya Sato, Keiko Kizawa
  • Publication number: 20130078414
    Abstract: The present invention provides a structure constructed of carbon fiber that is compatible with Magnetic Resonance imaging and other radiofrequency technologies. The structure is comprised of carbon fiber elements as well as insulating elements that are substantially x-ray translucent (radiolucent). These elements are arranged in such a way that the structure can be used in modalities such as Magnetic Resonance imaging where carbon fibers typically cannot be used due to image distortion and localized heating. At the same time, the structures are designed to maintain radiolucency that is significantly homogeneous.
    Type: Application
    Filed: September 28, 2012
    Publication date: March 28, 2013
    Applicant: QFIX SYSTEMS, LLC
    Inventors: Daniel D. COPPENS, Nicholas COLLURA
  • Patent number: 8404160
    Abstract: A metallic ink including a vehicle, a multiplicity of copper nanoparticles, and an alcohol. The conductive metallic ink may be deposited on a substrate by methods including inkjet printing and draw-down printing. The ink may be pre-cured and cured to form a conductor on the substrate.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: March 26, 2013
    Assignees: Applied Nanotech Holdings, Inc., Ishihara Chemical Co., Ltd.
    Inventors: Yunjun Li, David Max Roundhill, Xueping Li, Peter B. Laxton, Hidetoshi Arimura, Zvi Yaniv
  • Publication number: 20130071968
    Abstract: The composition for forming a composition for forming a p-type diffusion layer, the composition containing a glass powder and a dispersion medium, in which the glass powder includes an acceptor element and a total amount of a life time killer element in the glass powder is 1000 ppm or less. A p-type diffusion layer and a photovoltaic cell having a p-type diffusion layer are prepared by applying the composition for forming a p-type diffusion layer, followed by a thermal diffusion treatment.
    Type: Application
    Filed: April 22, 2011
    Publication date: March 21, 2013
    Inventors: Yoichi Machii, Masato Yoshida, Takeshi Nojiri, Kaoru Okaniwa, Mitsunori Iwamuro, Shuichiro Adachi, Tetsuya Sato, Keiko Kizawa
  • Publication number: 20130062580
    Abstract: A composition that contains nickel oxyhydroxide, nickel metal, ruthenium oxide (Ru02) and a binder is prepared as the cathode for a nickel-zinc battery. Metal oxide or hydroxide with a rare earth oxide may be included in the cathode to improve the electrode capacity and shelf life. Optionally, zinc oxide is added to the cathode to facilitate charger transfer and improve the characteristics of high rate discharging. The cathode significantly increases the charging efficiency, promotes the overpotential of oxygen evolution, and intensifies the depth of discharging, thereby increasing the overall efficiency and lifespan of the battery.
    Type: Application
    Filed: November 11, 2012
    Publication date: March 14, 2013
    Inventor: Fuyuan MA
  • Publication number: 20130063865
    Abstract: There are provided a conductive paste for an external electrode, a multilayered ceramic electronic component using the same, and a fabrication method thereof. The conductive paste for external electrode includes: a conductive metal; and a conductive amorphous metal including a (Cu, Ni)-bZr-c(Al, Sn) that satisfies conditions of a+b+c=100, 20?a?60, 20?b?60, and 2?c?25. A degradation of connectivity between external electrodes and internal electrodes and defective plating due to a glass detachment may be solved.
    Type: Application
    Filed: February 28, 2012
    Publication date: March 14, 2013
    Inventors: Myung Jun PARK, Sung Bum Sohn, Hyun Hee Gu, Chang Hoon Kim, Sang Hoon Kwon
  • Patent number: 8388890
    Abstract: A nickel based alloy coating and a method for applying the nickel based alloy as a coating to a substrate. The nickel based alloy comprises about 0.1-15% rhenium, about 5-55% of an element selected from the group consisting of cobalt, iron and combinations thereof, sulfur included as a microalloying addition in amounts from about 100 parts per million (ppm) to about 300 ppm, the balance nickel and incidental impurities. The nickel-based alloy of the present invention is applied to a substrate, usually an electromechanical device such as a MEMS, by well-known plating techniques. However, the plating bath must include sufficient sulfur to result in deposition of 100-300 ppm sulfur as a microalloyed element. The coated substrate is heat treated to develop a two phase microstructure in the coating.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 5, 2013
    Assignee: Tyco Electronics Corporation
    Inventors: Robert D Hilty, Valerie Lawrence, George J Chou
  • Patent number: 8383016
    Abstract: Conductive fine particles have core particle surfaces coated with a metal-plated coating film layer containing nickel and phosphorus and a multilayer conductive layer comprising a palladium layer as the outer surface. The phosphorus content in region A of the metal-plated coating film layer, at a distance of no greater than 20% of the thickness of the entire metal-plated coating film layer from the surface of the core particle, is 7-15 wt % of the entire region A. The phosphorus content in region B of the metal-plated coating film layer, at a distance of no greater than 10% of the thickness of the entire metal-plated coating film layer from the surface of the metal-plated coating film layer on the palladium layer side, is 0.1-3 wt % of the entire region B, and the phosphorus content of the entire metal-plated coating film layer is 7 wt % or greater.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 26, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nana Enomoto, Kunihiko Akai
  • Publication number: 20130043440
    Abstract: The present invention is directed to an electrically conductive composition comprising (i) an electrically conductive metal, (ii) a component selected from the group consisting of Li2RuO3, ion-exchanged Li2RuO3 and mixtures thereof, and (iii) a glass frit all dispersed in an organic medium. The present invention is further directed to an electrode formed from the composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The electrodes provide good adhesion and good electrical performance.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 21, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Paul Douglas Vernooy, Chieko Kikuchi, Kazutaka Ozawa
  • Publication number: 20130043439
    Abstract: A composite material comprises a filled skutterudite matrix of formula (I) IyCo4Sb12 in which (I) represents at least one of Yb, Eu, Ce, La, Nd, Ba and Sr, 0.05?y<1; and GaSb particles within the filled skutterudite matrix, wherein the composite material comprises 0.05-5 mol % GaSb particles. Compared with conventional materials, the composite material exhibits a substantially increased Seebeck coefficient, a slightly decreased overall thermal conductivity, and a substantially increased thermoelectric performance index across the whole temperature zone from the low temperature end to the high temperature end, as well as a greatly enhanced thermoelectric efficiency.
    Type: Application
    Filed: September 23, 2010
    Publication date: February 21, 2013
    Inventors: Lidong Chen, Xihong Chen, Lin He, Xiangyang Huang, Zhen Xiong, Wenqing Zhang
  • Publication number: 20130043441
    Abstract: The present invention is directed to an electrically conductive composition comprising (a) an electrically conductive metal; (b) a Rh-containing component; (c) a Pb—Te—O; and (d) an organic medium; wherein the electrically conductive metal, the Rh-containing compound, and the Pb—Te—O are dispersed in the organic medium. The present invention is further directed to an electrode formed from the composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. Also provided is a process for forming such an electrode. The electrodes provide good adhesion and good electrical performance.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 21, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: KAZUTAKA OZAWA, Lai-Ching Chou
  • Patent number: 8377340
    Abstract: Disclosed is an electromagnetic wave suppression sheet obtained by mixing metallic magnetic particles into a resin and formed into a sheet shape. In the electromagnetic wave suppression sheet, a coercive force is 320 [A/m] or more and a saturation magnetization is 0.35 [Wb/m2] or more at a time when an external magnetic field of 1 kOe in an in-plane direction is applied.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 19, 2013
    Assignee: Sony Corporation
    Inventors: Yoshihiro Kato, Yoshito Ikeda
  • Patent number: 8377339
    Abstract: An apparatus and a method to form a thick coat by an in-liquid pulsed electric discharge treatment, the electrode contains 40 volume % or more metallic material that is not carbonized or is hard to be carbonized.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 19, 2013
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Akihiro Goto, Masao Akiyoshi, Hiroyuki Ochiai, Mitsutoshi Watanabe
  • Publication number: 20130038983
    Abstract: There is provided a conductive paste for an internal electrode of a multilayer ceramic electronic component and a multilayer ceramic electronic component using the same. One or more nitride powders containing a nitride selected from the group consisting of silicon nitride, boron nitride, aluminum nitride, a vanadium nitride are added to the conductive paste for an internal electrode to increase a shrinkage initiation temperature of the internal electrodes. Accordingly, the reliability of the multilayer ceramic electronic component can be improved by using the conductive paste for an internal electrode.
    Type: Application
    Filed: December 21, 2011
    Publication date: February 14, 2013
    Inventors: Hyo Sub KIM, Jeong Ryeol KIM, Sang Hoon KWON, Gun Woo KIM, Chang Hoon KIM
  • Publication number: 20130037096
    Abstract: The present invention is directed to an electroconductive thick film paste composition comprising electrically conductive Ag, a second electrically conductive metal selected from the group consisting of Ni, Al and mixtures thereof and a lead-tellurium-lithium-titanium-oxide all dispersed in an organic medium. The present invention is further directed to an electrode formed from the thick film paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode.
    Type: Application
    Filed: July 24, 2012
    Publication date: February 14, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: KENNETH WARREN HANG, Yueli Wang
  • Publication number: 20130033827
    Abstract: A multilayer capable electrically conductive adhesive (ECA) mixture for connecting multilevel Z-axis interconnects and a method of forming the ECA for connecting multilevel Z-axis interconnects. The multilayer capable ECA contains a mixture of constituent components that allow the paste to be adapted to specific requirements wherein the method of making a circuitized substrate assembly in which two or more subassemblies having potentially disparate coefficients of thermal expansion (CTE) are aligned and Z-axis interconnection are created during bonding. The metallurgies of the conductors, and those of a multilayer capable conductive paste, are effectively mixed and the flowable interim dielectric used between the mating subassemblies flows to engage and surround the conductor coupling.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Voya R. Markovich, John M. Lauffer, Roy H. Magnuson, Konstantinos I. Papathomas, Benson Chan
  • Publication number: 20130029221
    Abstract: The invention relates to a composition for electrodes comprising a material M selected from a nickel-based hydroxide and a hydrogen-fixing alloy, and a pentavalent niobium oxide Nb2O5 of monoclinic structure. The invention also proposes a positive electrode for an alkaline accumulator and a negative electrode for a nickel-metal hydride accumulator comprising the composition according to the invention as well as an alkaline accumulator comprising at least one electrode according to the invention.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: SAFT
    Inventors: Patrick BERNARD, Lionel GOUBAULT, Stephane GILLOT
  • Patent number: 8354045
    Abstract: An ink composition includes a metal microparticle, a dispersion medium having water as a main ingredient, a dispersant for dispersing the metal microparticle into the dispersion medium, and a water-soluble polyhydric alcohol that is trivalent to hexavalent and solid under normal conditions, and whose concentration is 5 to 20 weight % relative to a total weight of the ink composition.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: January 15, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Naoyuki Toyoda, Toshiaki Mikoshiba
  • Publication number: 20130009516
    Abstract: There are provided a conductive paste composition for internal electrodes and a multilayer ceramic electronic component including the same. The conductive paste composition includes: a metal powder; and a refractory metal oxide powder having a smaller average grain diameter than the metal powder and a higher melting point than the metal powder. The conductive paste composition can raise the sintering shrinkage temperature of the internal electrodes and improve the connectivity of the internal electrodes.
    Type: Application
    Filed: November 14, 2011
    Publication date: January 10, 2013
    Inventors: Jong Han KIM, Hyun Chul JEONG, Jun Hee KIM
  • Publication number: 20130009515
    Abstract: There are provided a conductive paste composition for an internal electrode and a multilayer ceramic electronic component including the same. The conductive paste composition includes: 100 moles of a metal powder; 0.5 to 4.0 moles of a ceramic powder; and 0.03 to 0.1 mole of a silica (SiO2) powder. The conductive paste composition can raise the sintering shrinkage temperature of the internal electrodes and improve the connectivity of the internal electrodes, and can improve the degree of densification of the dielectric layer, thereby improving withstand voltage characteristics, reliability, and dielectric characteristics.
    Type: Application
    Filed: November 9, 2011
    Publication date: January 10, 2013
    Inventors: Jong Han KIM, Young Ho Kim, Hyun Chul Jeong
  • Publication number: 20130004716
    Abstract: A paste may include a functional water-soluble material, a surfactant surrounding the functional water-soluble material to form a reverse micelle structure, a binder, and a liposoluble organic solvent, and an electronic device including at least one of a pattern and an electrode may be formed using the paste.
    Type: Application
    Filed: May 22, 2012
    Publication date: January 3, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Haeng Deog Koh, Eun Sung Lee, Sang Soo Jee, Jeong Na Heo, Suk Jun Kim, Se Yun Kim, Yun-Hyuk Choi
  • Publication number: 20130003257
    Abstract: A conductive paste for an internal electrode of a multilayer ceramic electronic component capable of restraining a generation of cracks by reducing internal stress, and a multilayer ceramic electronic component fabricated by using the same are provided. The conductive paste for an internal electrode of a multilayer ceramic electronic component includes: 100 parts by weight of a conductive metal powder; and 0.6 to 2.4 parts by weight of an organic binder. The use of the conductive paste can reduce internal stress of a multilayer ceramic electronic component, thus restraining a generation of cracks therein in the multilayer ceramic electronic component.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Inventors: Jong Han KIM, Jun Hee Kim
  • Publication number: 20130000714
    Abstract: A paste composition contains an electrically conductive silver powder, one or more glass frits or fluxes, and a lithium compound dispersed in an organic medium. The paste is useful in forming an electrical contact on the front side of a solar cell device having an insulating layer. The lithium compound aids in establishing a low-resistance electrical contact between the front-side metallization and underlying semiconductor substrate during firing.
    Type: Application
    Filed: December 9, 2011
    Publication date: January 3, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: STEVEN DALE ITTEL, Zhigang Rick Li, Kurt Richard Mikeska, Paul Douglas Vernooy
  • Publication number: 20130001774
    Abstract: Providing the conductive paste for the material forming the conductive connecting member without disproportionately located holes (gaps), coarse voids, and cracks, which improves thermal cycle and is excellent in crack resistance and bonding strength.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 3, 2013
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Shunji Masumori, Toshiaki Asada, Hidemichi Fujiwara
  • Patent number: 8343385
    Abstract: Disclosed herein is a conductive paste composition. The conductive paste composition according to the exemplary embodiment of the present invention includes a conductive powder including nickel or a nickel alloy; a spherical particulate inhibitor including BaTiO3 powders; and a glass composition having Chemical Formula of aLi2O-bK2O-cCaO-dBaO-eB2O3-fSiO2, wherein a, b, c, d, e, and f satisfy a+b+c+d+e+f=100, 2?a?10, 2?b?10, 0?c?25, 0?d?25, 5?e?20, and 50?f?80.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 1, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Han Kim, Hyun Chul Jeong, Sung Bum Sohn, Jai Joon Lee
  • Publication number: 20120326097
    Abstract: Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
    Type: Application
    Filed: December 19, 2011
    Publication date: December 27, 2012
    Applicants: Trustees of Boston College, GMZ Energy, Inc.
    Inventors: Zhifeng Ren, Xiao Yan, Giri Joshi, Gang Chen, Bed Poudel, James Christopher Caylor
  • Patent number: 8337726
    Abstract: In a fine particle dispersion, a fine particle (P) is dispersed in a mixed organic solvent. The fine particle (P) is formed of one type or not less than two types of a metal, an alloy, and/or a metallic compound, and has a mean particle diameter between 1 nm and 150 nm for primary particles thereof. Further, the fine particle (P) has a surface at least a part thereof coated with a polymer dispersing agent (D).
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 25, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Takuya Harada, Hidemichi Fujiwara, Kazuhiro Takashiba, Nobumitsu Yamanaka, Yusuke Yamada, Hideo Nishikubo, Takashi Unno
  • Publication number: 20120321864
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, Jeffrey Baldridge, Mark Allan Lewandowski, Lixin Zheng, David Michael Chesler
  • Publication number: 20120313198
    Abstract: A lead-free paste composition contains an electrically conductive silver powder, one or more glass frits or fluxes, and a lithium compound dispersed in an organic medium. The paste is useful in forming an electrical contact on the front side of a solar cell device having an insulating layer. The lithium compound aids in establishing a low-resistance electrical contact between the front-side metallization and underlying semiconductor substrate during firing.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 13, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven Dale Ittel, Zhigang Rick Li, Kurt Richard Mikeska, Paul Douglas Vernooy
  • Publication number: 20120315495
    Abstract: The invention relates to conductive inks obtained by combining AQCs and metal nanoparticles. Atomic quantum clusters (AQCs), which melt at temperatures of less than 150° C., are used as low-temperature “flux” for the formulation of conductive inks. The combination of AQCs with bimodal and trimodal mixtures of nanoparticles of various sizes guarantees the elimination of free volumes in the final sintering of the nanoparticles in order to achieve electronic structures with very low resistivity (close to that of the bulk material) with low-temperature thermal treatments (<150° C.
    Type: Application
    Filed: November 23, 2010
    Publication date: December 13, 2012
    Applicants: NANOGAP, UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
    Inventor: Manuel Arturo Lopez Quintela
  • Publication number: 20120312467
    Abstract: The invention relates to a process for producing electrically conductive bonds between solar cells, in which an adhesive comprising electrically conductive particles is first transferred from a carrier to the substrate by irradiating the carrier with a laser, the adhesive transferred to the substrate is partly dried and/or cured to form an adhesive layer, in a further step the adhesive is bonded to an electrical connection, and finally the adhesive layer is cured. The invention further relates to an adhesive for performing the process, comprising 20 to 98% by weight of electrically conductive particles, 0.01 to 60% by weight of an organic binder component used as a matrix material, based in each case on the solids content of the adhesive, 0.005 to 20% by weight of absorbent based on the weight of the conductive particles in the adhesive, and 0 to 50% by weight of a dispersant and 1 to 20% by weight of solvent, based in each case on the total mass of the undried and uncured adhesive.
    Type: Application
    Filed: February 16, 2011
    Publication date: December 13, 2012
    Applicant: BASF SE
    Inventors: Frank Kleine Jaeger, Juergen Kaczun, Stephan Hermes
  • Publication number: 20120312372
    Abstract: The invention relates to zinc-containing glass compositions useful in conductive pastes for silicon semiconductor devices and photovoltaic cells.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Alan Frederick Carroll, Kenneth Warren Hang, Brian J. Laughlin, Zhigang Rick Li, Hisashi Matsuno, Yueli Wang
  • Publication number: 20120308806
    Abstract: A modified material for use with a capacitive touch screen is described. The modified material comprises a material impregnated with a composition comprising either a non-metallic and/or a metallic conductive agent with a binder. A variety of materials are contemplated, including, but not limited to leather. Also described is an apparatus and method of providing a conductive glove is disclosed.
    Type: Application
    Filed: November 30, 2011
    Publication date: December 6, 2012
    Inventors: Gerald Leto, Donald Joseph Wager
  • Publication number: 20120298929
    Abstract: This is to provide reducing agent composition for a conductive metal paste which improves the pot life of the conductive metal paste and controls fluctuation of a connection resistance value, and a process for preparing the same, and a conductive metal paste. It is a reducing agent composition for a conductive metal paste comprising at least one compound selected from the group consisting of a hydroxyquinoline compound, an aromatic amino alcohol compound, an aromatic amine compound, an anthraquinone compound, an indole compound and an indane compound, and an organic aluminum compound. It is a conductive metal paste comprising the above-mentioned reducing agent composition for a conductive metal paste, metal conductive particles and a resin. It is a method for preparing the reducing agent composition for a conductive metal paste comprising the step of mixing the above-mentioned compound and the organic aluminum compound at a temperature of 5 to 30° C. for within 30 minutes.
    Type: Application
    Filed: February 4, 2011
    Publication date: November 29, 2012
    Inventors: Noritsuka Mizumura, Takashi Yamaguchi
  • Patent number: 8313672
    Abstract: A kind of manufacturing method for dual functions with varistor material and device has one of the characteristics among capacitance, inductance, voltage suppressor and thermistor in addition to surge absorbing characteristic, which microstructural compositions include a glass substrate with high resistance and three kinds of low-resistance conductive or semiconductive particles in micron, submicron and nanometer size uniformly distributed in the glass substrate to provide with good surge absorbing characteristic.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: November 20, 2012
    Assignee: Leader Well Technology Co., Ltd.
    Inventors: Yu-Wen Tan, Jie-An Zhu, Li-Yun Zhang
  • Publication number: 20120285733
    Abstract: An object of the present invention is to provide an electronic component using a Cu-based conductive material that can suppress oxidization even in a heat treatment in an oxidizing atmosphere and that can suppress an increase in an electrical resistance. In an electronic component having an electrode or a wiring, a ternary alloy made from three elements consisting of Cu, Al, and Co is used as a Cu-based wiring material that can prevent oxidization of the electrode or the wiring. Specifically, part or the whole of the electrode or the wiring has a chemical composition in which an Al content is 10 at % to 25 at %, a Co content is 5 at % to 20 at %, and the balance is composed of Cu and unavoidable impurities, and the chemical composition represents a ternary alloy in which two phases of a Cu solid solution formed by Al and Co being dissolved into Cu and a CoAl intermetallic compound coexist together.
    Type: Application
    Filed: April 8, 2010
    Publication date: November 15, 2012
    Inventors: Takahiko Kato, Takashi Naito, Hiroki Yamamoto, Takuya Aoyagi, Seiichi Watanabe, Seiji Miura, Norihito Sakaguchi, Kazuki Aoshima, Kenji Ohkubo