Rare Earth Metal Compound Patents (Class 252/521.1)
  • Patent number: 11603324
    Abstract: There is disclosed a method of making an electrode for an electrochemical reactor including the steps of providing a template and depositing electrode material such that the electrode material is in contact with the template. This template is provided in a form that produces channels in the electrode material. There is also disclosed an electrode for an electrochemical reactor which includes electrode material and a template, with the template occupying channels in the electrode material.
    Type: Grant
    Filed: November 23, 2019
    Date of Patent: March 14, 2023
    Assignee: Utility Global, Inc.
    Inventors: David R. Hall, Matthew Dawson, Nicholas Farandos, Jin Dawson
  • Patent number: 11557784
    Abstract: Herein disclosed is a method of treating a component of a fuel cell, which includes the step of exposing the component of the fuel cell to a source of electromagnetic radiation (EMR). The component comprises a first material. The EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. Preferably, the treatment process has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming. In an embodiment, the substrate is a component in a fuel cell. Such component comprises an anode, a cathode, an electrolyte, a catalyst, a barrier layer, a interconnect, a reformer, or reformer catalyst. In an embodiment, the substrate is a layer in a fuel cell or a portion of a layer in a fuel cell or a combination of layers in a fuel cell or a combination of partial layers in a fuel cell.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: January 17, 2023
    Assignee: Utility Global, Inc.
    Inventors: David R. Hall, Matthew Dawson, Jin Dawson
  • Patent number: 11448082
    Abstract: A seal assembly for a gas turbine engine includes a seal composed of a nickel-based superalloy; a component in contact with the seal and defining a seal-counterface; and a coating on the seal at the seal-counterface, wherein the coating is a ternary oxide.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: September 20, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Pantcho P. Stoyanov, Kelly M. Harrington
  • Patent number: 11189774
    Abstract: Certain embodiments involve processes or systems for creating various high-temperature superconductive structures or materials. For example, a method can involve depositing a first layer of boron and a second layer of un-doped amorphous carbon on a substrate. The un-doped amorphous carbon is ferromagnetic. The first layer of boron and the second layer of un-doped amorphous carbon are melted by a laser pulse to form a melted boron-doped amorphous carbon. The melted boron-doped amorphous carbon is quenched to create a quenched boron-doped amorphous carbon that is diamagnetic and superconducting. The quenched melted boron-doped amorphous carbon includes a mixture of sp3 bonded carbon atoms and sp2 bonded carbon atoms and a superconducting transition temperature of the quenched boron-doped amorphous carbon is much higher than diamond and increases based on a boron concentration. Undoped Q-carbon is ferromagnetic with Curie temperature above 500K.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: November 30, 2021
    Assignee: North Carolina State University
    Inventor: Jagdish Narayan
  • Patent number: 11133389
    Abstract: A layered structure for semiconductor application is described herein. The layered structure includes III-V semiconductor and uses pnictide nanocomposites to control lattice distortion in a series of layers. The distortion is tuned to bridge lattice mismatch between binary III-V semiconductors. In some embodiments, the layered structure further includes dislocation filters.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: September 28, 2021
    Assignee: IQE plc
    Inventors: Andrew Clark, Rodney Pelzel, Mukul Debnath, Rytis Dargis, Robert Yanka
  • Patent number: 10879524
    Abstract: A positive electrode for a rechargeable lithium battery, includes a current collector including pores on a surface thereof; and a positive active material layer on the current collector and including a positive active material, the positive active material including a lithium metal compound including primary particles and secondary particles including agglomerations of the primary particles, an average diameter of the pores of the current collector being greater than an average particle diameter (D50) of the primary particles and less than an average particle diameter (D50) of the secondary particles.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 29, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Jeong-Woo Han, Sumihito Ishida, Jung-Woo An
  • Patent number: 10826053
    Abstract: A positive electrode for a rechargeable lithium battery, includes a current collector including pores on a surface thereof; and a positive active material layer on the current collector and including a positive active material, the positive active material including a lithium metal compound including primary particles and secondary particles including agglomerations of the primary particles, an average diameter of the pores of the current collector being greater than an average particle diameter (D50) of the primary particles and less than an average particle diameter (D50) of the secondary particles.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 3, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Jeong-Woo Han, Sumihito Ishida, Jung-Woo An
  • Patent number: 10134512
    Abstract: A ceramic material has a composition represented by Cax?NaxMny?MyO12, wherein M denotes at least one of Ni and Cu, and x?, x, y?, and y satisfy any of (a), (b), and (c) in which x?+x=X and y?+y=Y: 0.9 7.0 ? X Y < 1.0 7.0 ; ( a ) at a condition of X Y = 1.0 7.0 , 0.03 8 ? x X + Y < 0.30 8 ? ? and ? ? 0 ? y X + Y ? 0.35 8 ; and ( b ) 1.0 7.0 < X Y ? 1.0 6.9 .
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: November 20, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Sakyo Hirose
  • Patent number: 9614219
    Abstract: Provided is a composite cathode active material including layered lithium manganese oxide and lithium-containing metal oxide. Also, the present invention provides a secondary battery, a battery module, and a battery pack which have improved power characteristics by including the composite cathode active material.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: April 4, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Min Hee Lee, Jung Hwan Park, Ki Young Kwon
  • Publication number: 20150118467
    Abstract: Methods of forming transition metal dichalcogenide aerogels are provided. Some methods include adding at least one solvent to one or more two-dimensional transition metal dichalcogenide sheets to form a transition metal dichalcogenide solution and freeze drying the transition metal dichalcogenide solution to form frozen transition metal dichalcogenide. The methods also include heating the frozen transition metal dichalcogenide to form a transition metal dichalcogenide aerogel.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Inventor: Arockiadoss THEVASAHAYAM
  • Patent number: 9005486
    Abstract: Perovskite materials of the general formula SrCeO3 and BaCeO3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: April 14, 2015
    Assignees: Savannah River Nuclear Solutions, LLC, University of South Carolina
    Inventors: Kyle S. Brinkman, Paul S. Korinko, Elise B. Fox, Frank Chen
  • Patent number: 9005490
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Rick D. Kerr, Joseph M Keller, Joseph V. Bonadies
  • Publication number: 20150072863
    Abstract: Known processes for the production of nanoparticles of compounds of the transition metals Zr, Ti, Ta, rare earths (RE), Mn, and Fe via microemulsions lead to products that contain impurities from the reactants, particularly water, which make the further use of said nanoparticles difficult, for instance in high-temperature super conductors (HTSC). It is proposed that the nanoparticles be produced via anhydrous microemulsions having an outer phase composed of a nonpolar solvent and inner phase composed of a polar anhydrous solvent. The nanoparticles thus obtained exhibit good monodispersity and can be used in the production of REBa2Cu3O7 super conductors by incorporation into the precursor coating solution.
    Type: Application
    Filed: March 20, 2013
    Publication date: March 12, 2015
    Applicant: BASF SE
    Inventors: Thomas Freudenberg, Bernhard Holzapfel, Oliver Brunkahl, Michael Baecker
  • Publication number: 20140374673
    Abstract: A composition comprising a Type 1 clathrate of silicon having a Si46 framework cage structure wherein the silicon atoms on said framework are at least partially substituted by carbon atoms, said composition represented by the formula CySi46-y with 1?y?45. The composition of may include one or more guest atoms A within the cage structure represented by the formula AxCySi46-y wherein A=H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca. Sr, Ba, Ra, Eu, Cl, Br, or I or any metal or metalloid element and x is the number of said guest atoms within said cage structure.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Kwai S. CHAN, Michael A. MILLER
  • Patent number: 8883047
    Abstract: Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 11, 2014
    Assignees: Massachusetts Institute of Technology, Trustees of Boston College
    Inventors: Zhifeng Ren, Jian Yang, Xiao Yan, Qinyu He, Gang Chen, Qing Hao
  • Patent number: 8871113
    Abstract: A positive active material includes first and second lithium nickel complex oxides. A positive electrode and lithium battery include the positive active material. The positive active material, and the lithium battery including the positive active material have increased filling density, are thermally stable, and have improved capacity.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Han Kim, Do-Hyung Park, Ji-Hyun Kim, Jeong-Seop Lee, Chang-Hyuk Kim, Seon-Young Kwon, Yoon-Chang Kim
  • Patent number: 8858843
    Abstract: A high-fidelity dopant paste is disclosed. The high-fidelity dopant paste includes a solvent, a set of non-glass matrix particles dispersed into the solvent, and a dopant.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: October 14, 2014
    Assignee: Innovalight, Inc.
    Inventors: Elena Rogojina, Maxim Kelman, Giuseppe Scardera
  • Patent number: 8840815
    Abstract: Provided is a composite cathode active material including layered lithium manganese oxide and lithium-containing metal oxide. Also, the present invention provides a secondary battery, a battery module, and a battery pack which have improved power characteristics by including the composite cathode active material.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 23, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Min Hee Lee, Jung Hwan Park, Ki Young Kwon
  • Patent number: 8828276
    Abstract: According to one embodiment, metal nanoparticle dispersion includes organic solvent, and metal-containing particles dispersed in the organic solvent. The metal-containing particles include first metal nanoparticles and second metal nanoparticles. Each of the first metal nanoparticles has a high-molecular compound on at least part of a surface thereof. Each of the second metal nanoparticles has a low-molecular compound on at least part of a surface thereof. A total amount of the low-molecular compound on all of the second nanoparticles includes an amount of a primary amine as the low-molecular compound.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 9, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Tec Kabushiki Kaisha
    Inventor: Yasuyuki Hotta
  • Patent number: 8828281
    Abstract: Starting from, as the initial composite, an LAS component in accordance with the composition LixAlySizOw, where x varies between 0.8 and 1.2, y varies between 0.8 and 1.2, z varies between 0.8 and 2, and w varies between 4 and 6, the LAS component is subsequently mixed with SiC nanoparticles, to obtain a stable, homogeneous suspension. Thereafter, the resulting suspension is dried. Subsequently, the material obtained is shaped and, finally, the material obtained in the preceding step is sintered.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: September 9, 2014
    Assignee: Consejo Superior de Investigaciones Cientificas (CSIC)
    Inventors: Ramon Torrecillas San Millan, Olga Garcia Moreno, Adolfo Fernandez Valdes
  • Publication number: 20140209856
    Abstract: A fused film and methods for making the fused film to be employed in a light emitting device are provided. In one embodiment, the disclosure provides a method for forming a film from fused all-inorganic colloidal nanostructures, where the all-inorganic colloidal nanostructures may include inorganic semiconductor nanoparticles and functional inorganic ligands that may be fused to form an electrical network that is electroluminescent. In another embodiment, the disclosure provides a light-emitting device including the fused film that minimizes current leakage in the device and provides increased stability, longevity, and luminescent efficiency to the device.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Patent number: 8790551
    Abstract: An electrolyte composition containing an ionic liquid and conductive particles, an electrolyte composition containing an ionic liquid and oxide semiconductor particles and optionally containing conductive particles, and an electrolyte composition containing an ionic liquid and insulating particles are provided. Furthermore, a photoelectric conversion element comprising: a working electrode, the working electrode comprising an electrode substrate and an oxide semiconductor porous film formed on the electrode substrate and sensitized with a dye; a counter electrode disposed opposing the working electrode; and an electrolyte layer made of these electrolyte compositions is provided.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 29, 2014
    Assignee: Fujikura Ltd.
    Inventors: Hiroki Usui, Nobuo Tanabe, Hiroshi Matsui, Tetsuya Ezure, Shozo Yanagida
  • Patent number: 8771559
    Abstract: A conductive sintered oxide which includes: a conductive crystal phase having a perovskite structure represented by (RE1-cSrc)MdO3, in which RE is a group of elements consisting of Yb and/or Lu and at least one element selected from Group IIIA elements excluding Yb, Lu and La, and M is a group of elements consisting of Al and at least one element selected from Groups IVA, VA, VIA, VIIA and VIII, a first insulating crystal phase represented by RE2O3, and a second insulating crystal phase represented by SrAl2O4. The conductive crystal phase has a coefficient c satisfying 0.18<c<0.50 and has a coefficient d satisfying 0.67?d?0.93. A content of a third insulating crystal phase represented by RE4Al2O9, the content of which may be zero, is smaller than the content of each of the first and second insulating crystal phases.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 8, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Watanabe, Yasuyuki Okimura, Shinji Ban, Takeshi Mitsuoka
  • Publication number: 20140174913
    Abstract: The invention relates to the field of production of barium-scandate dispenser cathodes or other barium-scan-date materials. A target (66) containing a mixture of BaO, CaO, Al2O3 and SC2O3 tends to be more stable, the higher the scandia (scandium oxide) content is. However, an increased scandia content results in a reduced emission capability. A destabilizing effect of BaO and CaO reactions is counteracted by the more inert SC2O3 and also AI2O3 components, as not only an increased scandia content stabilizes the material but also an increased alumina (aluminum oxide) content improves the stability.
    Type: Application
    Filed: July 31, 2012
    Publication date: June 26, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Georg Friedrich Gaertner, Wilhelmus Cornelis Keur
  • Publication number: 20140166941
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: KAILASH C. JAIN, RICK D. KERR, JOSEPH M KELLER, JOSEPH V. BONADIES
  • Publication number: 20140138601
    Abstract: Various embodiments of a composite material are provided. In one embodiment of the present invention a nanometer-scale composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The composite material exhibits memristive properties when a voltage differential is applied to the nanocomposite. In another embodiment, a variable resistor device includes a first electrode terminal and a second electrode terminal and a nanocomposite in electrical communication with the electrode terminals. The composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The memristor is tunable as the minimum instantaneous resistance can be altered several orders of magnitude by varying the composition and ratio of the variable-conductivity material and conductive material constituents of the composites.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicant: Vanderbilt Unviersity
    Inventors: Jeremy West Mares, Sharon M. Weiss
  • Patent number: 8728174
    Abstract: The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 20, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Kerry D. Meinhardt, Vincent L. Sprenkle, Gregory W. Coffey
  • Publication number: 20140131751
    Abstract: A wavelength converting substance is made of semiconductor material. The wavelength converting substance is suitable for absorbing an exciting light with the wavelength range falling between 300 nanometers and 490 nanometers and converting the exciting light to an emitted light with wavelength range falling between 450 nanometers and 750 nanometers.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 15, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: Yun-Li Li, Yu-Chu Li, Cheng-Yen Chen
  • Publication number: 20140072720
    Abstract: Aspects relate to patterned nanostructures having a feature size not including film thickness of below 5 microns. The patterned nanostructures are made up of nanoparticles having an average particle size of less than 100 nm. A nanoparticle composition, which, in some cases, includes a binder material, is applied to a substrate. A patterned mold used in concert with electromagnetic radiation function to manipulate the nanoparticle composition in forming the patterned nanostructure. In some embodiments, the patterned mold nanoimprints a suitable pattern on to the nanoparticle composition and the composition is cured through UV or thermal energy. Three-dimensional patterned nanostructures may be formed. A number of patterned nanostructure layers may be prepared and suitably joined together. In some cases, a patterned nanostructure may be formed as a layer that is releasable from the substrate upon which it is initially formed.
    Type: Application
    Filed: May 22, 2013
    Publication date: March 13, 2014
    Applicant: University of Massachusetts
    Inventors: James Watkins, Michael R. Beaulieu, Nicholas R. Hendricks
  • Publication number: 20140061553
    Abstract: A lanthanum boride sintered body 10 includes a phase 16 including lanthanum and silicon at grain boundaries 14 between crystal grains 12 of lanthanum boride. In this lanthanum boride sintered body 10, the phase 16 exists in various configurations such as a phase 16a present at a triple point of grain boundary 14, and a phase 16b present along the grain boundary 14. This phase 16 is based on a lanthanum silicide (represented by the composition formula LaSix (0<x?2)). The lanthanum boride sintered body 10 is fabricated through a sintering step of sintering a lanthanum boride green compact by press-free sintering in an inert atmosphere or under vacuum in the presence of a silicon-containing material around and/or within the green compact. The lanthanum boride sintered body 10 having this structure exhibits a relative density of not less than 92%, and more preferably not less than 94%.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Tetsuya HATTORI, Yuji KATSUDA
  • Publication number: 20140066311
    Abstract: Provided is a method for manufacturing an oxide superconductor, including preparing a coating solution containing alcohols including methanol as a solvent, the coating solution dissolving fluorocarboxylic acid salts including trifluoroacetates, the trifluoroacetates including a metal, barium and copper, the metal being selected from yttrium and lanthanoid metals (provided that cerium, praseodymium, promethium, and ruthenium are excluded); adding a substance of formula: CF2H—(CF2)n—COOH or HOCO—(CF2)m—COOH (wherein n and m represent positive integers) as a crack preventing chemical to the coating solution; forming a gel film on a substrate using the coating solution having the crack preventing chemical added thereto; forming a calcined film by calcining the gel film at an oxygen partial pressure of 3% or less in a process that is maintained at 200° C. or higher for a total time of 7 hours or less; and forming an oxide superconductor film by firing and oxygen anneal of the calcined film.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takeshi ARAKI, Mariko Hayashi, Hiroyuki Fuke
  • Patent number: 8647537
    Abstract: An oxide sintered body includes indium oxide and gallium solid-solved therein, the oxide sintered body having an atomic ratio “Ga/(Ga+In)” of 0.001 to 0.12, containing indium and gallium in an amount of 80 atom % or more based on total metal atoms, and having an In2O3 bixbyite structure.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: February 11, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Futoshi Utsuno, Kazuyoshi Inoue, Hirokazu Kawashima, Masashi Kasami, Koki Yano, Kota Terai
  • Patent number: 8617432
    Abstract: A sintered electroconductive oxide forming a thermistor element has a first crystal phase having a composition represented by RE14Al2O9 and a second crystal phase having a perovskite structure represented by (RE21-aSLa)MO3. The factor a of the second crystal phase is: 0.18<a<0.50, wherein RE1 represents at least one of Yb and Lu and at least one species selected from among group 3A elements excluding Yb, Lu, and La; RE2 represents at least one species selected from among group 3A elements excluding La and which contains at least one species selected from the group RE1; M represents Al and at least one species selected from group 4A to 7A, and 8 elements; and SL represents Sr, Ca, and Mg, with at least Sr being included at a predominant proportion by mole.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: December 31, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yasuyuki Okimura, Shinji Ban, Hiroshi Watanbe, Takeshi Mitsuoka
  • Patent number: 8617433
    Abstract: A conductive sintered oxide including: a first crystal phase represented by RE14Al2O9 and a second crystal phase having a perovskite structure represented by (RE21-cSLc)(AlxM1y)O3. RE1 is a first element group consisting of Yb and/or Lu and at least one element selected from Group IIIA elements excluding Yb, Lu and La. RE2 is a second element group consisting of at least one element selected from Group IIIA elements excluding La and including at least one of the elements constituting the first element group RE1. SL is an element group consisting of at least one of Sr, Ca and Mg and which includes Sr as a main element, and M1 is an element group consisting of at least one element selected from Groups IVA, VA, VIA, VIIA and VIII excluding Cr. The coefficient c is in the range of 0.18<c<0.50, and the coefficients x and y are in the range of 0.95?x+y?1.1.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: December 31, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Watanabe, Yasayuki Okimura, Shinji Ban, Takeshi Mitsuoka
  • Publication number: 20130289133
    Abstract: A method for producing particles containing a metal oxide is provided, and the method includes: feeding a metal oxide sol having a pH of 7 or higher and containing metal oxide colloidal particles as dispersoids and water as a dispersion medium, into a liquid containing a solvent having a solubility in 20° C. water of 0.05 g/100 ml or more and having a relative permittivity of 30 or lower (protic solvent) or of 40 or lower (aprotic solvent) at 20° C., and thereby forming aggregates of the metal oxide colloidal particles in the liquid; and subjecting the aggregates to a treatment such as drying and heating, and thereby converting the aggregates into particles that are insoluble in water. By appropriately selecting the solvent, particles can be obtained in the form of flakes, fibers, spheres, and the like.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Kazuhiro Doshita, Toshitaka Furuichi
  • Patent number: 8562859
    Abstract: A voltage nonlinear resistor is made of a sintered body that mainly includes zinc oxide grains, spinel grains including zinc and antimony as main ingredients, and a bismuth oxide phase, in which the bismuth oxide phase includes at least one of alkali metals selected from the group of potassium and sodium at a ratio in the range of 0.036 at % or higher and 0.176 at % or lower. The voltage nonlinear resistor has good voltage nonlinearity and loading service life characteristics, and can be used for a lightning arrester.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomoaki Kato, Iwao Kawamata, Yoshio Takada
  • Publication number: 20130224628
    Abstract: A functional layer material for a solid oxide fuel cell (SOFC) including a ceria ceramic oxide and a metal oxide including a metal, except for zirconium, having a Vegard's slope X represented by Equation 1 and having an absolute value |X| of the Vegard's slope X, wherein 27×105?|X|?45×105: X=(0.0220ri+0.00015zi) ??(1), wherein ri is an ionic radius difference between the metal and Ce4+, and zi is a charge difference between the metal and Ce4+.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 29, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Patent number: 8518298
    Abstract: There is provided a mixture having a freezing point of up to 50° C., formed by reaction between: (A) one molar equivalent of a salt of formula I (Mn+)(X?)n I or a hydrate thereof; and (B) from one to eight molar equivalents of a complexing agent comprising one or more uncharged organic compounds, each of which compounds has (i) a hydrogen atom that is capable of forming a hydrogen bond with the anion X?; and (ii) a heteroatom selected from the group consisting of O, S, N and P that is capable of forming a coordinative bond with the metal ion Mn+, which reaction is performed in the absence of extraneous solvent, wherein M, X? mind a have meaning given in the description.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 27, 2013
    Assignee: University of Leicester
    Inventor: Andrew Peter Abbott
  • Publication number: 20130202965
    Abstract: An alkaline, rechargeable electrochemical cell includes a pasted electrode structure in which a composition comprising a paste matrix component includes cobalt in an amount greater than 6 weight percent ranging up to 14 weight percent. The matrix may also include a rare earth such as yttrium. The composition further includes particles of nickel hydroxide dispersed in the matrix, and these particles include cobalt levels ranging from greater than 8 atomic percent up to 15 atomic percent. Cells incorporating these materials have good charging efficiency at elevated temperatures.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: Ovonic Battery Company, Inc.
    Inventors: John M. Koch, Cristian Fierro
  • Patent number: 8500842
    Abstract: A cermet anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said electronically conductive phase comprises a FeCrMx alloy, wherein Mx is selected from the group consisting of Ni, Ti, Nb, Ce, Mn, Mo, W, Co, La, Y, Al, and mixtures thereof, (b) forming a metallic support of said slurry of the electronically conductive phase, (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the structure of step (b) with the precursor solution of step (c), (e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 6, 2013
    Assignee: Technical University of Denmark
    Inventors: Peter Blennow, Mogens Mogensen
  • Patent number: 8501635
    Abstract: A method of growing single crystal III-N material on a semiconductor substrate includes providing a substrate including one of crystalline silicon or germanium and a layer of rare earth oxide. A layer of single crystal III-N material is epitaxially grown on the substrate using a process that elevates the temperature of the layer of rare earth oxide into a range of approximately 750° C. to approximately 1250° C. in the presence of an N or a III containing species, whereby a portion of the layer of rare earth oxide is transformed to a new alloy.
    Type: Grant
    Filed: September 29, 2012
    Date of Patent: August 6, 2013
    Assignee: Translucent, Inc.
    Inventors: Andrew Clark, Robin Smith, Rytis Dargis, Erdem Arkun, Michael Lebby
  • Publication number: 20130119319
    Abstract: A ceramic boron-containing dopant paste is disclosed. The ceramic boron-containing dopant paste further comprising a set of solvents, a set of ceramic particles dispersed in the set of solvents, a set of boron compound particles dispersed in the set of solvents, a set of binder molecules dissolved in the set of solvents. Wherein, the ceramic boron-containing dopant paste has a shear thinning power law index n between about 0.01 and about 1.
    Type: Application
    Filed: May 3, 2012
    Publication date: May 16, 2013
    Applicant: INNOVALIGHT INC
    Inventors: MAXIM KELMAN, Elena V. Rogojina, Gonghou Wang
  • Publication number: 20130112973
    Abstract: The present invention provides a precursor composition for forming a conductive oxide film having high conductivity and a stable amorphous structure maintained even after heated at high temperature by a simple liquid phase process. The precursor composition of the present invention contains at least one selected from the group consisting of carboxylates, nitrates and sulfates of lanthanoids (but, except for cerium); at least one selected from the group consisting of carboxylates, nitrosyl carboxylates, nitrosyl nitrates and nitrosyl sulfates of ruthenium, iridium or rhodium; and a solvent containing at least one selected from the group consisting of carboxylic acids, alcohols and ketones.
    Type: Application
    Filed: July 8, 2011
    Publication date: May 9, 2013
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tatsuya Shimoda, Jinwang Li
  • Publication number: 20130105742
    Abstract: Impregnated rare earth metal-containing barium-aluminum-scandate cathodes with a rare earth oxide doped tungsten matrix and methods for the fabrication thereof are described. In one aspect, an impregnated rare earth metal-containing barium-aluminum-scandate cathode comprises: a rare earth oxide doped tungsten matrix, and an impregnated active substance. The active substance comprises scandium oxide (Sc2O3), a second rare earth oxide, and barium calcium aluminate, wherein the molar ratio of Ba:Ca:Al is about 4:1:1.
    Type: Application
    Filed: December 30, 2011
    Publication date: May 2, 2013
    Applicant: BEIJING UNIVERSITY OF TECHNOLOGY
    Inventors: Jinshu Wang, Wei Liu, Fan Yang, Xiang Liu, Hongyi Li, Meiling Zhou, Tieyong Zuo
  • Publication number: 20130053249
    Abstract: The present invention refers to obtaining a solution of metal-organic precursors with a maximum fluorine content of 10% using the solution previously described in patent ES2259919 B1 as the starting point. This modification enables carrying out the thermal treatment of superconducting decomposition layers (pyrolysis) and crystal growth in a single stage. In addition, the low fluorine content reduces the risks of toxicity and corrosion.
    Type: Application
    Filed: December 3, 2010
    Publication date: February 28, 2013
    Applicant: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
    Inventors: Susana Ricart Miró, Xavier Palmer Paricio, Alberto Pomar Barbeito, Teresa Puig Molina, Xavier Obradors Berenguer, Anna Palau Masoliver
  • Publication number: 20130048924
    Abstract: The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 28, 2013
    Inventors: Glenn G. Amatucci, Anna Halajko, Fadwa Badway
  • Patent number: 8372314
    Abstract: Disclosed are an indium Tin Oxide (ITO) target, a method for manufacturing the same, a transparent conductive film of ITO, and a method for manufacturing the transparent conductive film of ITO. The ITO target includes at least one oxide selected from the group consisting of Sm2O3 and Yb2O3, wherein an amount of the oxide is about 0.5 wt. % to about 10 wt. % based on the weight of the target.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: February 12, 2013
    Inventors: Bon kyung Koo, Han Ho Yoon, Ju Ok Park, Hyung Ryul Park, Hyun Su Kim, Sung Ryong Choi, Joong Ryeol Choi, Pung Keun Song, Joon-Hong Park
  • Publication number: 20130035236
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 7, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Publication number: 20130020539
    Abstract: A novel multiband absorption based solar cell is disclosed by using the europium chalcogenides (EuX, X?O, S, Se, Te) and related magnetic semiconductor materials, in which an intermediate band is formed by the localized Eu 4f electrons between p-states of chalcogen ions and Eu s-d states. The energy gaps among the multibands can be in the spectral range of the sunlight, thus they can serve as better sunlight absorbers in solar cells than the conventional single band-gap semiconductors such as Si and GaAs. With these multiband semiconductors, the bottleneck in current power conversion efficiency can be potentially overcome in single junction photovoltaics.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Inventor: Zhixun Ma
  • Patent number: RE44853
    Abstract: Buffer compositions comprising semiconductive oxide particles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer are provided. Semiconductive oxide particles include metal oxides and bimetallic oxides. Acid polymers are derived from monomers or comonomers of polyolefins, polyacrylates, polymethacrylates, polyimides, polyamides, polyaramides, polyacrylamides, polystrenes. The polymer backbone, side chains, pendant groups or combinations thereof may be fluorinated or highly fluorinated. Semiconductive polymers include polymers or copolymers derived from thiophenes, pyrroles, anilines, and polycyclic heteroaromatics. Methods for preparing buffer compositions are also provided.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 22, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Che-Hsiung Hsu, Hjalti Skulason, Mark Martello