With Organic Compound Patents (Class 252/519.3)
  • Patent number: 8435428
    Abstract: Methods for forming a film on a substrate in a semiconductor manufacturing process. A reaction chamber a substrate in the chamber are provided. A ruthenium based precursor, which includes ruthenium tetroxide dissolved in a mixture of at least two non-flammable fluorinated solvents, is provided and a ruthenium containing film is produced on the substrate.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 7, 2013
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Bin Xia, Ashutosh Misra
  • Publication number: 20130104973
    Abstract: A conductive paste includes a conductive powder, a metallic glass, an inorganic additive for fire-through, and an organic vehicle, and an electronic device and a solar cell including an electrode formed using the conductive paste.
    Type: Application
    Filed: September 6, 2012
    Publication date: May 2, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang Soo JEE, Suk Jun KIM, Haeng Deog KOH, Yun Hyuk CHOI, Eun Sung LEE
  • Publication number: 20130092885
    Abstract: A method of manufacturing nanoparticles including: providing a metal chalcogenide complexes (MCC) hydrazine hydrate solution; providing a first organic solution of nanoparticles with first organic ligands; forming a mixed solution by mixing the MCC hydrazine hydrate solution and the first organic solution of nanoparticles capped with the first organic ligands; and replacing the first organic ligands of the nanoparticles with ligands of the MCC hydrazine hydrate.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 18, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyung-sang CHO, Byoung-lyong CHOI, Tae-ho KIM
  • Publication number: 20130078151
    Abstract: A gas sensor cell using a liquid crystal composite material is provided. The gas sensor cell has recovery capability and can be reused. Upon gas adsorption, the liquid crystal composite material has visually detectable color changes and changes in electrical properties to facilitate the measurement of gas concentration from low to high.
    Type: Application
    Filed: January 11, 2012
    Publication date: March 28, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chin-Kai Chang, Hui-Lung Kuo
  • Publication number: 20130069018
    Abstract: A method for preparing semiconductor nanocrystals comprises reacting cation precursors and anion precursors in a reaction mixture including one or more acids, one or more phenol compounds, and a solvent to produce semiconductor nanocrystals having a predetermined composition. A method for forming a coating on at least a portion of a population of semiconductor nanocrystals is also disclosed. The method comprises forming a first mixture including a population of semiconductor nanocrystals, one or more amine compounds, and a first solvent; adding cation precursors and anion precursors to the first mixture at a temperature sufficient for growing a semiconductor material on at least a portion of an outer surface of at least a portion of the population of semiconductor nanocrystals; and initiating addition of one or more acids to the first mixture after addition of the cation and anion precursors is initiated. Semiconductor nanocrystals and populations thereof are also disclosed.
    Type: Application
    Filed: August 10, 2012
    Publication date: March 21, 2013
    Inventors: ZHENGGUO ZHU, Jonathan S. Steckel, Craig Breen, Justin W. Kamplain, Inia Song, Chunming Wang
  • Publication number: 20130069012
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where lithium manganese fluorophosphate such as Li2MnPO4F can be used as an electrode material. Li2MnPO4F is prepared by chemical intercalation of lithium, and can be used as an electrode material, and a non-lithium containing material can then be used as an anode material for manufacturing of a full cell. Furthermore, it is possible to provide a carbon coating for a cathode material for a lithium battery, which has improved electrical conductivity.
    Type: Application
    Filed: December 7, 2011
    Publication date: March 21, 2013
    Applicants: KOREA ELECTRONICS TECHNOLOGY INSTITUTE, HYUNDAI MOTOR COMPANY
    Inventors: Dong Gun KIM, Sa Heum KIM, Young Jun KIM, Jun Ho SONG, Woo Suk CHO, Jeom Soo KIM, Dong Jin KIM
  • Publication number: 20130063023
    Abstract: A composition is provided, including one or more quantum dots and at least one organic emitter. Further, a formulation including the composition, a use of the formulation and a device comprising the composition or formulation is provided.
    Type: Application
    Filed: April 28, 2011
    Publication date: March 14, 2013
    Applicant: Merck Patent GMBH
    Inventors: Junyou Pan, Niels Schulte, Thomas Eberle, Volker Hilarius
  • Publication number: 20130062581
    Abstract: The present invention relates to novel formulations comprising an organic semiconductor (OSC) and one or more organic solvents. The formulation comprises a dimethyl anisole solvent. Furthermore, the present invention describes the use of these formulations as inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells and OLED devices, to methods for preparing OE devices using the novel formulations, and to OE devices, OLED devices and OPV cells prepared from such methods and formulations.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 14, 2013
    Applicant: Merck Patent GmbH
    Inventors: Philip Edward May, Mark James, Susanne Heun, Magda Goncalves-Miskiewicz, Katie Court
  • Publication number: 20130056690
    Abstract: It is an object to provide a maleimide-based compound having excellent photoelectric conversion characteristics, and a tautomer or a stereoisomer thereof, a dye for photoelectric conversion, a semiconductor electrode, a photoelectric conversion element, and a photoelectrochemical cell. In order to accomplish the above-described objects, a dye for photoelectric conversion including at least one compound represented by the following general formula (1) is provided. (In the formula (1), R1 represents a direct bond, or a substituted or unsubstituted alkylene group. X represents an acidic group. D represents an organic group containing an electron-donating substituent. Z represents a linking group that has at least one hydrocarbon group selected from aromatic rings or heterocyclic rings).
    Type: Application
    Filed: May 16, 2011
    Publication date: March 7, 2013
    Applicant: NEC CORPORATION
    Inventors: Katsumi Maeda, Shin Nakamura, Kentaro Nakahara
  • Publication number: 20130048922
    Abstract: Provided is a method for preparing quantum dots of lead selenide, comprising the following steps: 1) mixing selenium powder with octadecene, heating with stirring to dissolve the selenium powder fully, maintaining the temperature, then cooling to room temperature to obtain a stock solution of selenium; 2) mixing lead compound, oleic acid, octadecene and benzophenone together, and dissolving to obtain a stock solution of lead, then maintaining the temperature at 130-190° C.; 3) adding the stock solution of selenium into the stock solution of lead rapidly, and maintaining the temperature at 100-160° C., after cooling, quantum dots of lead selenide are initially prepared; 4) adding the initially prepared quantum dots of lead selenide into a mixture of toluene and methanol, centrifugating and removing the supernatant to obtain a precipitate, then redissolving the precipitate with toluene to obtain a transparent solution of quantum dots of pure lead selenide.
    Type: Application
    Filed: May 11, 2010
    Publication date: February 28, 2013
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie Zhou, Chun Wang
  • Patent number: 8383018
    Abstract: Provided is a method of forming a nanocomposite solution, and a nanocomposite photovoltaic device. In the method, a metal oxide nanorod solution is prepared and a nanoparticle solution is prepared. The metal oxide nanorod solution and the nanoparticle solution are mixed to form a nanocomposite solution.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 26, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jonghyurk Park
  • Publication number: 20130032720
    Abstract: Disclosed is a novel composition for radiation image detector. The composition comprises an organic matrix comprising a charge transport material (CTM); and scintillating particles for absorbing radiation, being dispersed in the organic matrix, wherein the scintillating particles are in contact with a charge generation material (CGM).
    Type: Application
    Filed: August 2, 2012
    Publication date: February 7, 2013
    Applicant: Vieworks Co., Ltd.
    Inventors: DENNY LAP YEN LEE, HYUN SUK JANG
  • Patent number: 8366974
    Abstract: An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d1+d2, and wherein d1 and d2 satisfy the relationship of d1?d2?3d1.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 5, 2013
    Assignee: Northwestern University
    Inventors: Samuel I. Stupp, Josh Goldberger, Marina Sofos
  • Patent number: 8366973
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 5, 2013
    Assignee: Nanosolar, Inc
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8362092
    Abstract: The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether, or a cationic surfactant such as fatty (C12˜C32) quaternary ammonium salts and fatty (C12˜C32) quaternary ammonium chlorides.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: January 29, 2013
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Wei-Ting Chen, Yen-Chi Hsu, Chih-Wei Chiu
  • Patent number: 8361350
    Abstract: An ink composition comprises silver nanoparticles, hydrocarbon solvent, and an alcohol co-solvent. The ink composition is suitable for printing conductive lines that are uniform, smooth, and narrow on various substrate surfaces.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: January 29, 2013
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu, Nan Xing Hu
  • Patent number: 8354458
    Abstract: A UV curable intermediate transfer media, such as a belt, that includes for example, a first supporting substrate, such as a polyimide substrate layer, and a second surface layer of a mixture of a dendritic, crosslinked, or branched polyester polyol acrylate, an acrylate, an optional vinyl monomer, and a photoinitiator component.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 15, 2013
    Assignee: Xerox Corporation
    Inventors: Jin Wu, Jonathan H. Herko, Lanhui Zhang, Lin Ma
  • Publication number: 20130009138
    Abstract: A composite material including an organic compound and an inorganic compound, which has a high carrier-transport property; a composite material having an excellent property of carrier injection to an organic compound; a composite material in which light absorption due to charge transfer interaction is unlikely to occur; and a composite material having a high visible-light-transmitting property are provided. A composite material which includes an organic compound and an inorganic compound exhibiting an electron-accepting property with respect to the organic compound, in which the rings of the organic compound are all benzene rings and the number of the benzene rings of the organic compound is greater than or equal to 4 and less than or equal to 25, is provided.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 10, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiromi SEO, Harue OSAKA, Satoshi SEO, Masato SUZUKI, Nobuharu OHSAWA
  • Patent number: 8343386
    Abstract: An electrostatically dissipative adhesive in one embodiment includes a mixture comprising: an adhesive material; and electrically conductive particles intermixed with the adhesive material, the electrically conductive particles being present in an amount between 0 and about 10% by weight of a total weight of the mixture. An electrostatically dissipative adhesive in another embodiment includes a mixture comprising: an adhesive material; and electrically conductive particles intermixed with the adhesive material, the electrically conductive particles being present in an amount between 0 and about 10% by weight of a total weight of the mixture, wherein the mixture has at least 50% of a lap shear strength as measured in accordance with ISO 4587 after curing for 72 hours at 22° C. as the raw adhesive material has as measured in accordance with ISO 4587 after curing for 72 hours at 22° C.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: William Thomas Bandy, IV, Icko E. Tim Iben, Wayne Alan McKinley
  • Publication number: 20120312467
    Abstract: The invention relates to a process for producing electrically conductive bonds between solar cells, in which an adhesive comprising electrically conductive particles is first transferred from a carrier to the substrate by irradiating the carrier with a laser, the adhesive transferred to the substrate is partly dried and/or cured to form an adhesive layer, in a further step the adhesive is bonded to an electrical connection, and finally the adhesive layer is cured. The invention further relates to an adhesive for performing the process, comprising 20 to 98% by weight of electrically conductive particles, 0.01 to 60% by weight of an organic binder component used as a matrix material, based in each case on the solids content of the adhesive, 0.005 to 20% by weight of absorbent based on the weight of the conductive particles in the adhesive, and 0 to 50% by weight of a dispersant and 1 to 20% by weight of solvent, based in each case on the total mass of the undried and uncured adhesive.
    Type: Application
    Filed: February 16, 2011
    Publication date: December 13, 2012
    Applicant: BASF SE
    Inventors: Frank Kleine Jaeger, Juergen Kaczun, Stephan Hermes
  • Publication number: 20120312372
    Abstract: The invention relates to zinc-containing glass compositions useful in conductive pastes for silicon semiconductor devices and photovoltaic cells.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Alan Frederick Carroll, Kenneth Warren Hang, Brian J. Laughlin, Zhigang Rick Li, Hisashi Matsuno, Yueli Wang
  • Publication number: 20120312370
    Abstract: The invention describes a novel process for the aqueous synthesis of rutile and anatase nanocrystallites, their blending for preparation of a hybrid paste for single-layer (bi-functional) film deposition and the formulation of new water-based TiO2 screen printing paste for the fabrication of dye-sensitized solar cells (DSSC) photoanodes.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicant: MCGILL UNIVERSITY
    Inventors: George P. DEMOPOULOS, Cecile CHARBONNEAU
  • Publication number: 20120288987
    Abstract: The present invention relates to aqueous processes to make metal chalcogenide nanoparticles that are useful precursors to copper zinc tin sulfide/selenide and copper tin sulfide/selenide. In addition, this invention provides processes for preparing crystalline particles from the metal chalcogenide nanoparticles, as well as processes for preparing inks from both the metal chalcogenide nanoparticles and the crystalline particles.
    Type: Application
    Filed: November 22, 2010
    Publication date: November 15, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Daniela Rodica Radu, Lynda Kaye Johnson, Cheng-Yu Lai, Meijun Lu, Irina Malajovich
  • Patent number: 8298350
    Abstract: A chromium-free conversion coating is prepared by the addition of inorganic salts to dispersions of conducting polymers which are then exposed to alloys of aluminum or other metals. Advantageously, the performance of the coating is comparable to that of known Cr (chromium)-based methods for a number of aluminum alloys having particular significance in the manufacture of aircraft.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: October 30, 2012
    Assignee: The Boeing Company
    Inventors: Francisco Jesus Cano-Iranzo, Uxoa Izagirre-Etxeberria, Oihana Zubillaga-Alcorta, Patricia Santa Coloma-Mozo, Nieves Lapeña-rey
  • Patent number: 8293142
    Abstract: A composition containing fine silver particles which have a uniform particle size, can form a fine drawing pattern, and have a small environmental impact, a method for producing that composition, a method for producing fine silver particles, and a paste having fine silver particles are provided. The fine silver particles are produced by carrying out a fluid preparation step of preparing a reduction fluid, a silver reaction step, and a filtration/washing step. The reaction step is carried out by adding an aqueous silver nitrate fluid to a reduction fluid whose temperature has been increased to a range between 40 and 80° C. The aqueous silver nitrate fluid is added at a stretch. The composition containing fine silver particles is produced by dispersing the composition containing the fine silver particles in a polar fluid.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 23, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yutaka Hisaeda, Toshihiko Ueyama
  • Patent number: 8293144
    Abstract: A composition containing fine silver particles which have a uniform particle size, can form a fine drawing pattern, and have a small environmental impact, a method for producing that composition, a method for producing fine silver particles, and a paste having fine silver particles are provided. The fine silver particles are produced by carrying out a fluid preparation step of preparing a reduction fluid, a silver reaction step, and a filtration/washing step. The reaction step is carried out by adding an aqueous silver nitrate fluid to a reduction fluid whose temperature has been increased to a range between 40 and 800° C. The aqueous silver nitrate fluid is added at a stretch. The composition containing fine silver particles is produced by dispersing the composition containing the fine silver particles in a polar fluid.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 23, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yutaka Hisaeda, Toshihiko Ueyama
  • Publication number: 20120261625
    Abstract: The present invention relates to a stabilized monomer dispersion containing inorganic oxide nanoparticles with high refractive index in which the refractive index of the inorganic oxide nanoparticles is greater than 1.65 and the average particle size of the high refractive inorganic oxide nanoparticles ranges from 1 to 100 nm and its content is in a range of from 1.0% by weight to 10.0% by weight based on the total weight of the monomer dispersion. The present invention also relates to a process for preparing the stabilized monomer dispersion containing high refractive inorganic oxide nanoparticles.
    Type: Application
    Filed: January 25, 2012
    Publication date: October 18, 2012
    Inventors: Wen-Yen CHIU, I-Ann Lei, Dai-Fu Lai, Wen-Chang Chen, Yang-Yen Yu, Guey-Sheng Liou, Trong-Ming Don
  • Publication number: 20120256140
    Abstract: Use of 2-amino-2-methyl-1-propanol (AMP) as an additive in an aqueous suspension, containing from 25 to 62 vol. % of at least one calcium carbonate-comprising material and having a pH of between 8.5 and 11, to increase the suspension pH by at least 0.3 pH units, the AMP being added to said suspension in an amount of from 500 to 15000 mg per litre of the aqueous phase of the suspension, wherein the suspension conductivity change is maintained to within 100 ?S/cm/pH unit.
    Type: Application
    Filed: August 5, 2010
    Publication date: October 11, 2012
    Inventors: Matthias Buri, Samuel Rentsch, Patrick Arthur Charles Gane
  • Publication number: 20120241727
    Abstract: A composite material which includes an organic compound and an inorganic compound and has a high carrier-transport property is provided. A composite material having a good property of carrier injection into an organic compound is provided. A composite material in which light absorption due to charge-transfer interaction is unlikely to occur is provided. A composite material having a high visible-light-transmitting property is provided. A composite material including a hydrocarbon compound and an inorganic compound exhibiting an electron-accepting property with respect to the hydrocarbon compound is provided. The hydrocarbon compound has a substituent bonded to a naphthalene skeleton, a phenanthrene skeleton, or a triphenylene skeleton and has a molecular weight of 350 to 2000, and the substituent has one or more rings selected from a benzene ring, a naphthalene ring, a phenanthrene ring, and a triphenylene ring.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 27, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kaori OGITA, Hiromi NOWATARI, Harue OSAKA, Takahiro USHIKUBO, Satoshi SEO, Takako TAKASU
  • Publication number: 20120207947
    Abstract: A method for making a solution for forming a titanium oxide sol-gel layer. Is provided. The method comprises the steps of: mixing an acid with water thereby obtaining a first mixture, mixing the first mixture with a water miscible alcohol, thereby obtaining a second mixture, mixing an amine compound, e.g., ethanolamine, to the second mixture, thereby obtaining a third mixture, waiting enough time for the third mixture to reach room temperature, e.g. from 10 to 15 minutes, and adding a titanium oxide precursor to the third mixture, thereby obtaining the solution.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 16, 2012
    Applicant: IMEC
    Inventor: Afshin Hadipour
  • Publication number: 20120202037
    Abstract: Solution derived nanocomposite (SDN) precursor solutions are disclosed that comprise one or more metal precursors that are dissolved in a liquid comprising polar protic and polar aprotic solvents. The precursor solutions are characterized by the formation of a gel after a shear force is applied to the precursor solution or to a thin layer of precursor solution. Also disclosed are methods using such precursor solutions to make thin films, thin films made using the precursor solutions, thin films having a minimum surface area and devices containing thin films as disclosed herein.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 9, 2012
    Applicant: ADVENIRA, INC.
    Inventor: Elmira Ryabova
  • Publication number: 20120194062
    Abstract: Provided is a composite material which makes it possible to provide a light-emitting element having at least one of the following characteristics by applying the composite material to the light-emitting element: low voltage driving, high emission efficiency, and a long life (high reliability). The composite material includes a hydrocarbon compound and an inorganic compound which exhibits an electron-accepting property with respect to the hydrocarbon compound. The hydrocarbon compound has a molecular weight of greater than or equal to 400 and less than or equal to 2000, where one or more aryl groups are bonded to a fluorene unit.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 2, 2012
    Inventors: Harue Osaka, Hiroki Suzuki, Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa
  • Publication number: 20120187350
    Abstract: This invention relates to galvanic aluminum alloy powder-pigments coated with a semi-conducting corrosion inhibiting oxide and the process for preparing said coated powder-pigments in combination with film-forming binders for coating metal substrates to inhibit corrosion. The coated aluminum alloy powder-pigments are electrically active and prevent corrosion of metals which are more cathodic (electropositive) than the aluminum alloy pigments.
    Type: Application
    Filed: July 27, 2011
    Publication date: July 26, 2012
    Inventors: Craig Matzdorf, William Nickerson
  • Publication number: 20120174976
    Abstract: A conductive paste includes a conductive powder, a metallic glass, and an organic vehicle. The metallic glass may be an alloy including a first element with an atomic radius that satisfies the following equation: (r1?rn)/(r1+rn/2)×100?9% In the equation, r1 may be an atom radius of the first element, rn may be an atom radius of other elements included in the metallic glass, and n may be an integer ranging from 2 to 10.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 12, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Se Yun KIM, Eun Sung LEE, Sang Soo JEE, Ki Hong KIM
  • Publication number: 20120175567
    Abstract: In some embodiments, a nanocrystal described herein comprises a semiconductor material MX, wherein M is a group II or a group III element and X is a group V or a group VI element to provide a II/VI compound or a III/V compound, the nanocrystal having lateral dimensions and a vertical dimension having the shortest axis, wherein surfaces of the nanocrystal normal or substantially normal to the axis of the vertical dimension comprise a layer of M ions passivated by a counter ion chemical species.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 12, 2012
    Applicant: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Zheng Li
  • Patent number: 8211336
    Abstract: Disclosed is a nonaqueous electrolyte secondary battery which is suppressed in increase of internal resistance, while having high capacity retention rate and small battery swelling even after a long use. Specifically disclosed is a method for manufacturing a nonaqueous electrolyte secondary battery, which is characterized by using a positive electrode containing a positive electrode active material having an ?-NaFeO2 crystal structure and the following chemical composition: LixMnaNibCocOd (wherein 0<x<1.3, a+b+c=1, 1.7?d?2.3), while satisfying |a?b|<0.03 and 0.33?c<1, a negative electrode, and a nonaqueous electrolyte containing an unsaturated sultone and a sulfate ester compound.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 3, 2012
    Assignee: GS Yuasa International Ltd.
    Inventors: Hanako Miyasaka, Takaaki Iguchi, Junichi Kuratomi, Sumio Mori
  • Publication number: 20120161082
    Abstract: A paste composition for a rear electrode of a solar cell according to an embodiment comprises conductive powder including a first powder having a first mean particle diameter, a second powder having a second mean particle diameter larger than the first mean particle diameter, and a third powder having a third mean particle diameter larger than the second mean particle diameter, and an organic vehicle.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventors: SANG GON KIM, In Jae Lee, Soon Gil Kim, Jin Gyeong Park, Sun Mi Lee, Kyoung Hoon Chai
  • Patent number: 8206616
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 26, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8197719
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 12, 2012
    Assignee: American Lithium Energy Corp.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Publication number: 20120126207
    Abstract: An organic composition for a semiconductor device includes a compound for an organic semiconductor device including a structural unit; and a metal-containing compound selected from a transition element-containing compound, a lanthanide-containing compound, and a combination thereof, which results in improved charge mobility due to a reduced grain boundary.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 24, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong Won Chung, Do-Hwan Kim, Bang Lin Lee, Jeong il Park, Yong Wan Jin, Sang Yoon Lee
  • Publication number: 20120129322
    Abstract: A composite material includes at least two components, wherein at least one component is present in the form of nanoparticles, which consist of at least three metals and at least one non-metal and the diameter of which is less than one micrometre, preferably less than 200 nm. The novel composite material is particularly well suited for the production of photoactive layers.
    Type: Application
    Filed: May 27, 2010
    Publication date: May 24, 2012
    Applicant: ISOVOLTAIC AG
    Inventors: Dieter Meissner, Thomas Rath, Eugen Maier, Gregor Trimmel, Albert Plessing, Franz Stelzer
  • Patent number: 8182721
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8182720
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20120119191
    Abstract: The present invention relates new compounds and to an organic electronic device comprising at least one substantially organic layer comprising a non fully conjugated chemical compound, which compound is preferably used in electron transport layers, electron injection layers. The invention also includes a process for preparing an organic electronic device, wherein the substantially organic layer comprising a non fully conjugated chemical compound is deposited on a first layer, and a second layer is deposited on the substantially organic layer, preferably a cathode being deposited on the substantially organic layer comprising the non fully conjugated chemical compound.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 17, 2012
    Applicant: NOVALED AG
    Inventors: Sascha Dorok, Ulrich Heggemann, Andrea Lux, Carsten Rothe
  • Publication number: 20120111409
    Abstract: A semiconductor oxide ink composition, a method of manufacturing the composition, and a method of manufacturing a photoelectric conversion element are provided. The semiconductor oxide ink composition for inkjet printing comprises a semiconductor oxide and a solvent, wherein the semiconductor oxide comprises 0.1 to 20 parts by weight relative to 100 parts by weight of the total composition.
    Type: Application
    Filed: February 14, 2011
    Publication date: May 10, 2012
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Won Jung Kim, Sang Hak Kim, Yong Jun Jang, Yong Gu Kim, Mi Yeon Song, In Woo Song, Ki Chun Lee
  • Patent number: 8173050
    Abstract: A conductive pattern formation ink which can be stably ejected in the form of liquid droplets and form a conductive pattern having high reliability, a conductive pattern having high reliability, and a wiring substrate provided with the conductive pattern and having high reliability are provided. The conductive pattern formation ink is used for forming a conductive pattern by ejecting the ink in the form of liquid droplets on a surface of a ceramic molded body using a liquid droplet ejecting method, the ceramic molded body being made of a material containing ceramic particles and a binder. The ink contains a water-based dispersion medium, and metal particles dispersed in the water-based dispersion medium, wherein the water-based dispersion medium contains oxygen molecules and nitrogen molecules, and wherein when the water-based dispersion medium is analyzed using a gas chromatography method, a total amount of the oxygen and nitrogen molecules contained in the water-based dispersion medium is 12 ppm or less.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 8, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Naoyuki Toyoda, Toshiyuki Kobayashi, Sachiko Endo, Noboru Uehara, Akihiko Tsunoya
  • Publication number: 20120103409
    Abstract: A conductive paste may include a conductive powder, a metallic glass including a first element having a heat of mixing value with the conductive powder of less than 0, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University of Yonsei University, Samsung Electronics Co., Ltd.
    Inventors: Se Yun Kim, Eun Sung Lee, Sang Soo Jee, In Yong Song, Sang Mock Lee, Do-Hyang Kim, Ka Ram Lim
  • Publication number: 20120104332
    Abstract: Provided is a paste composition for front electrode of a solar cell. The paste composition includes conductive power, an organic vehicle, a glass frit, and an additive. The additive includes at least one material selected from the group consisting of Zn, Sb, V, W, Cr, Cd, Re, Sn, Mo, Mn, Ni, Co, Cu, and metal oxide including one of the foregoing materials.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Soon Gil KIM, Sang Gon KIM, Jun Phill EOM, Kyoung Hoon CHAI
  • Patent number: 8168087
    Abstract: Patterned photovoltaic cells, as well as related components and methods, are disclosed.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: May 1, 2012
    Assignee: Konarka Technologies, Inc.
    Inventors: Russell Gaudiana, Jin-An He, David Waller
  • Patent number: 8168089
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 1, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager