Sulfur, Selenium, Or Tellurium Containing Patents (Class 252/519.4)
  • Publication number: 20070163635
    Abstract: The semiconductor of the present invention has iron sulfide and a forbidden band control element contained in the iron sulfide. The forbidden band control element has a property capable of controlling the forbidden band of iron sulfide on the basis of the number density of the forbidden band control element in the iron sulfide. An n-type semiconductor is manufactured by incorporating a group IIIb element into iron sulfide. Moreover, a p-type semiconductor is manufactured by incorporating a group Ia element into iron sulfide. A semiconductor junction device or a photoelectric converter is manufactured by using the n-type semiconductor and the p-type semiconductor.
    Type: Application
    Filed: January 9, 2007
    Publication date: July 19, 2007
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yoshiyuki Nasuno, Noriyoshi Kohama, Kazuhito Nishimura
  • Patent number: 7226549
    Abstract: A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 5, 2007
    Assignee: UChicago Argonne, LLC
    Inventors: Rex E. Gerald, II, Jerome W. Rathke, Robert J. Klingler
  • Patent number: 7147968
    Abstract: A positive electrode for a lithium-sulfur battery includes a positive active material including a sulfur-based compound, an electrically conductive material, an agent for increasing viscosity, and a binder. The agent is selected from a cellulose-based compound, an ionically conductive polymer, and a mixture thereof. The binder includes styrene-butadiene rubber.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: December 12, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ji-Seong Han, Su-Suk Choi, Seung-Hee Park, Yun-Suk Choi
  • Patent number: 7122254
    Abstract: An electrode comprises an inorganic composite layer of a mixture of at least one insulating inorganic material and at least one at least partially conducting inorganic material. In an application of such an electrode, an organic electroluminescent device comprises a first and second conductor layers. An organic layer is disposed between the first and second conductor layers. The aforementioned composite layer is disposed between the organic layer and the first conductor layer. Methods of fabricating such an electrode and such a device are also described.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: October 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Tilman A. Beierlein, Jean Fompeyrine, Eliav Haskal, Heike Riel, Walter Riess
  • Patent number: 7018739
    Abstract: The present invention relates to a positive active material for a lithium-sulfur battery and a method of preparing a positive active material composition comprising the same, and the positive active material includes a sulfur compound, a conductive agent adhered to the sulfur compound, and a binder including at least one polymer, which is positioned between the sulfur compound and the conductive agent to bind the conductive agent to the sulfur compound. The capacity per active mass weight of the positive active material increases by 25 to 35%, and the positive active material has improved discharge potentials and discharge capacity at high rate.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 28, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jea-Woan Lee, Seung-Hee Park
  • Patent number: 7018604
    Abstract: The present invention provides new compounds for use in proton exchange membranes which are able to operate in a wide variety of temperature ranges, including in the intermediate temperature range of about 100° C. to 700° C., and new and improved methods of making these compounds. The present invention also provides new and improved methods for making chalcogenide compounds, including, but not limited to, non-protonated sulfide, selenide and telluride compounds. In one embodiment, the proton conductivity of the compounds is between about 10?8 S/cm and 10?1 S/cm within a temperature range of between about ?50 and 500° C.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: March 28, 2006
    Assignee: Iowa State University Research Foundation Inc
    Inventors: Steven A. Poling, Steve W. Martin, Jacob T. Sutherland
  • Patent number: 6858154
    Abstract: A thermoelectric material having large thermoelectric figure of merit is provided. A thin film comprising nanometer-sized particles having their diameters distributing within the range of 0.5 nm though 100 nm both inclusive is formed by depositing the nanometer-sized particles on a substrate, or dispersing the particles in a solid matrix material or solution thereby to form a thin film. In the thin film, a band gap due to quantum confinement effect is generated in each of the particles and electrical conduction occurs by that at least a part of the particles supply carriers. Accordingly, thermal conductivity ? as well as electrical resistivity ? and Seebeck coefficient S all of which are factors of thermoelectric figure of merit can be independently controlled, and it is possible to get a thermoelectric material having large dimensionless thermoelectric figure of merit ZT such as beyond 1.5.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: February 22, 2005
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Akiko Suzuki, Izumi Kataoka
  • Patent number: 6831401
    Abstract: An electron emitting device comprising: a pair of conductors opposed to each other on a substrate; and a pair of deposition films having carbon as a main component which are respectively connected to the pair of conductors and disposed with a gap therebetween. The deposition film contains sulfur in a range of not less than 1 mol % and not more than 5 mol % as a ratio to carbon.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: December 14, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keisuke Yamamoto, Miki Tamura, Yasuhiro Hamamoto
  • Patent number: 6811925
    Abstract: A positive active material for nonaqueous electrolyte secondary batteries which has a higher capacity and improved thermal stability in a charged state and is less expensive compared to the current active material of LiCoO2 is provided by a lithium compound oxide having the formula: LiaNibCocMndMeO2  (1) where M stands for one or two of W and Mo, 0.90≦a≦1.15, 0<b<0.99, 0<c≦0.5, 0<d≦0.5, 0<c+d≦0.9, 0.01≦e≦0.1, and b+c+d+e=1, the lithium compound oxide giving an X-ray diffraction pattern including a diffraction peak or peaks assigned to a compound oxide of Li and W and/or a compound oxide of Li and Mo, in addition to main diffraction peaks assigned to a hexagonal crystal structure.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 2, 2004
    Assignees: Chuo Denki Kogyo Co., Ltd., Japan Storage Battery Co., Ltd.
    Inventors: Koji Yamato, Koji Hayashi, Hajime Kitamura, Takahiro Miyashita, Yoshinori Naruoka, Junichi Toriyama, Masanao Terasaki
  • Patent number: 6759587
    Abstract: The present invention provides the novel thermoelectric materials having, in combination, processability and excellent thermoelectric characteristics, the thermoelectric materials being able to provide n-type thermoelectric characteristics in accordance with the nature of the employed inorganic thermoelectric materials; a thermoelectric device employing the materials; and a method for producing the thermoelectric materials.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: July 6, 2004
    Assignees: Hokushin Corporation
    Inventors: Naoki Toshima, Hu Yan, Kohsuke Kamei, Akinori Tsubata, Takashi Tokuda
  • Publication number: 20030131878
    Abstract: Thermoelectric material is produced through a process sequence including a liquid quenching, a primary solidification such as a hot pressing or extrusion and an upset forging; although the C-planes of the crystal grains are directed in parallel to the direction in which the force is exerted on flakes during the hot pressing/extrusion, the a-axes are randomly directed; the a-axes are oriented in a predetermined direction through the upset forging; this results in improvement of electric resistivity without reduction in the figure of merit.
    Type: Application
    Filed: December 12, 2002
    Publication date: July 17, 2003
    Inventors: Yuma Horio, Junya Suzuki
  • Patent number: 6312617
    Abstract: A family of isostructural compounds have been prepared having the general formula AnPbmBinQ2n+m. These compounds possess a NaCl lattice type structure as well as low thermal conductivity and controlled electrical conductivity. Furthermore, the electrical properties can be controlled by varying the values for n and m. These isostructural compounds can be used for semiconductor applications such as detectors, lasers and photovoltaic cells. These compounds also have enhanced thermoelectric properties making them excellent semiconductor materials for fabrication of thermoelectric devices.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: November 6, 2001
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Mercouri G. Kanatzidis, Duck Young Chung, Stephane DeNardi, Sandrine Sportouch
  • Patent number: 6289196
    Abstract: A donor member useful in ionographic or electrophotographic apparatuses and preferably useful in hybrid scavengeless development units, having a substrate and an oxidized transport coating including charge transport molecules, polymer binder, and an oxidized oligo arylamine salt comprising a cation of an oligo arylamine molecule and a counter anion.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: September 11, 2001
    Assignee: Xerox Corporation
    Inventors: Bing R. Hsieh, Yuan Yu, William H. Wayman, Donald S. Stanton, Allen J. Thompson, Michelle L. Schlafer, Ann M. Kazakos, Heiko Rommelmann, Alan R. Kuntz, Steven C. Hart
  • Patent number: 6217843
    Abstract: A method for the preparation of nanoparticles of metal oxides containing inserted metal particles and to metal-intercalated and/or metal-encaged “inorganic fullerene-like” (hereinafter IF) structures of metal chalcogenides obtained therefrom is provided, which comprises heating a metal I material with water vapor or electron beam evaporation of said metal I material with water or another suitable solvent, in the presence of a metal II salt, and recovering the metal II-doped metal I oxide, or proceeding to subsequent sulfidization, yielding bulk quantities of metal II-intercalated or metal II-encaged IF structures of the metal I chalcogenide. The metal II salt is preferably an alkaline, alkaline earth or transition metal salt, most preferably an alkali chloride. The intercalated and/or encaged IF structures are usable as lubricants. They also form stable suspensions, e.g.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: April 17, 2001
    Assignee: Yeda Research and Development Co., Ltd.
    Inventors: Moshe Homyonfer, Reshef Tenne, Yishay Feldman
  • Patent number: 6180073
    Abstract: The present invention relates to a compound based on an alkaline-earth metal, on sulphur and on aluminium, on gallium or indium, to its process of preparation and to its use as luminophore. The compound of the invention corresponds to the formula AB2S4, in which A represents an alkaline-earth metal and B aluminum, gallium, or indium and it is characterized in that it is provided in the form of a powder with a residual oxygen content of not more that 1.5% and composed of particles with a mean size of not more than 10 &mgr;m. This compound is obtained by a process which contains the following stages: a solution or a suspension comprising salts of the elements A and B is formed, the solution or the suspension is dried by atomization and the product obtained in the preceding stages is reacted with carbon disulphide or with a mixture of hydrogen sulphide and or carbon disulphide. The compound of the invention can be used as a luminophore, in particular in cathodoluminescence.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: January 30, 2001
    Assignee: Rhodia Chimie
    Inventors: Denis Huguenin, Pierre Macaudiere
  • Patent number: RE39640
    Abstract: A family of isostructural compounds have been prepared having the general formula AnPbmBinO2n+m. These compounds possess a NaCl lattice type structure as well as low thermal conductivity and controlled electrical conductivity. Furthermore, the electrical properties can be controlled by varying the values for n and m. These isostructural compounds can be used for semiconductor applications such as detectors, lasers and photovoltaic cells. These compounds also have enhanced thermoelectric properties making them excellent semiconductor materials for fabrication of thermoelectric devices.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: May 22, 2007
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Mercouri G. Kanatzidis, Duck-Young Chung, Stephane DeNardi, Sandrine Sportouch