With Organic Compound Patents (Class 252/519.3)
  • Patent number: 10177263
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 8, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10069075
    Abstract: A charge-transporting varnish including charge-transporting material comprising N,N?-diaryl benzidine derivatives represented by formula (1), a charge-accepting dopant comprising heteropoly acid, and an organic solvent. [In the formula, R1 to R8 independently represent hydrogen, a halogen, an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms or an alkynyl having 2 to 20 carbon atoms; and Ar1 and Ar2 independently represent groups represented by formulas (2) or (3). (In the formula, R9 to R18 independently represent hydrogen, a halogen, an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms or an alkynyl having 2 to 20 carbon atoms; and X1 and X2 independently represent hydrogen, a halogen, an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, an alkynyl having 2 to 20 carbon atoms, diphenylamino, 1-naphthylphenylamino, 2-naphthylphenylamino, di(1-naphthyl)-amino, and di(2-naphthyl)-amino or 1-naphthyl-2-naphtylamino.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: September 4, 2018
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Naoki Nakaie, Yuki Takayama
  • Patent number: 9865816
    Abstract: A solution contains a functional material for constituting a function layer, and a solvent. The solvent contains a high-boiling-point solvent composed of one or more solvent components having a boiling point of not less than 200° C. The high-boiling-point solvent has a viscosity of from 13 mPa·s to 25 mPa·s, inclusive, and a surface tension of from 33 mN/m to 37 mN/m, inclusive.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: January 9, 2018
    Assignee: JOLED INC.
    Inventors: Masakazu Takata, Hirotaka Nanno
  • Patent number: 9858956
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, an underlayer positioned above the substrate, a magnetic recording layer positioned above the underlayer, and a plurality of conductive polymers dispersed within at least one of the substrate, the underlayer and the magnetic recording layer.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Diana J. Hellman, Icko E. T. Iben, Mark A. Lantz
  • Patent number: 9845269
    Abstract: Multifunctional Boron Nitride nanotube-Boron Nitride (BN—BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN—BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN—BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 19, 2017
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Jin Ho Kang, Robert G. Bryant, Cheol Park, Godfrey Sauti, Luke Gibbons, Sharon Lowther, Sheila A. Thibeault, Catharine C. Fay
  • Patent number: 9161859
    Abstract: Provided is a wound dressing including a wound pad of absorbent material having a first side and a second side opposite thereto, a backing layer covering the wound pad on the first side thereof an adhesive layer for attaching the dressing to skin. The backing layer has at least one conductive region and consists of plastic film.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 20, 2015
    Assignee: MÖLNLYCKE HEALTH CARE AB
    Inventor: Niclas Flach
  • Publication number: 20150129815
    Abstract: Organic dye for a dye-sensitized solar cell (DSSC) comprising at least one electron-acceptor unit and at least one ?-conjugated unit. Said organic dye is particularly useful in a dye-sensitized photoelectric transformation element which, in its turn, can be used in a dye-sensitized solar cell (DSSC).
    Type: Application
    Filed: April 19, 2013
    Publication date: May 14, 2015
    Inventors: Paolo Biagini, Dora Demeter, Philippe Leriche, Andrea Pellegrino, Jean Roncali, Giuliana Schimperna
  • Patent number: 9028723
    Abstract: Copper(II) acetate, zinc(II) acetate, and tin(IV) acetate are weighed so that the total amount of metal ions is 2.0×10?4 mol and the molar ratio of ions is Cu:Zn:Sn=2:1:1, and 2.0 cm3 of oleylamine is added to prepare a mixed solution. Apart from this, 1.0 cm3 of oleylamine is added to 2.0×10?4 mol of sulfur powder to prepare a mixed solution. These mixed solutions are separately heated at 60° C. and mixed at room temperature. The pressure in a test tube is reduced, followed by nitrogen filling. The test tube is heated at 240° C. for 30 minutes and then allowed to stand until room temperature. The resultant product is separated into a supernatant and precipitates by centrifugal separation. The separated supernatant is filtered, methanol is added to produce precipitates. The precipitates are dissolved by adding chloroform to prepare a semiconductor nanoparticle solution.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 12, 2015
    Assignees: National University Corporation Nagoya University, Osaka University, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tsukasa Torimoto, Ken-ichi Okazaki, Tatsuya Kameyama, Takaaki Osaki, Susumu Kuwabata, Akihiko Kudo
  • Patent number: 9028724
    Abstract: Provided is a method for preparing an aqueous dispersion of metal nanoparticles having superior dispersibility and being sinterable at low temperature by modifying the surface of metal nanoparticles having hydrophobic groups with hydrophilic groups. Specifically, by treating the surface hydrophobic groups of the metal nanoparticles with a surface modification solution containing a surfactant and a wetting-dispersing agent, the treatment throughput can be improved about 10-fold and the particles can be monodispersed without agglomeration. Further, by using an antioxidant and a ligand removal agent in the solution, denaturation and oxidation of the particles can be prevented and the high-boiling-point hydrophobic ligands can be eliminated effectively. The hydrophilically treated metal nanoparticles may be dispersed in an aqueous-based solvent to prepare a metal ink sinterable at low temperature.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 12, 2015
    Assignee: Hanwha Chemical Corporation
    Inventors: Won Il Son, Eui Duk Kim, Seok Heon Oh
  • Publication number: 20150122533
    Abstract: A metal circuit structure, a method for forming a metal circuit and a liquid trigger material for forming a metal circuit are provided. The metal circuit structure includes a substrate, a first trigger layer and a first metal circuit layer. The first trigger layer is disposed on the substrate and includes a first metal circuit pattern. The first metal circuit layer is disposed on the first circuit pattern and is electrically insulated from the substrate. The composition of the first trigger layer includes an insulating gel and a plurality of trigger particles. The trigger particles are at least one of organometallic particles, a chelation and a semiconductor material having an energy gap greater than or equal to 3 eV. The trigger particles are disposed in the insulating gel, such that the dielectric constant of the first trigger layer after curing is between 2 and 6.5.
    Type: Application
    Filed: July 3, 2014
    Publication date: May 7, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tune-Hune KAO, Meng-Chi HUANG, Min-Chieh CHOU
  • Patent number: 9018125
    Abstract: [Object] To improve heat stability of diethylzinc which is used for a catalyst of polymerizing, an organic synthetic reaction reagent and a raw materials for providing a zinc film by MOCVD. And to offer the diethylzinc composition being superior in heat stability, even if it handles for a long term a metal zinc particle does not precipitate. [Solving Means] Use a diethylzinc composition added a compound which is added an aromatic compound as an additive which has isopropenyl group bonded as a side chain.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 28, 2015
    Assignee: Tosoh Finechem Corporation
    Inventors: Kenichi Haga, Shizuo Tomiyasu, Kohichi Tokudome
  • Publication number: 20150108415
    Abstract: The present invention relates to an electrode layer comprising a porous film made of oxide semiconductor fine particles sensitized with a quinolinium dye having a fluorinated counteranion. Moreover the present invention relates to a photoelectric conversion device comprising said electrode layer, a dye sensitized solar cell comprising said photoelectric conversion device and to novel quinolinium dyes having a fluorinated counteranion.
    Type: Application
    Filed: March 27, 2013
    Publication date: April 23, 2015
    Applicant: BASF SE
    Inventors: Robert Send, Ingmar Bruder, Peter Erk, Ruediger Sens, Hiroshi Yamamoto, Hitoshi Yamato, Shinji Nakamichi, Ryuichi Takahashi
  • Publication number: 20150107673
    Abstract: The present invention aims to provide a sulfide semiconductor-forming coating liquid capable of easily forming a sulfide semiconductor having a large area, the sulfide semiconductor being useful as a semiconductor material for photoelectric conversion materials. The present invention also aims to provide a sulfide semiconductor thin film produced using the sulfide semiconductor-forming coating liquid; and a thin film solar cell. The present invention provides a sulfide semiconductor-forming coating liquid, the coating liquid containing a complex containing a metal element of group 15 of the periodic table and sulfur.
    Type: Application
    Filed: April 24, 2013
    Publication date: April 23, 2015
    Inventors: Kazushi Ito, Akinobu Hayakawa, Shunji Ohara, Ren-de Sun
  • Publication number: 20150101530
    Abstract: A method of recycling a solution, the method including: filtering a solution used in chemical bath deposition; reinflowing the filtered solution to a bath; and inflowing an alkali solution to the bath to maintain a concentration of an alkaline material in the filtered solution in a range of about 1.0 M to about 3.5 M, is disclosed. A solar cell formed by the method and a deposition apparatus are also disclosed. By the method of recycling a solution, a solar cell including a buffer layer formed with a solution which has been used multiple times may be formed to have an efficiency almost the same as that of a solar cell including a buffer layer formed with a solution provided for the first time before filtering.
    Type: Application
    Filed: August 28, 2014
    Publication date: April 16, 2015
    Inventors: Si-Young Cha, Sang-Hyuck Ahn, Jeong-Hoon Kim, Hyun-Chul Kim, Nam-Seok Baik
  • Publication number: 20150101665
    Abstract: A method for formulating a CIGS nanoparticle-based ink, which can be processed to form a thin film with a crack-free limit (CFL) of 500 nm or greater, comprises: dissolving or dispersing Cu(In,Ga)S2 and Cu(In,Ga)Se2 nanoparticles; mixing the nanoparticle solutions/dispersions and adding oleic acid to form an ink; depositing the ink on a substrate; annealing to remove the organic components of the ink formulation; forming a film with a CFL ?500 nm; and, repeating the deposition and annealing process to form a CIGS film having a thickness ?1 ?m. The film so produced may be incorporated into a thin film photovoltaic device.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 16, 2015
    Inventors: Zugang Liu, Christopher Newman
  • Patent number: 9006296
    Abstract: According to the present invention, a metal nanoparticle dispersion suitable to multiple layered coating by jetting in the form of fine droplets is prepared by dispersing metal nanoparticles having an average particle size of 1 to 100 nm in a dispersion solvent having a boiling point of 80° C. or higher in such a manner that the volume percentage of the dispersion solvent is selected in the range of 55 to 80% by volume and the fluid viscosity (20° C.) of the dispersion is chosen in the range of 2 mPa·s to 30 mPa·s, and then when the dispersion is discharged in the form of fine droplets by inkjet method or the like, the dispersion is concentrated by evaporation of the dispersion solvent in the droplets in the course of flight, coming to be a viscous dispersion which can be applicable to multi-layered coating.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 14, 2015
    Assignees: Harima Chemicals, Inc., SIJ Technology, Inc., National Institute of Advanced Industrial Science and Technology
    Inventors: Daisuke Itoh, Akihito Izumitani, Noriaki Hata, Yorishige Matsuba, Kazuhiro Murata, Hiroshi Yokoyama
  • Publication number: 20150099352
    Abstract: A composition for forming an n-type diffusion layer includes a glass powder containing P2O5, SiO2 and CaO and a dispersion medium. An n-type diffusion layer and a photovoltaic cell element having an n-type diffusion layer are produced by applying the composition for forming an n-type diffusion layer on a semiconductor substrate and by subjecting the substrate to a thermal diffusion treatment.
    Type: Application
    Filed: July 17, 2012
    Publication date: April 9, 2015
    Inventors: Yoichi Machii, Masato Yoshida, Takeshi Nojiri, Mitsunori Iwamuro, Akihiro Orita, Shuichiro Adachi, Tetsuya Saito
  • Publication number: 20150098212
    Abstract: A semiconductor nanocrystal composition including a semiconductor nanocrystal, an organic additive, and at least one polymerizable substance selected from a polymerizable monomer, a polymerizable oligomer, and a combination thereof, wherein the composition has haze of greater than or equal to about 40% after polymerization.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 9, 2015
    Inventors: Na Youn Won, Hyun A KANG, Eun Joo JANG, Shin Ae JUN, Oul CHO
  • Patent number: 8999206
    Abstract: Metal nanoparticles having improved migration resistance are provided. The present invention relates to a method for manufacturing composite nanoparticles including obtaining composite nanoparticles containing at least silver and copper in a single particle by heat treating a mixture containing an organic silver compound and an organic copper compound at a temperature of 150° C. or more in a non-oxidative atmosphere in the presence of a tertiary amine compound represented by the general formula R1R2R3N (wherein R1 through R3 are optionally substituted alkyl groups or aryl groups that may be the same or different, R1 through R3 may be linked in a ring, and the number of carbon atoms in each of R1 through R3 is 5 through 18 and may be the same or different).
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: April 7, 2015
    Assignees: Osaka Municipal Technical Research Institute, Daiken Chemical Co., Ltd.
    Inventors: Masami Nakamoto, Mari Yamamoto, Yukiyasu Kashiwagi, Yukio Yoshida, Hiroshi Kakiuchi, Shinsuke Matsumura
  • Patent number: 8999746
    Abstract: A method of producing a metal chalcogenide dispersion usable in forming a light absorbing layer of a solar cell, the method including: a metal chalcogenide nano particle formation step in which at least one metal or metal compound selected from the group consisting of a group 11, 12, 13, 14 or 15 metal or metal compound, a water-containing solvent and a group 16 element-containing compound are mixed together to obtain metal chalcogenide nano particles; and an addition step in which a compound (1) represented by general formula (1) is added to the metal chalcogenide nano particles, thereby obtaining a metal chalcogenide dispersion (wherein R1 to R4 each independently represents an alkyl group, an aryl group or a hydrogen atom; provided that at least one of R1 to R4 represents a hydrocarbon group).
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: April 7, 2015
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Atsushi Yamanouchi, Koichi Misumi, Akimasa Nakamura
  • Patent number: 8999203
    Abstract: An aluminum paste comprising particulate aluminum, an organic vehicle and glass frit selected from (i) lead-free glass frits with a softening point temperature in the range of 550 to 611° C. and containing 11 to 33 wt.-% of SiO2, >0 to 7 wt.-% of Al2O3 and 2 to 10 wt.-% of B2O3 and (ii) lead-containing glass frits with a softening point temperature in the range of 571 to 636° C. and containing 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO2, 2 to 6 wt.-% of Al2O3 and 6 to 9 wt.-% of B2O3, useful in the production of aluminum back electrodes of PERC silicon solar cells.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 7, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alistair Graeme Prince, Richard John Sheffield Young, Giovanna Laudisio, Gary Coultart, Kenneth Warren Hang, Ben Whittle
  • Publication number: 20150090942
    Abstract: The present invention provides a semiconductor crystal comprising a semiconductor material having a tuned band gap energy, and methods for preparation thereof. More particularly, the invention provides a semiconductor crystal comprising a semiconductor material and amino acid molecules, peptides, or a combination thereof, incorporated within the crystal lattice, wherein the amino acid molecules, peptides, or combination thereof tune the band gap energy of the semiconductor material.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Boaz POKROY, Anastasia BRIF
  • Patent number: 8992804
    Abstract: Use of 2-((1-methylpropyl)amino)ethanol as an additive in an aqueous suspension, containing from 25 to 62 vol. % of at least one calcium carbonate-comprising material, wherein the use provides improved stability with regard to the conductivity of the suspension.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 31, 2015
    Assignee: Omya International AG
    Inventors: Matthias Buri, Samuel Rentsch, Patrick A. C. Gane
  • Patent number: 8992795
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Yamakaji, Koji Nara, Mako Motoyoshi
  • Patent number: 8986819
    Abstract: A non-catalytic palladium precursor composition is disclosed, including a palladium salt and an organoamine, wherein the composition is substantially free of water. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: March 24, 2015
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu
  • Publication number: 20150076420
    Abstract: A photoelectric conversion element which is obtained by having a thin film of fine oxide semiconductor particles support a methine-based dye that is represented by formula (1), said thin film being provided on a substrate.
    Type: Application
    Filed: March 29, 2013
    Publication date: March 19, 2015
    Inventors: Masayoshi Kaneko, Koichiro Shigaki, Teruhisa Inoue
  • Publication number: 20150072092
    Abstract: There are provided a microcapsular quantum dot-polymer composite, a method for producing the composite, optical elements, and a method for producing the optical elements. In order to produce the microcapsular quantum dot-polymer composite, a polymer having a functional group in the side chain is firstly heated in a first solvent to form a polymer solution. A quantum dot suspension consisting of quantum dots capped by a capping layer dispersed in a second solvent is added to the polymer solution to form a mixed solution. The mixed solution is cooled to form the quantum dot-polymer composite consisting of the quantum dots dispersed in the polymer matrix.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventors: Young Soo Seo, Hee Sung Yang, Sang Yul Park, Hye Mi Son, Hyo Sun Kim
  • Patent number: 8974702
    Abstract: The present invention relates to novel formulations comprising an organic semiconductor (OSC) and one or more organic solvents. The formulation comprises a dimethyl anisole solvent. Furthermore, the present invention describes the use of these formulations as inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells and OLED devices, to methods for preparing OE devices using the novel formulations, and to OE devices, OLED devices and OPV cells prepared from such methods and formulations.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: March 10, 2015
    Assignee: Merck Patent GmbH
    Inventors: Philip Edward May, Mark James, Susanne Heun, Magda Goncalves-Miskiewicz, Katie Court
  • Publication number: 20150064446
    Abstract: The present invention relates to the field of organic electronics, such as OLEDs, OPVs and organic photo detectors. It particularly provides intermediates and materials suitable for manufacturing such organic electronics, to specific manufacturing methods and to specific uses.
    Type: Application
    Filed: February 15, 2013
    Publication date: March 5, 2015
    Inventors: Norman Albert Lüchinger, Samuel Claude Halim
  • Publication number: 20150064057
    Abstract: A method for producing a nickel-containing surface coating that is metallic and conductive is provided. The method includes contacting a surface of a substrate with a liquid composition that includes nickel oxide nanoparticles, and modifying the nickel oxide nanoparticles to produce a nickel-containing metallic and conductive surface coating on the surface of the substrate. Also provided are nickel-containing (e.g., NiO and Ni containing) surface coatings and methods for making a liquid composition that includes nickel oxide nanoparticles. The methods and compositions find use in a variety of different applications.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 5, 2015
    Inventors: Costas P. Grigoropoulos, Daeho Lee
  • Publication number: 20150056426
    Abstract: The present invention provides novel ink formulations based on metal salts and metal complexes.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 26, 2015
    Applicant: YISUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD.
    Inventors: Michael Grouchko, Shlomo Magdassi
  • Publication number: 20150056745
    Abstract: Disclosed are a titanium dioxide nano ink having such a strong dispersibility as to be applicable by inkjet printing and having adequate viscosity without requiring printing several times, and a titanium dioxide nano particle modified by a surface stabilizer included therein. Inkjet printing of the titanium dioxide nano ink enables printing of a minute electrode. In addition, efficiency of a solar cell may be maximized since occurrence of pattern cracking is minimized.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 26, 2015
    Inventors: Ki Chun Lee, Yong Jun Jang
  • Patent number: 8961831
    Abstract: The present invention is directed to an electrophoretic display fluid, in particular, pigment particles dispersed in a solvent or solvent mixture, and methods for their preparation. The pigment particles generated, according to the present invention, are stable in solvent under an electric field and can improve the performance of an electrophoretic display.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 24, 2015
    Assignee: E Ink California, LLC
    Inventors: Hui Du, Haiyan Gu, HongMei Zang
  • Publication number: 20150044813
    Abstract: A method of producing a metal chalcogenide dispersion usable in forming a light absorbing layer of a solar cell, the method including: a metal chalcogenide nano particle formation step in which at least one metal or metal compound selected from the group consisting of a group 11, 12, 13, 14 or 15 metal or metal compound, a water-containing solvent and a group 16 element-containing compound are mixed together to obtain metal chalcogenide nano particles; and an addition step in which a compound (1) represented by general formula (1) is added to the metal chalcogenide nano particles, thereby obtaining a metal chalcogenide dispersion (wherein R1 to R4 each independently represents an alkyl group, an aryl group or a hydrogen atom; provided that at least one of R1 to R4 represents a hydrocarbon group).
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Applicant: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Atsushi Yamanouchi, Koichi Misumi, Akimasa Nakamura
  • Patent number: 8952302
    Abstract: The present invention relates to a ceramic-coated heater in which the outer surface of a heater rod is coated with ceramic to improve the physical properties thereof including durability, corrosion resistance, and the like, thereby enabling the heater to be used in water or air. The outer surface of the heater rod is coated with a ceramic composition to which an acrylic corrosion resistant wax is added, thereby strengthening the bonding force of the coating layer film, and thus improving the physical properties thereof including durability, corrosion resistance, and the like to enable the heater to be used in water. Therefore, the ceramic-coated heater of the present invention enables high thermal conductivity using less current and reduces energy consumption so that it can be utilized in a wide variety of industrial fields.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: February 10, 2015
    Assignee: Thermolon Korea Co., Ltd.
    Inventor: Chung Kwon Park
  • Publication number: 20150037197
    Abstract: An oxygen source-containing composite nanometal paste including at least composite nanometal particles, in which an organic coating layer is formed around a submicron or smaller silver core, and an oxygen source, which feeds oxygen contributing to pyrolysis at a pyrolysis temperature range in which the organic coating layer is pyrolyzed. The oxygen source comprises an oxygen-containing metal compound, and the oxygen content of the oxygen source is within a range of 0.01 mass % to 2 mass % per 100 mass % of the composite nanometal particles.
    Type: Application
    Filed: February 20, 2013
    Publication date: February 5, 2015
    Inventor: Teruo Komatsu
  • Publication number: 20150027540
    Abstract: The present invention aims to provide an organic thin-film solar cell that has a high photoelectric conversion efficiency, little dispersion in the photoelectric conversion efficiency in a photoelectric conversion layer, and excellent durability. The present invention is an organic thin-film solar cell including a photoelectric conversion layer, wherein the photoelectric conversion layer includes a portion containing a sulfide of a Group 15 element in the periodic table and a portion containing an organic semiconductor having a molecular weight of less than 10,000, and the portion containing a sulfide of a Group 15 element in the periodic table and the portion containing an organic semiconductor having a molecular weight of less than 10,000 contact with each other.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 29, 2015
    Inventors: Akinobu Hayakawa, Kazushi Ito, Ren-de Sun
  • Publication number: 20150030918
    Abstract: The present invention relates to a method for preparing a lithium iron phosphate nanopowder, including the steps of (a) preparing a mixture solution by adding a lithium precursor, an iron precursor and a phosphorus precursor in a glycerol solvent, and (b) putting the mixture solution into a reactor and heating to prepare the lithium iron phosphate nanopowder under pressure conditions of 1 bar to 10 bar, and a lithium iron phosphate nanopowder prepared by the method. When compared to a common hydrothermal synthesis method, a supercritical hydrothermal synthesis method and a glycothermal synthesis method, a reaction may be performed under a relatively lower pressure. Thus, a high temperature/high pressure reactor is not necessary and process safety and economic feasibility may be secured. In addition, a lithium iron phosphate nanopowder having uniform particle size and effectively controlled particle size distribution may be easily prepared.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 29, 2015
    Applicant: LG Chem, Ltd.
    Inventors: In Kook Jun, Seung Beom Cho, Myoung Hwan Oh
  • Publication number: 20150024271
    Abstract: The present invention relates to a method for preparing a lithium iron phosphate nanopowder, including the steps of (a) preparing a mixture solution by adding a lithium precursor, an iron precursor and a phosphorus precursor in a triethanolamine solvent, and (b) putting the mixture solution into a reactor and heating to prepare the lithium iron phosphate nanopowder under pressure conditions of 10 bar to 100 bar, and a lithium iron phosphate nanopowder prepared by the method. When compared to a common hydrothermal synthesis method and a supercritical hydrothermal synthesis method, a reaction may be performed under a relatively lower pressure. When compared to a common glycothermal synthesis method, a lithium iron phosphate nanopowder having effectively controlled particle size and particle size distribution may be easily prepared.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: LG CHEM, LTD.
    Inventors: In Kook Jun, Seung Beom Cho, Myoung Hwan Oh
  • Publication number: 20150024539
    Abstract: The invention relates to a method for preparing a colloidal nanoparticle solution, including: (a) dissolving a titanium-oxide precursor, referred to as a precursor, in one or more solvents, referred to as precursor solvents; and (b) chemically converting, preferably by means of hydrolysis, said titanium-oxide precursor and said precursor solvent into a colloidal-solution solvent so as to form titanium-oxide nanoparticles that are dispersed in the colloidal-solution solvent, said colloidal solution having a dynamic viscosity of between 4 and 54 cP at 20° C. and 101,325 Pa. The invention also relates to a colloidal titanium-oxide nanoparticle solution containing a dispersion of titanium-oxide nanoparticles in a solvent or system of solvents, the viscosity of which is between 4 and 54 cP, said solution being particularly obtainable according to the method of the invention, as well as to the uses thereof, in particular for preparing photovoltaic cells.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 22, 2015
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S), UNIVERSITE DE NANTES, Commissariat à l'énergie atomique et aux énergies alternatives, ARDEJE
    Inventors: Luc René Roger Brohan, Arkadiusz Michal Karpinski, Mireille Richard-Plouet, Solenn Berson, Stéphane Guillerez, Mickaël Barret, Jérôme Mourao
  • Publication number: 20150024266
    Abstract: The present invention relates to a method for preparing a lithium iron phosphate nanopowder, including the steps of (a) preparing a mixture solution by adding a lithium precursor, an iron precursor and a phosphorus precursor in a glycerol solvent, and (b) putting the mixture solution into a reactor and heating to prepare the lithium iron phosphate nanopowder under pressure conditions of 10 bar to 100 bar, and a lithium iron phosphate nanopowder prepared by the method. When compared to a common hydrothermal synthesis method and a supercritical hydrothermal synthesis method, a reaction may be performed under a relatively lower pressure. When compared to a common glycothermal synthesis method, a lithium iron phosphate nanopowder having effectively controlled particle size and particle size distribution may be easily prepared.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: LG CHEM, LTD.
    Inventors: In Kook Jun, Seung Beom Cho, Myoung Hwan Oh
  • Publication number: 20150024265
    Abstract: The present invention relates to a method for preparing a lithium iron phosphate nanopowder, including the steps of (a) preparing a mixture solution by adding a lithium precursor, an iron precursor and a phosphorus precursor in a triethanolamine solvent, and (b) putting the mixture solution into a reactor and heating to prepare the lithium iron phosphate nanopowder under pressure conditions of 1 bar to 10 bar, and a lithium iron phosphate nanopowder prepared by the method. When compared to a common hydrothermal synthesis method, a supercritical hydrothermal synthesis method and a glycothermal synthesis method, a reaction may be performed under a relatively lower pressure. Thus, a high temperature/high pressure reactor is not necessary and process safety and economic feasibility may be secured. In addition, a lithium iron phosphate nanopowder having uniform particle size and effectively controlled particle size distribution may be easily prepared.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: LG CHEM, LTD.
    Inventors: In Kook Jun, Seung Beom Cho, Myoung Hwan Oh
  • Patent number: 8932496
    Abstract: A method of preparing an aqueous dispersion comprising silver particles of mean diameter from 0.5 to 25 nm by weight and an aqueous carrier liquid, including the steps of i) providing a mixture comprising at least one silver salt, aqueous carrier liquid and a stabiliser for the particles ii) contacting the mixture with a non-ionic or covalent reducing agent to form a reaction mixture iii) causing the at least one silver salt to react with the reducing agent to form a dispersion comprising silver particles and acid wherein step iii) is partly or completely performed in the presence of anion exchange resin whereby the acid is exchanged for a hydroxide ion from the resin and/or is sorbed by the resin.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: January 13, 2015
    Assignee: Akzo Nobel Coatings International B.V.
    Inventors: Richard Buscall, Derek Graham, Rory Anderson, Peter Joseph Scales, Paul Mulvaney, Robert James Eldridge
  • Publication number: 20150011044
    Abstract: Provided is a composition for forming tin oxide semiconductor including a tin precursor compound, an antimony precursor compound, and a solvent, according to an aspect of the present disclosure. Also provided is a method of forming a tin oxide semiconductor thin film. The method includes preparing a composition including a tin precursor compound and an antimony precursor compound dissolved in a solvent; disposing the composition on a substrate; and performing a heat treatment on the substrate coated with the composition.
    Type: Application
    Filed: December 5, 2013
    Publication date: January 8, 2015
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, Samsung Display Co., Ltd.
    Inventors: Chaun-Gi CHOI, Yeon-Gon MO, Hyun-Jae KIM, Hyun-Soo LIM, Si-Joon KIM, Tae-Soo JUNG, You-Seung RIM
  • Patent number: 8927099
    Abstract: The present invention is to provide a device capable of having an easy production process and achieving a long lifetime. A device comprising a substrate, two or more electrodes facing each other disposed on the substrate and a positive hole injection transport layer disposed between two electrodes among the two or more electrodes, wherein the positive hole injection transport layer contains a transition metal compound-containing nanoparticle comprising a transition metal compound containing one or more kinds selected from the group consisting of a transition metal carbide oxide, transition metal nitride oxide and transition metal sulfide oxide, wherein a protecting agent having a linking group and a hydrophobic organic group is connected to the transition metal compound by the linking group.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: January 6, 2015
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Shigehiro Ueno, Yosuke Taguchi, Masaya Shimogawara
  • Publication number: 20150004310
    Abstract: Methods for purifying nanocrystals via gel permeation chromatography are provided. The method can include: loading a sample solution into a chromatography column, wherein the sample solution comprises nanocrystals coated with a layer of organic ligands; using an eluent, passing the nanocrystals coated with the layer of organic ligands through a stationary phase of the chromatography column, wherein the eluent is an organic solvent in which the nanocrystals coated with the layer of organic ligands remain miscible to form a mobile phase; and collecting the mobile phase passed through the stationary phase of the chromatography column. The surface ligands of the purified nanocrystals can then be, in one embodiment, replaced with a second type of ligand.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Andrew B. Greytak, Yi Shen
  • Publication number: 20150000728
    Abstract: Provided is a titanium oxide laminated film that includes the titanium oxide film consisting of anatase-type plate-like crystals in which (001) faces with a high chemical activity are grown more than normal and the (001) faces are grown in a vertical or inclined direction with respect to a deposition surface of a base material, and is capable of having a specific surface area greater than that of the titanium oxide film alone. A titanium oxide laminated film (1) is formed by sequentially laminating, on a base material (11), a first titanium oxide film (12) consisting of a plurality of anatase-type plate-like crystals in which (001) faces are grown in a vertical or inclined direction with respect to a deposition surface (11a) of the base material (11), and a second titanium oxide film (13) having a specific surface area greater than that of the first titanium oxide film (12) and consisting of a plurality of titanium oxide fine particles.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 1, 2015
    Inventors: Masato Maitani, Keita Tanaka, Yuji Wada
  • Patent number: 8920685
    Abstract: A nanoparticle-resin composition includes a nanoparticle, a silicone resin having a reactive functional group at its terminal end, and a compound selected from a silane group-containing compound, a silazane compound, or a combination including at least one of the foregoing. In addition, a nanoparticle-resin composite includes a silicone resin matrix including the cure product of a silicone resin having a reactive functional group at its terminal end, a plurality of nanoparticle clusters dispersed in the silicone resin matrix, and a buffer layer encapsulating the nanoparticle cluster. The buffer layer includes a compound selected from a silane group-containing compound, a silazane compound, or a combination including at least one of the foregoing compounds.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Joo Jang, Shin-Ae Jun, Seok-Hwan Hong, Jin-Young Bae
  • Patent number: 8920672
    Abstract: The present invention relates to negative active materials for rechargeable lithium batteries, manufacturing methods thereof, and rechargeable lithium batteries including the negative active materials. A negative active material for a rechargeable lithium battery includes a core including a material capable of carrying out reversible oxidation and reduction reactions and a coating layer formed on the core. The coating layer has a reticular structure.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Nam-Soon Choi, Sung-Soo Kim, Yong-Mook Kang, Kyoung-Han Yew
  • Publication number: 20140367674
    Abstract: A process for forming an amorphous conductive oxide film, comprising the steps of: applying a composition which comprises (A1) a×y parts by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts and halides of a metal selected from among lanthanoids (excluding cerium), (A2) a×(1?y) parts by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts and halides of a metal selected from among lead, bismuth, nickel, palladium, copper and silver, (B) 1 part by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts, halides, nitrosylcarboxylate salts, nitrosylnitrate salts, nitrosylsulfate salts and nitrosylhalides of a metal selected from among ruthenium, iridium, rhodium and cobalt, and (C) a solvent containing at least one selected from the group consisting of carboxylic acids, alcohols, ket
    Type: Application
    Filed: November 15, 2012
    Publication date: December 18, 2014
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tatsuya Shimoda, Jinwang Li