Iron Group Metal (iron, Cobalt, Nickel) Patents (Class 252/513)
  • Patent number: 8308992
    Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 13, 2012
    Assignee: Electromagnetics Corporation
    Inventor: Christopher J Nagel
  • Patent number: 8309839
    Abstract: A method of improving the thermoelectric figure of merit (ZT) of a high-efficiency thermoelectric material is disclosed. The method includes the addition of fullerene (C60) clusters between the crystal grains of the material. It has been found that the lattice thermal conductivity (?L) of a thermoelectric material decreases with increasing fullerene concentration, due to enhanced phonon-large defect scattering. The resulting power factor (S2/?) decrease of the material is offset by the lattice thermal conductivity reduction, leading to enhanced ZT values at temperatures of between 350 degrees K and 700 degrees K.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 13, 2012
    Assignees: GM Global Technology Operations LLC, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    Inventors: Lidong Chen, Xun Shi, Jihui Yang, Gregory P. Meisner
  • Patent number: 8309844
    Abstract: Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 13, 2012
    Assignee: Ferro Corporation
    Inventors: Nazarali Merchant, Aziz S. Shaikh, Srinivasan Sridharan
  • Publication number: 20120276725
    Abstract: Methods of selectively forming a metal-doped chalcogenide material comprise exposing a chalcogenide material to a transition metal solution, and incorporating transition metal of the transition solution into the chalcogenide material without substantially incorporating the transition metal into an adjacent material. The chalcogenide material is not silver selenide. Another method comprises forming a chalcogenide material adjacent to and in contact with an insulative material, exposing the chalcogenide material and the insulative material to a transition metal solution, and diffusing transition metal of the transition metal solution into the chalcogenide material while substantially no transition metal diffuses into the insulative material.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jerome A. Imonigie, Prashant Raghu, Theodore M. Taylor, Scott E. Sills
  • Patent number: 8298447
    Abstract: A conductive paste, a printed circuit board using the conductive paste, and a method of manufacturing the printed circuit board are disclosed. A conductive paste that includes conductive particles, a polymer, and a polymer foam, can reduce the number of printing repetitions, to simplify the manufacturing process, decrease process times, and improve reliability.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 30, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Ki-Hwan Kim, Jee-Soo Mok, Myung-Sam Kang
  • Publication number: 20120268234
    Abstract: Disclosed is a semiconductor ceramic composition for NTC thermistors, which has low dependency on firing temperatures, reduced variations in the resistance values after a resistance-adjusting operation, and reduced changes in resistance in high-temperature environments. The semiconductor ceramic composition contains Mn, Ni and Fe, wherein the molar ratios of Mn and Ni are in ranges of 70 to 80 mol % and 20 to 30 mol %, respectively, relative to the total content (100 mol %) of Mn and Ni, and the Fe content is in a range of 15 parts by mole to 25 parts by mole, both inclusive, relative to the total molar amount (100 parts by mole) of Mn and Ni. Preferably, Co is additionally present in an amount of 2 parts by mole to 40 parts by mole, both inclusive, relative to the total molar amount (100 parts by mole) of Mn and Ni.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 25, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Michiru Mikami
  • Publication number: 20120267151
    Abstract: Provided are a metal microparticle dispersion which is excellent in a dispersibility, an electrically conductive substrate which is obtained by using the above metal microparticle dispersion and which is excellent in an electrical conductivity and a production process for the same. Provided is a metal microparticle dispersion comprising metal microparticles, a polymeric dispersant and a dispersion medium, wherein an average primary particle diameter of the metal microparticles is 0.001 to 0.
    Type: Application
    Filed: September 6, 2010
    Publication date: October 25, 2012
    Inventors: Mikiko Hojo, Shinya Yoneda, Naonobu Yoshi, Takeshi Sato, Kisei Matsumoto
  • Publication number: 20120260981
    Abstract: The present invention provides a paste composition for an electrode, the paste composition including phosphorus-tin-containing copper alloy particles, glass particles, a solvent and a resin. The present invention also provides a photovoltaic cell element having an electrode formed from the paste composition, and a photovoltaic cell.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 18, 2012
    Inventors: Shuichiro ADACHI, Masato Yoshida, Takeshi Nojiri, Mitsunori Iwamuro, Keiko Kizawa, Takuya Aoyagi, Hiroki Yamamoto, Takashi Naito, Takahiko Kato
  • Patent number: 8287772
    Abstract: A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: October 16, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Dinh B. Le, Mark N. Obrovac, Robert Y. Kube, James R. Landucci
  • Patent number: 8287767
    Abstract: Amorphous polymers with chromogenic pendant groups are provided. The amorphous polymers can be used to make elastomeric films and coatings that can be incorporated into laminates and used to make articles such as architectural and vehicular glazing, and in applications such as eyewear, displays and signage.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 16, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Simona Percec, Susan H. Tilford
  • Publication number: 20120247550
    Abstract: According to example embodiments, a conductive paste includes a conductive component that contains a conductive powder and a titanium (Ti)-based metallic glass. The titanium-based metallic glass has a supercooled liquid region of about 5K or more, a resistivity after crystallization that is less than a resistivity before crystallization by about 50% or more, and a weight increase by about 0.5 mg/cm2 or less after being heated in a process furnace at a firing temperature. According to example embodiments, an electronic device and a solar cell may include at least one electrode formed using the conductive paste according to example embodiments.
    Type: Application
    Filed: February 24, 2012
    Publication date: October 4, 2012
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Se-Yun Kim, Eun-Sung Lee, Sang-Soo Jee, Do-Hyang Kim, Ka-Ram Lim
  • Publication number: 20120251736
    Abstract: Disclosed is a conductive ink composition, a manufacturing method thereof, and a manufacturing method of a conductive thin film using the same, and more specifically, a conductive ink composition is provided that includes composite metal nanoparticles including first metal nanoparticles and second metal nanoparticles, and a polymer matrix. The polymer matrix is a composition including a polymer and a solvent, the first metal nanoparticles and the second metal nanoparticles are different metals, and the content of the composite metal nanoparticles is about 20 to about 25 wt %, the content of the polymer is about 5 to about 10 wt %, and the content of the solvent is about 65 to about 75 wt %, based on the total weight of the composition.
    Type: Application
    Filed: September 29, 2011
    Publication date: October 4, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae-Min HONG, Yong-Won SONG, Yong-Ju JUNG, Hee-Dok CHOI, Won-Suk HAN, Hak-Sung KIM
  • Publication number: 20120240994
    Abstract: A conductive paste may include a conductive component and an organic vehicle. The conductive component may include an amorphous metal. The amorphous metal may have a lower resistivity after a crystallization process than before the crystallization process, and at least one of a weight gain of about 4 mg/cm2 or less and a thickness increase of about 30 ?m or less after being heated in a process furnace at a firing temperature.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 27, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Suk Jun Kim, Eun Sung Lee, Se Yun Kim, Sang Soo Jee, Jeong Na Heo
  • Publication number: 20120234384
    Abstract: A conductive metal via paste comprising particulate conductive metal, a reactant that reacts at temperatures of 600° C. to 900° C. with at least one of the group consisting of Si, SiO2 and SiNx to form an insulating glass, and an organic vehicle is particularly useful in providing the metallization of the holes in the silicon wafers of MWT solar cells. The result is a metallic electrically conductive via between the collector lines on the front side and the emitter electrode on the back-side of the solar cell. The paste can also be used to form the collector lines on the front-side of the solar cell and the emitter electrode on the back-side of the solar cell. Also disclosed are metal-wrap-through silicon solar cells comprising the fired conductive metal paste.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 20, 2012
    Applicant: E.I. DU PONT NEMOURS AND COMPANY
    Inventors: ALAN FREDERICK CARROLL, YUELI WANG
  • Publication number: 20120234383
    Abstract: A conductive metal via paste comprising particulate conductive metal, phosphorus-containing material, glass frit, and an organic vehicle. is particularly useful in providing the metallization of the holes in the silicon wafers of MWT solar cells. The result is a metallic electrically conductive via between the collector lines on the front side and the emitter electrode on the back-side of the solar cell. The paste can also be used to form the collector lines on the front-side of the solar cell and the emitter electrode on the back-side of the solar cell. Also disclosed are metal-wrap-through silicon solar cells comprising the fired conductive metal paste.
    Type: Application
    Filed: February 22, 2012
    Publication date: September 20, 2012
    Applicant: E.I.DU PONT DE NEMOURS AND COMPANY
    Inventors: KENNETH WARREN HANG, Yueli Wang
  • Patent number: 8268196
    Abstract: A joint compound for electrical connections is disclosed which includes an antioxidant base material and a quantity of stainless steel grit mixed with the antioxidant base material to provide improved mechanical pullout strength. The joint compound has a weight ratio of antioxidant to stainless steel grit in the range of from about 30:70 to about 90:10, preferably, from about 40:60 to about 70:30, and more preferably about 50:50. The stainless steel grit is cut wire having a diameter within the range of from about 0.012 inches to about 0.125 inches, with a preferred diameter within the range of from about 0.012 inches to about 0.030 inches, and 0.017 inches being a more preferred stainless steel grit diameter.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 18, 2012
    Assignee: Panduit Corp.
    Inventors: Robert L. Sokol, Christopher R. Haczynski
  • Publication number: 20120228013
    Abstract: An electrically conductive adhesive (ECA) for repairing electrically conductive pad and trace interconnects and a method of repairing interconnect locations. The method of repairing at least one defect within the area of electrically conductive circuitized substrate traces and pads outside of a pristine center area incorporates an ECA and a forming gas plasma. The ECA contains a mixture of components that allow the adhesive to be adapted to specific requirements. Curing the adhesive results in effective electrical connections being formed between the adhesive and the base pad so that the metallurgies of the conductors and of the ECA are effectively combined to engage and repair the conductor defect.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Luis J. Matienzo, Susan Pitely, Norman A. Card
  • Publication number: 20120231260
    Abstract: Provided is a functional fiber and a fiber aggregate for realizing various functions, an adhesive for easily bonding electronic components, and a method for manufacturing the same. Particularly, a fiber extended in a length direction includes a carrier polymer and a plurality of functional particles, wherein the plurality of functional particles are embedded in the carrier polymer and physically fixed to the carrier polymer to be integrated.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 13, 2012
    Applicants: OPTOPAC CO., LTD, MICROPACK CO., LTD, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Deok Hoon KIM, Kyung Wook PAIK, Kyoung Lim SUK, Jae Ok KIM
  • Publication number: 20120231689
    Abstract: Provided is a functional fiber and a fiber aggregate for realizing various functions, an adhesive for easily bonding electronic components, and a method for manufacturing the same. Particularly, a fiber extended in a length direction includes a carrier polymer and a plurality of functional particles, wherein the plurality of functional particles are embedded in the carrier polymer and physically fixed to the carrier polymer to be integrated.
    Type: Application
    Filed: March 29, 2011
    Publication date: September 13, 2012
    Applicants: OPTOPAC CO., LTD, MICROPACK CO., LTD, Korea Advanced Institute of Science and Technology
    Inventors: Deok Hoon Kim, Kyung Wook Paik, Kyoung Lim Suk, Jae Ok Kim
  • Publication number: 20120222738
    Abstract: A conductive composition for a front electrode busbar of a silicon solar cell includes a metallic powder, a solder powder, a curable resin, a reducing agent, and a curing agent. A method of manufacturing a front electrode busbar of a silicon solar cell includes applying the composition to the front surface of the silicon solar cell wherein its front electrode finger line is formed. A substrate includes a front electrode busbar of a silicon solar cell, formed with a conductive composition. A silicon solar cell includes one or more electrodes containing a conductive composition including a conductive powder, a curable resin, a reducing agent, and a curing agent. A method of manufacturing the silicon solar cell includes forming a first electrode array with a first conductive composition, forming a second electrode, and forming a third electrode with a third conductive composition.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Soo Young OH, Yong Sung Eom, Jong Tae Moon, Kwang Seong Choi
  • Publication number: 20120225198
    Abstract: The present invention relates to a conductive metal ink composition which is properly applied for roll-printing process to form conductive pattern with improved conductivity, and the method of preparing a conductive pattern using the same. The conductive metal ink composition comprises a conductive metal powder; an organic silver complex where an organic ligand including amine group and hydroxyl group binds with a silver (Ag) salt of aliphatic carboxylic acid; a non-aqueous solvent comprising a first non-aqueous solvent having a vapor pressure of 3 torr or lower at 25° C. and a second non-aqueous solvent having a vapor pressure of higher than 3 torr at 25° C.; and a coatability improving polymer.
    Type: Application
    Filed: August 24, 2010
    Publication date: September 6, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Jie-Hyun Seong, Soo-Yeon Heo, Jong-Taik Lee, Kyoung-Su Jeon
  • Patent number: 8257617
    Abstract: To provide functional paste with etching activity and good electrical properties. Functional paste comprising a metal powder, an etching agent, a binder and an organic solvent.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: September 4, 2012
    Assignee: Merck Patent GmbH
    Inventors: Sylke Klein, Armin Kuebelbeck, Werner Stockum, Jun Nakanowatari, Kiyohiko Kawamoto, Katsumi Tanino
  • Patent number: 8257613
    Abstract: A composition comprises a poly(arylene ether), a polyamide, electrically conductive filler, an impact modifier, and wollastonite wherein the wollastonite particles have an average length to diameter ratio less than or equal to 5 and a median particle size of 2 to 5 micrometers. Methods of making the composition are also described.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: September 4, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Jos Bastiaens, Arno Hagenaars, Jan Matthijssen
  • Publication number: 20120217453
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 30, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, Jeffrey Baldridge, Mark Allan Lewandowski, Lixin Zheng, David Michael Chesler
  • Publication number: 20120219787
    Abstract: A conductive metal paste composition including conductive metal particles including first metal particles having a particle size of less than 100 nm, and second metal particle of particle size greater than 100 nm, and a surface coated with a capping material; a binder; and a solvent, a method of manufacturing the same, and an electrode and a conductive circuit of an electronic device using the same. The paste composition containing two or more kinds of conductive metal particles with different particle sizes can secure high conductivity compared to a conventional metal pastes during low temperature or short-time medium and high temperature sintering.
    Type: Application
    Filed: December 15, 2011
    Publication date: August 30, 2012
    Inventors: Byung Ho JUN, Dong Hoon KIM, Su Hwan CHO, Jeong Min CHO
  • Publication number: 20120207918
    Abstract: The present invention relates to a conductive metal ink composition which is properly applied for roll-printing process to form conductive pattern, and the method of preparing a conductive pattern using the same. The conductive metal ink composition comprises a conductive metal powder; a non-aqueous solvent comprising a first non-aqueous solvent having a vapor pressure of 3 torr or lower at 25° C. and a second non-aqueous solvent having a vapor pressure of higher than 3 torr at 25° C.; and a coatability improving polymer and is coated for forming the conductive pattern by the roll printing method.
    Type: Application
    Filed: August 24, 2010
    Publication date: August 16, 2012
    Inventors: Jie-Hyun Seong, Soo-Yeon Heo, Jong-Taik Lee, Kyoung-Su Jeon, Sang-Ho Kim, Ji-Young Hwang
  • Patent number: 8231808
    Abstract: An electroconductive bonding material is formed as a Modified Electrically Conductive Adhesive (MECA), and consists of a resin matrix and a modified conductive filler. The resin matrix if formed by providing a thermosetting or thermoplastic resin-based polymer resin. The conductive filler is a metal filler material suitable for use as conductive filler for the resin matrix. The metal filler is modified by applying a material selected from one of halogens, pseudohalogens or their precursors.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 31, 2012
    Assignee: Hong Kong University of Science and Technology
    Inventors: Cheng Yang, Matthew Ming Fai Yuen, Bing Xu
  • Patent number: 8231811
    Abstract: An activator composition for forming an activator-containing region on a substrate for activating a chemical reaction to form a conductive metal region on the substrate, the composition being suitable for thermal inkjet printing, the composition comprising a single phase aqueous composition including one or more curable materials and one or more co-solvents for the curable material(s); and an activator for reaction to form a conductive metal region. Conductive metal regions may be formed on the resulting activator-containing regions by a metallisation reaction such as electroless deposition.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 31, 2012
    Assignee: Conductive Inkjet Technology Limited
    Inventors: Shaun Christopher Hazlewood, Natasha Jeremic
  • Publication number: 20120180859
    Abstract: A conductive paste includes a conductive powder, a metallic glass, and an organic vehicle. The metallic glass includes a first element, a second element having a higher absolute value of Gibbs free energy of oxide formation than the first element, and a third element having an absolute value of Gibbs free energy of oxide formation of about 1000 kJ/mol or less at a baking temperature and a eutectic temperature with the conductive powder of less than about 1000° C. An electronic device and a solar cell may include an electrode formed using the conductive paste.
    Type: Application
    Filed: November 30, 2011
    Publication date: July 19, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Sung Lee, Se Yun Kim, Sang Soo Jee, Yong Nam Ham
  • Patent number: 8221518
    Abstract: The present invention provides electrically and thermally conductive compositions for forming interconnections between electronic elements. Invention compositions comprise three or more metal or metal alloy particle types and an organic vehicle comprising a flux that is application specific. The first particle type includes a reactive high melting point metal that reacts with a reactive low melting point metal(s) in the other particles to form intermetallic species. The reactive low melting point metal(s) of the invention are provided in two distinct particle forms. The first reactive low melting point metal particle includes a carrier that facilitates the reaction with the reactive high melting point metal. The second reactive low melting point metal particle acts primarily as a source of the reactive low melting point metal.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 17, 2012
    Assignee: Ormet Circuits, Inc.
    Inventors: Catherine Shearer, Kenneth C. Holcomb, G. Delbert Friesen, Michael C. Matthews
  • Publication number: 20120175359
    Abstract: The invention relates to an electrical panel heating device and to a method and a material for the production thereof; the panel heating device is produced by curing a liquid or pasty material, comprising at least one inorganic binding agent, for example cement and/or gypsum, at least one electrically non-conductive additive, for example sand and/or rock flour, and at least one further additive composed of electrically conductive particles, for example carbon fibres and/or trips; after mixing this material in the liquid or pasty state, it is processed to form a product in the form of a panel which is provided with low-impedance contacts for feeding in a current distributed over an panel.
    Type: Application
    Filed: May 4, 2010
    Publication date: July 12, 2012
    Inventors: Wilhelm Zimmerer, Laura Zimmerer
  • Publication number: 20120178241
    Abstract: A metal seed composition useful in seeding a metal diffusion barrier or conductive metal layer on a semiconductor or dielectric substrate, the composition comprising: a nanoscopic metal component that includes a metal useful as a metal diffusion barrier or conductive metal; an adhesive component for attaching said nanoscopic metal component on said semiconductor or dielectric substrate; and a linker component that links said nanoscopic metal component with said adhesive component. Semiconductor and dielectric substrates coated with the seed compositions, as well as methods for depositing the seed compositions, are also described.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kelly Malone, Habib Hichri
  • Publication number: 20120175660
    Abstract: A light-reflective conductive particle for an anisotropic conductive adhesive used for anisotropic conductive connection of a light-emitting element to a wiring board includes a core particle coated with a metal material and a light-reflecting layer formed from light-reflective inorganic particles having a refractive index of 1.52 or more on a surface of the core particle. Examples of the light-reflective inorganic particles having a refractive index of 1.52 or more include titanium oxide particles, zinc oxide particles, or aluminum oxide particles.
    Type: Application
    Filed: July 22, 2010
    Publication date: July 12, 2012
    Applicant: SONY CHEMICAL & INFORMATION DEVICE CORPORATION
    Inventors: Hidetsugu Namiki, Shiyuki Kanisawa, Hideaki Umakoshi
  • Publication number: 20120171560
    Abstract: The present invention provides composite anodes comprising particles composed of silicon and lithium silicate, active and inactive anode materials, and binders, for lithium rechargeable batteries, wherein the particles composed of silicon and lithium silicate are prepared via treating silicon particles with lithium hydroxide in a wet process. Cycle life and characteristics and capacity of a secondary battery adopting the composite anode can be greatly improved.
    Type: Application
    Filed: February 1, 2012
    Publication date: July 5, 2012
    Applicant: ELECTROCHEMICAL MATERIALS, LLC
    Inventors: WANLI XU, JOHN C. FLAKE
  • Publication number: 20120169447
    Abstract: There are disclosed a nanocomposite powder for an inner electrode of a multilayer ceramic electronic device and a manufacturing method thereof. The nanocomposite powder for an inner electrode of a multilayer ceramic electronic device includes a first metal particle having electrical conductivity, and a second metal coating layer formed on a top surface or a bottom surface of the first metal particle and having a higher melting point than that of the first metal particle.
    Type: Application
    Filed: May 19, 2011
    Publication date: July 5, 2012
    Inventors: Ju Hwan YANG, Jeong Min Cho, Sung Kwon Wi, Ji Hwan Shin
  • Publication number: 20120161081
    Abstract: The invention relates to a composition for printing electrodes on a substrate, comprising 30 to 90% by weight of electrically conductive particles, 0 to 7% by weight of glass frit, 0.1 to 5% by weight of at least one absorbent for laser radiation, 0 to 8% by weight of at least one matrix material, 0 to 8% by weight of at least one organometallic compound, 3 to 50% by weight of water as a solvent, 0 to 65% by weight of at least one retention aid and 0 to 5% by weight of at least one additive, based in each case on the total mass of the composition. The invention further relates to a use of the composition.
    Type: Application
    Filed: September 1, 2010
    Publication date: June 28, 2012
    Applicant: BASF SE
    Inventors: Frank Kleine Jaeger, Stephan Hermes, Juergen Kaczun
  • Publication number: 20120162855
    Abstract: There are provided a conductive paste composition for an internal electrode, and a multilayer ceramic capacitor comprising the same and a manufacturing method thereof. The conductive paste composition includes a metal powder, a dispersant made of an acrylic polymer having a weight average molecular weight of 500 to 5,000, and at least one organic binder selected from a group consisting of a polyvinylbutyral resin and a cellulose resin. The conductive paste composition for an internal electrode has superior dispersibility of the metal powder in the paste.
    Type: Application
    Filed: June 23, 2011
    Publication date: June 28, 2012
    Inventors: Ju Myung SUH, Jun Hee Kim, Jang Ho Lee
  • Publication number: 20120164527
    Abstract: An alkaline secondary cell has an electrode assembly including a positive electrode, a negative electrode and a separator, and alkaline electrolyte. The negative electrode includes hydrogen-storage alloy and an oxidation inhibitor that inhibits the hydrogen-storage alloy from being oxidized. The oxidation inhibitor contains a chemical compound, and the chemical compound includes a chemical-bond-formation end that is chemically bonded to the surface of the hydrogen-storage alloy and a water-repellent end having water repellency.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 28, 2012
    Applicant: FDK TWICELL CO., LTD.
    Inventors: Akira Saguchi, Masaru Kihara, Takahiro Endo
  • Publication number: 20120161083
    Abstract: The present invention relates to an electrode composed of an Al-M-Cu based alloy, to a process for preparing the Al-M-Cu based alloy, to an electrolytic cell comprising the electrode, to the use of an Al-M-Cu based alloy as an anode and to a method for extracting a reactive metal from a reactive metal-containing source using an Al-M-Cu based alloy as an anode.
    Type: Application
    Filed: March 12, 2012
    Publication date: June 28, 2012
    Applicant: University of Leeds
    Inventors: Animesh Jha, Xiaobing Yang
  • Publication number: 20120164777
    Abstract: The invention relates to a composition for printing conductor tracks onto a substrate, especially for solar cells, using a laser printing process, which composition comprises 30 to 90% by weight of electrically conductive particles, 0 to 7% by weight of glass frit, 0 to 8% by weight of at least one matrix material, 0 to 8% by weight of at least one organometallic compound, 0 to 5% by weight of at least one additive and 3 to 69% by weight of solvent. The composition further comprises 0.5 to 15% by weight of nanoparticles as absorbents for laser radiation, which nanoparticles are particles of silver, gold, platinum, palladium, tungsten, nickel, tin, iron, indium tin oxide, titanium carbide or titanium nitride. The composition comprises not more than 1% by weight of elemental carbon.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 28, 2012
    Applicant: BASF SE
    Inventors: Frank Kleine Jaeger, Stephan Hermes
  • Publication number: 20120152294
    Abstract: A thermoelectric material includes powders having a surface coated with an inorganic material. The thermoelectric material includes a thermoelectric semiconductor powder and a coating layer on an outer surface of the thermoelectric semiconductor powders.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-il KIM, Kyu-hyoung LEE, Sang-mock LEE
  • Publication number: 20120153238
    Abstract: Disclosed are methods of making multi-element, finely divided, alloy powders containing silver and at least two non-silver containing elements and the uses of these powders in ceramic piezoelectric devices.
    Type: Application
    Filed: February 23, 2012
    Publication date: June 21, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: HOWARD DAVID GLICKSMAN, RUSSELL BERTRUM DIEMER, JR., JOHN COCKER
  • Publication number: 20120154976
    Abstract: There are provided a conductive paste composition for an inner electrode, and a laminated ceramic electronic part and a manufacturing method thereof using the conductive paste composition. The conductive paste composition includes metal powder coated with an organosilica compound formed by polymerization of an organosilane compound having a structure of RnSi(OR?)4-n (wherein R is selected from alkyl and aryl groups, each having 20 or less carbon atoms, R? is any one of the alkyl groups having 4 or less carbon atoms, and n is 1 or 2). Since the organosilica coating layer is coated around the metal powder particles, preventing the metal powder particles from being agglomerated, thereby allowing the conductive paste composition having very superior dispersibility to be manufactured. In addition, effects such as inhibited oxidation of the metal powder during plasticization and effectively inhibited shrinkage of the metal powder during sintering may be accomplished.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Inventors: Jai Joon LEE, Hyun Chul Jung, Jae Man Park, Jong Han Kim
  • Publication number: 20120153231
    Abstract: A cathode material structure and a method for preparing the same are described. The cathode material structure includes a material body and a composite film coated thereon. The material body has a particle size of 0.1-50 ?m. The composite film has a porous structure and electrical conductivity.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 21, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tsung-Hsiung Wang, Jing-Pin Pan, Chung-Liang Chang, Yu-Ling Lin
  • Publication number: 20120145969
    Abstract: A conductive reinforcing material used to form a negative electrode material is provided in the present invention. The conductive reinforcing material includes metal shavings containing elements selected from a group consisting of group II elements, group III elements and group VII elements. A negative electrode material and a negative electrode both with the conductive reinforcing material are also provided in the present invention.
    Type: Application
    Filed: March 30, 2011
    Publication date: June 14, 2012
    Applicant: INNOT BIOENERGY HOLDING CO.
    Inventor: Chungpin Liao
  • Publication number: 20120147521
    Abstract: There are provided a conductive paste composition for an inner electrode, a manufacturing method thereof, and a multilayer ceramic electronic component using the same. The method of manufacturing the conductive paste composition for the inner electrode includes: preparing a metal powder in which a cellulose-based resin is coated on the surfaces of metal particles by dispersing the metal powder within the cellulose-based resin; preparing a ceramic powder in which a polyvinyl butyral resin is coated on the surfaces of ceramic particles by dispersing the ceramic powder within the polyvinyl butyral resin; and mixing the metal powder and the ceramic powder. The conductive paste composition for the inner electrode has excellent dispersibility, thereby allowing for the formation of a thin inner electrode layer.
    Type: Application
    Filed: March 18, 2011
    Publication date: June 14, 2012
    Inventors: Joon Hee KIM, Jong Han Kim
  • Patent number: 8197719
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 12, 2012
    Assignee: American Lithium Energy Corp.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Publication number: 20120140375
    Abstract: Disclosed are a conductive paste for an inner electrode and a multilayer ceramic electronic component having the same. There is provided a conductive paste for an inner electrode, including: a conductive metal powder for manufacturing the inner electrode for multilayer ceramic electronic component; an organic binder including at least one selected from a group consisting of acryl-based resin, butyral-based resin, and a cellulose-based resin to disperse the conductive metal powder; and a solvent including eucalyptol.
    Type: Application
    Filed: February 23, 2011
    Publication date: June 7, 2012
    Inventors: Joon Hee KIM, Jong Han Kim
  • Publication number: 20120141779
    Abstract: This invention discloses corrosion resistant metal compositions that may be used to form nanoparticles or for coating of particles. Further, such particles may be used to fabricate printable transparent conductors that may be used in electronic devices. Electrochromic displays formed using such conductors are described.
    Type: Application
    Filed: February 13, 2012
    Publication date: June 7, 2012
    Applicant: AJJER LLC
    Inventors: Anoop Agrawal, John P. Cronin
  • Publication number: 20120138870
    Abstract: The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.
    Type: Application
    Filed: November 2, 2011
    Publication date: June 7, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Yanzhong Pei