Free Metal Or Alloy Containing Patents (Class 252/62.55)
  • Publication number: 20130249556
    Abstract: A material for a magnetic resonance installation is provided, wherein the material includes a support material and a magnetic doping material which is admixed in a specific proportion. The doping material exhibits an anisotropic susceptibility. In respect of the anisotropic susceptibility, the doping material exhibits a mean orientation along a predefined direction. An essentially homogeneous intermixture of the support material and the doping material is present within a volume of the material which is smaller than 1 mm3.
    Type: Application
    Filed: March 20, 2013
    Publication date: September 26, 2013
    Inventor: Stephan Biber
  • Publication number: 20130248754
    Abstract: The method of the present invention produces a rare earth magnet, which is represented by a neodymium magnet (Nd2Fe14B) and neodymium magnet films with applications in micro-systems, by using a heat treatment method capable of enhancing the magnetic characteristics, particularly the magnetic coercive force. A method for producing a rare earth magnet, comprising: (a) quenching a molten metal having a rare earth magnet composition to form quenched flakes of nanocrystalline structure; sintering the quenched flakes; subjecting the sintered body obtained to an orientation treatment; and applying a heat treatment with pressurization at a temperature sufficiently high to enable diffusion or fluidization of a grain boundary phase and at the same time, low enough to prevent coarsening of the crystal grains.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 26, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, UNIVERSITY OF SHEFFIELD, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Noritsugu Sakuma, Hidefumi Kishimoto, Akira Kato, Tetsuya Shoji, Dominique Givord, Nora Dempsey, Thomas George Woodcock, Oliver Gutfleisch, Gino Hrkac, Thomas Schrefl
  • Publication number: 20130236720
    Abstract: Rare-earth-free, noble-metal-free nanostructured magnetic material thin films and methods of synthesis are described. Magnetocrystalline, ferrimagnetic thin films with islands of aligned single magnetic domains possess large coercivity. In particular, MnxGa thin films are described. These materials provide a potential substitute to rare-earth-based and noble-metal-based magnets in applications related to electric motors and generators, audio headphones and speakers, recording media and magnetic hard drive memory.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Donald HEIMAN, Steven BENNETT, Thomas NUMMY, Thomas CARDINAL
  • Publication number: 20130228717
    Abstract: A magnetic material of an embodiment includes: first magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are 1 ?m or greater in particle size, and are 5 to 50 ?m in average particle size; second magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are smaller than 1 ?m in particle size, and are 5 to 50 nm in average particle size; and an intermediate phase that exists between the first magnetic particles and the second magnetic particles.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Koichi Harada, Tomohiro Suetsuna, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20130228716
    Abstract: A magnetic material is disclosed, which includes magnetic particles containing at least one magnetic metal selected from the group including Fe, Co and Ni, and at least one non-magnetic metal selected from Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare earth elements, Ba and Sr; a first coating layer of a first oxide that covers at least a portion of the magnetic particles; oxide particles of a second oxide that is present between the magnetic particles and constitutes an eutectic reaction system with the first oxide; and an oxide phase that is present between the magnetic particles and has an eutectic structure of the first oxide and the second oxide.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Seiichi Suenaga, Toshihide Takahashi, Tomoko Eguchi, Koichi Harada, Yasuyuki Hotta
  • Patent number: 8524107
    Abstract: A magnetocaloric structure includes a magnetocaloric material and at least one protective layer. The magnetocaloric material has bar type or plank type. The protective layer is disposed on the magnetocaloric material.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: September 3, 2013
    Assignee: Delta Electronics, Inc.
    Inventors: Li Chang, Hui-Ling Wen, Shih-Pin Meng, Chung-Jung Kuo
  • Patent number: 8524108
    Abstract: An aspect of the present invention relates to a magnetic particle obtained by heat-treating a hexagonal ferrite magnetic material in reducing atmosphere containing hydrocarbon gas.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: September 3, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Yasushi Hattori
  • Patent number: 8496725
    Abstract: The invention relates to a composition for producing magnetic or magnetizable moldings, comprising from 95.5 to 98.95% by weight of a powder made of a magnetic or magnetizable material, from 1.0 to 4% by weight of a mixture made of at least one epoxy-novolak resin, and also of at least one hardener, and comprising from 0.05 to 0.5% by weight of at least one additive, based in each case on the total weight of the composition. The mixture made of the at least one epoxy-novolak resin and of the at least one hardener comprises from 85 to 95% by weight of the epoxy-novolak resin and from 5 to 15% by weight of hardener. The hardener has been selected from (cyclo)aliphatic amines and their adducts, polyamides, Mannich bases, amidoamines, phenolic resins, imidazoles, and imidazole derivatives, dicyandiamide, and BF3-monoethanolamine. The invention further relates to a process for producing the composition, and also to a process for producing a molding made of the composition.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 30, 2013
    Assignee: BASF SE
    Inventors: Carsten Blettner, Jürgen Kaczun, Ria Kress, Dag Wiebelhaus
  • Publication number: 20130186108
    Abstract: The invention relates to a method for generating giant magnetocaloric materials, the giant magnetocaloric materials obtained thereby and their use in magnetocaloric heat pumps, magnetocaloric power converters, actuators or magnetic switches.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicant: BASF SE
    Inventors: Robert Art DE GROOT, Ekkehard BRUECK
  • Publication number: 20130181802
    Abstract: Provided are a soft magnetic powder for obtaining a dust core having a low iron loss, the dust core, and a method for producing a dust core. The present invention relates to a soft magnetic powder including a plurality of soft magnetic particles, each having an insulating layer. The Vickers hardness HV0.1 of a material constituting the soft magnetic particles is 300 or more, and the insulating layer contains Si, O, and at least one of an alkali metal and Mg. As long as the soft magnetic powder has such features, a material having a high electric resistance, such as an iron-based alloy, can be used. The eddy current loss can be reduced, and it is possible to effectively obtain a dust core having a low iron loss.
    Type: Application
    Filed: October 25, 2011
    Publication date: July 18, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Asako Watanabe, Toru Maeda, Tomoyuki Ueno, Tomoyuki Ishimine
  • Patent number: 8481178
    Abstract: Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Diamet Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Publication number: 20130171437
    Abstract: The present disclosure relates to a carbon nanotube composite film. The carbon nanotube composite film includes a plurality of magnetic particles, a carbon nanotube film structure and a PVDF. The carbon nanotube film structure is a free-standing structure. The carbon nanotube film structure defines a plurality of interspaces. At least a portion of the plurality of magnetic particles and the PVDF is filled in the plurality of interspaces.
    Type: Application
    Filed: August 7, 2012
    Publication date: July 4, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: WEI XIONG, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8470193
    Abstract: Magnetorheological (MR) fluids are disclosed herein. An example of the MR fluid includes a carrier fluid, magnetic particles disposed in the carrier fluid, and non-magnetic particles disposed in the carrier fluid. The non-magnetic particles are particles of a shape memory alloy having an Austenite finish temperature (Af) that is lower than a temperature encountered in an application in which the MR fluid is used so that the shape memory alloy exhibits stress-induced superelasticity.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan L. Browne, Nancy L. Johnson, Peter Maxwell Sarosi, John C. Ulicny
  • Publication number: 20130154148
    Abstract: Circuits and methods of fabricating circuits are disclosed herein. A method of fabricating an electronic circuit includes placing an electronic component on a substrate. A ferromagnetic material is mixed into a mold compound to produce a mixed mold compound having an increased permeability over the mold compound. The mixed mold compound is applied to the substrate by way of a transfer mold process, wherein the mixed mold compound encapsulates the electronic component.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Kummerl, Richard J. Saye
  • Publication number: 20130153816
    Abstract: Magnetorheological (MR) fluids are disclosed herein. An example of the MR fluid includes a carrier fluid, magnetic particles disposed in the carrier fluid, and non-magnetic particles disposed in the carrier fluid. The non-magnetic particles are particles of a shape memory alloy having an Austenite finish temperature (Af) that is lower than a temperature encountered in an application in which the MR fluid is used so that the shape memory alloy exhibits stress-induced superelasticity.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 20, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: GM GLOBAL TECHNOLOGY OPERATIONS LLC
  • Patent number: 8465663
    Abstract: A composition for electromagnetic wave suppression and heat radiation includes: a matrix composed of a high molecular material or a low molecular material; and a magnetic particle filled in the matrix upon mixing a magnetic powder having a relation of {(tap density)/density}?0.58 with the matrix.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 18, 2013
    Assignee: Sony Corporation
    Inventors: Yoshihiro Kato, Kazuhiko Suzuki, Tatsuo Kumura, Yusuke Kubo
  • Publication number: 20130126775
    Abstract: The purpose of the present invention is to provide an alcoholic solvent, in which FeCo based particles becoming a soft magnetic material are improved, for enhancing properties of a magnetic material using no heavy rare earth elements, and is to provide a sintered magnet produced by using it. An alcoholic solution comprising FeCo-based particles and rare earth fluoride mixed together, wherein particle diameters of said FeCo-based particles are larger than particle diameters of said rare earth fluoride particles, particle diameters of said FeCo-based particles are from 20 to 200 nm, and particle diameters of said rare earth fluoride particles are from 1 to 50 nm.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 23, 2013
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventor: Hitachi Chemical Company, Ltd.
  • Publication number: 20130119298
    Abstract: The present invention provides a magnetic multilayer pigment flake and a magnetic coating composition that are relatively safe for human health and the environment. The pigment flake includes one or more magnetic layers of a magnetic alloy and one or more dielectric layers of a dielectric material. The magnetic alloy is an iron-chromium alloy or an iron-chromium-aluminum alloy, having a substantially nickel-free composition. The coating composition includes a plurality of the pigment flakes disposed in a binder medium.
    Type: Application
    Filed: January 3, 2013
    Publication date: May 16, 2013
    Inventors: Vladimir P. RAKSHA, Paul T. Kohlmann, Cornelis Jan Delst, Paul G. Coombs
  • Publication number: 20130119297
    Abstract: A magnetically susceptible conductive slurry (MSCS) is comprised of magnetically susceptible granules in a conducting fluid mixture. The material properties of a MSCS act in a single or combination of methods for conduction, transportation, reflection and spallation of elementary particles and composite particles as found in physics. The two main components of an MSCS are magnetically susceptible granules to which a fluid adheres that as a composition act in a linear or non-linear manner to conduct elementary particles between terminals. Magnetically susceptible granules that are not normally wet by a conducting fluid are encapsulated and coated by a wetting material that increases the adhesive forces of the material fluid interface above that of the fluid's cohesive forces. A MSCS is susceptible to magnetic fields and is capable of being shape formed during fabrication and use.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Inventor: Russell Byron Auger
  • Publication number: 20130115172
    Abstract: The present invention relates to a nanophosphor and method for synthesizing the same, and provides a nanophosphor containing fluoride-based nanoparticles co-doped with Yb3+ and Er3+ expressed by the following Chemical Formula 1, NaY1?w?z?x?yGdwLzF4:Yb3+x,Er3+y??(1) wherein, the description of the values x, y, w, z, and L is the same as defined above. The nanophosphor may exhibit an excellent luminous intensity despite having a small particle size, and be excited by infrared rays to emit visible light, and have magnetic properties and thus can be used as a contrast agent, a counterfeit prevention code, and the like.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Publication number: 20130112911
    Abstract: A nanoparticle composition comprises a ferromagnetic or superparamagnetic metal nanoparticle, and a functionalized carbonaceous coating on a surface of the ferromagnetic or superparamagnetic metal nanoparticle. A magnetorheological fluid comprises the nanoparticle composition.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Terry R. Bussear, Michael H. Johnson
  • Publication number: 20130112912
    Abstract: The invention relates to lamina-like iron pigments produced by deformation of carbonyl iron powder, the lamina-like iron pigments having a size distribution with a D50 value in a range of from 3 to 16 ?m and a size/thickness ratio in a range of from 2 to 50. The invention furthermore relates to a magnetorheological fluid which contains the lamina-like iron pigments according to the invention, as well as to a device which contains the magnetorheological fluid.
    Type: Application
    Filed: July 5, 2011
    Publication date: May 9, 2013
    Applicant: ECKART GMBH
    Inventors: Christian Wolfrum, Stefan Trummer, Marco Greb
  • Publication number: 20130112605
    Abstract: Novel chromatographic materials for chromatographic separations, columns, kits, and methods for preparation and separations with a superficially porous material comprising a substantially nonporous core and one or more layers of a porous shell material surrounding the core. The material of the invention is comprised of superficially porous particles and a narrow particle size distrution.
    Type: Application
    Filed: July 25, 2011
    Publication date: May 9, 2013
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Beatrice W. Muriithi, Michael F. Morris, Nicole L. Lawrence
  • Patent number: 8435496
    Abstract: A method for providing nanoparticle clusters of controlled dimensions is described. The method involves an activation of individual nanoparticles and the subsequent interaction between activated particles to form a cluster.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 7, 2013
    Assignee: Dublin City University
    Inventors: Dermot Brougham, Swapankumar Ghosh
  • Publication number: 20130099152
    Abstract: This invention relates to a manufacturing method of colloid comprising magnetic nanoclusters and magnetic nanocluster colloid made by the same. More particularly, this invention relates to a manufacturing method of colloid comprising magnetic nanoclusters comprising magnetic precursor and heterometal precursor by a certain ratio and magnetic nanocluster colloid made by the same.
    Type: Application
    Filed: April 5, 2011
    Publication date: April 25, 2013
    Applicants: NANOBRICK CO., LTD., SUN R & D B
    Inventors: Jin Kyu Lee, Jin Myung Cha
  • Publication number: 20130075649
    Abstract: A magnetic glue includes a curable glue and magnetic nanoparticles mixed in the curable glue. The magnetic glue is used in a lens module to avoid polluting the optical portion of the lens module.
    Type: Application
    Filed: December 29, 2011
    Publication date: March 28, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIEN-CHUN WANG
  • Patent number: 8404139
    Abstract: The invention relates to a composite material formed by microparticles of magnetic material A and a conductive liquid B. The material is characterized in that the material A is chosen from magnetic compounds and magnetic alloys and is in the form of particles, the mean size of which is between 1 and 10 ?m, and in that the support fluid B is a conductive fluid chosen from metals, metal alloys and salts that are liquid at temperatures below the Curie temperature of the material A, or from mixtures thereof.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: March 26, 2013
    Assignees: Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique
    Inventors: Emmanuelle Dubois, Jean Chevalet
  • Patent number: 8404140
    Abstract: The invention relates to a composite material formed by millimeter-scale particles of magnetic material A and a conductive liquid B. The material is characterized in that the material A is chosen from magnetic compounds and magnetic alloys and is in the form of particles, the mean size of which is between 0.1 and 2 mm, and in that the support fluid B is a conductive fluid chosen from metals, metal alloys and salts that are liquid at temperatures below the Curie temperature of the material A, or from mixtures thereof.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: March 26, 2013
    Assignees: Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique
    Inventors: Emmanuelle Dubois, Jean Chevalet
  • Patent number: 8404141
    Abstract: A rare earth bonded magnet is provided which is produced such that a mixture which comprises: a rare earth magnet powder; a resin binder comprising a thermosetting resin; an organic phosphorus compound; and a coupling agent is compress-molded, heated and cured, wherein the organic phosphorus compound and the coupling agent are represented by the following respective chemical formulas (structural formulas):
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 26, 2013
    Assignee: Minebea Co., Ltd.
    Inventors: Noboru Menjo, Kinji Uchiyama, Yuki Takeda
  • Publication number: 20130068992
    Abstract: An R-T-B based permanent magnet powder, which has been made by an HDDR process and which has an average crystal grain size of 0.1 ?m to 1 ?m and a crystal grain aspect ratio (ratio of the major axis size to the minor axis size) of 2 or less, is provided (Step (A)). R is a rare-earth element, of which at least 95 at % is Nd and/or Pr, and T is either Fe alone or Fe partially replaced with Co and/or Ni and is a transition metal element, of which at least 50 at % is Fe. Meanwhile, an R?—Cu based alloy powder, which is made up of R? and Cu, which accounts for 2 at % to 50 at % of the alloy powder, is also provided (Step (B)). R? is a rare-earth element, of which at least 90 at % is Nd and/or Pr but which includes neither Dy nor Tb. The R-T-B based permanent magnet powder and the R?—Cu based alloy powder are mixed together to obtain a mixed powder (Step (C)). And then the mixed powder is subjected to a heat treatment process at a temperature of 500° C. to 900° C.
    Type: Application
    Filed: May 19, 2011
    Publication date: March 21, 2013
    Inventors: Kazuhiro Hono, Tadakatsu Ohkubo, Hossein Sepehri Amin, Noriyuki Nozawa, Takeshi Nishiuchi, Satoshi Hirosawa
  • Publication number: 20130070518
    Abstract: An antiferromagnetic nanostructure according to one embodiment includes an array of at least two antiferromagnetically coupled magnetic atoms having at least two magnetic states that are stable for at least one picosecond even in the absence of interaction with an external structure, the array having a net magnetic moment of zero or about zero, wherein the array has 100 atoms or less along a longest dimension thereof. An atomic-scale structure according to one embodiment has a net magnetic moment of zero or about zero; two or more stable magnetic states; and having an array of atoms that has magnetic moments that alternate between adjacent magnetic atoms along one or more directions. Such structures may be used to store data at ultra-high densities.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Donald M. Eigler, Andreas J. Heinrich, Sebastian Loth, Christopher P. Lutz
  • Patent number: 8398879
    Abstract: A powder mixture, which contains a soft magnetic powder and an insulating powder lubricant in an amount of 0.1% by mass or more relative to the soft magnetic powder, is formed by compacting at a compacting pressure of 800 MPa or less, thereby obtaining a powder compact that has a space factor of the soft magnetic powder of 93% or more. The powder compact can be used as a soft magnetic powdered core. The soft magnetic powdered core has a specific resistance or 10,000 ??cm or more. A powder of a metal soap such as barium stearate or lithium stearate is used as the insulating powder lubricant.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 19, 2013
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Kohei Muramatsu, Chio Ishihara, Masaki Yanaka
  • Publication number: 20130056674
    Abstract: A powder magnetic core of the present invention is a powder magnetic core that includes an insulating layer containing a particulate metal oxide between metal powders, in which the insulating layer contains Ca, P, O, Si, and C as elements. According to the present invention, it is possible to provide a powder magnetic core in which securing of a constant permeability characteristic under a high magnetic field and decrease in core loss are compatible with each other, and a method for producing the powder magnetic core.
    Type: Application
    Filed: April 8, 2011
    Publication date: March 7, 2013
    Inventors: Takashi Inagaki, Takehiro Shimoyama, Chio Ishihara, Tetsushi Maruyama
  • Publication number: 20130058870
    Abstract: The invention relates to nanocrystals, containing one or more metals as defined in the specification; having a size of 2 to 200 nm; having a defined, three-dimensional polyhedral structure, optionally functionalized by ligands and/or embedded crystals. The invention further relates to monodisperse assemblies of such nanocrystals, to formulations and devices comprising such nanocrystals as well as to the manufacture and use thereof.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: ETH ZURICH
    Inventors: Christophe Jan Lacroix, Christophe Chassard, Marcus Yaffee
  • Publication number: 20130052353
    Abstract: A method of forming CuFeS2 chalcopyrite nanoparticles. The method includes, in the presence of one or more ligands, reacting an iron-containing compound, a copper-containing compound and a sulfur-containing compound to form CuFeS2 chalcopyrite nanoparticles; and wherein at least one of the ligands forms a coordination complex with copper, and at least one of the ligands forms a coordination complex with iron. Also a method of forming metal-doped CuFeS2 chalcopyrite nanoparticles such as Zn-doped CuFeS2 chalcopyrite nanoparticles. Also, a CuFeS2 chalcopyrite nanoparticle layer on a substrate. Also, a composition of matter including Zn-doped CuFeS2 chalcopyrite nanoparticles. Also, a Zn-doped CuFeS2 chalcopyrite nanoparticle layer on a substrate.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xin Ai, Abdulaziz Bagabas, Mohammed Bahattab, John D. Bass, Robert D. Miller, Campbell J. Scott, Qing Song
  • Patent number: 8377233
    Abstract: A method for preparing a rare earth permanent magnet material comprises the steps of: disposing a powder comprising one or more members selected from an oxide of R2, a fluoride of R3, and an oxyfluoride of R4 wherein R2, R3 and R4 each are one or more elements selected from among rare earth elements inclusive of Y and Sc on a sintered magnet form of a R1—Fe—B composition wherein R1 is one or more elements selected from among rare earth elements inclusive of Y and Sc, and then heat treating the magnet form and the powder at a temperature equal to or below the sintering temperature of the magnet in vacuum or in an inert gas. The result high performance, compact or thin permanent magnet has a high remanence and coercivity at a high productivity.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: February 19, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Koichi Hirota, Takehisa Minowa
  • Publication number: 20130037740
    Abstract: A nanoheterostructure includes a first inorganic component and a second inorganic component one of which is a matrix, and the other of which is three-dimensionally and periodically arranged in the matrix, and has a three-dimensional periodic structure whose average value of one unit length of a repeated structure is 1 nm to 100 nm.
    Type: Application
    Filed: March 16, 2011
    Publication date: February 14, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hiroaki Wakayama, Hirotaka Yonekura, Hiromitsu Tanaka
  • Publication number: 20130033354
    Abstract: Disclosed herein are a ferrite powder having a core-shell structure, the core being made of iron (Fe) or iron-based compounds comprising iron (Fe) and the shell being made of metal oxides, a ferrite material comprising the ferrite powder and the glass, and multilayered chip components including the ferrite layer using the ferrite material, inner electrodes, and outer electrodes. According to the exemplary embodiments of the present invention, it is possible to provide the ferrite material capable of improving the change in the inductance L value in response to applied current by suppressing magnetization at high current. The multilayered chip components including the ferrite material according to the exemplary embodiment of the present invention can also be used in a band of MHz.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Inventors: Sung Yong An, Myeong Gi Kim, Ic Seob Kim
  • Patent number: 8361341
    Abstract: A magnetorheological composition includes a mixture of a carrier medium and a particle component disposed in the carrier medium. The particle component includes a magnetic material and a nonmagnetic material. The nonmagnetic material is present in the particle component in an amount of from about 5 to about 95 parts by volume based on 100 parts by volume of the particle component. The particle component is present in the magnetorheological composition in an amount of from about 20 to about 80 parts by volume based on 100 parts by volume of the magnetorheological composition. The magnetorheological composition has an on-state yield stress at magnetic saturation of from about 0.1 to about 100 kPa.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: John C. Ulicny, Mark A. Golden, Keith S. Snavely, Prabhakar Marur
  • Publication number: 20130020526
    Abstract: Disclosed are water-soluble nanoparticles. The water-soluble nanoparticles are each surrounded by a multifunctional group ligand including an adhesive region, a cross linking region, and a reactive region. In the water-soluble nanoparticles, the cross-linking region of the multifunctional group ligand is cross-linked with another cross-linking region of a neighboring multifunctional group ligand.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 24, 2013
    Applicant: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jin-Woo CHEON, Young-Wook JUN, Jin-Sil CHOI
  • Publication number: 20130020527
    Abstract: A rare-earth permanent magnetic powder, a bonded magnet, and a device comprising the bonded magnet are provided. The rare-earth permanent magnetic powder is mainly composed of 7-12 at % of Sm, 0.1-1.5 at % of M, 10-15 at % of N, 0.1-1.5 at % of Si, and Fe as the balance, wherein M is at least one element selected from the group of Be, Cr, Al, Ti, Ga, Nb, Zr, Ta, Mo, and V, and the main phase of the rare-earth permanent magnetic powder is of TbCu7 structure. Element Si is added into the rare-earth permanent magnetic powder for increasing the ability of SmFe alloy to from amorphous structure, and for increasing the wettability of the alloy liquid together with the addition of element M in a certain content, which enables the alloy liquid prone to be injected out of a melting device.
    Type: Application
    Filed: March 28, 2011
    Publication date: January 24, 2013
    Applicant: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Hongwei Li, Dunbo Yu, Yang Luo, Kuoshe Li, Shipeng Li, Min Wang, Yongqiang Yuan
  • Publication number: 20130015394
    Abstract: A ferromagnetic powder composition including soft magnetic iron-based core particles, wherein the surface of the core particles is provided with at least one phosphorus-based inorganic insulating layer and then at least partially covered with metal-organic compound(s), wherein the total amount of metal-organic compound(s) is between 0.005 and 0.05% by weight of the powder composition, and wherein the powder composition further includes a lubricant. Further, a process for producing the composition and a method for the manufacturing of soft magnetic composite components prepared from the composition, as well as the obtained component.
    Type: Application
    Filed: February 9, 2011
    Publication date: January 17, 2013
    Applicant: HÖGANÄS AB
    Inventors: Björn Skårman, Zhou Ye
  • Patent number: 8354037
    Abstract: To provide a high-frequency magnetic material having a superior radio wave absorption property in a high frequency region and a method of manufacturing the same. The high-frequency magnetic material and the method of manufacturing the same includes a magnetic substance containing metal nanoparticles, the metal nanoparticles are magnetic metals containing at least one kind of Fe, Co, and Ni, an average particle diameter of the metal nanoparticles is equal to or less than 200 nm, first clusters having network-like structures with continuous metal nanoparticles and the average diameter equal to or less than 10 ?m are formed, second clusters having network-like structures with the continuous first clusters and the average diameter equal to or less than 100 ?m are formed, and the entire magnetic substance has a network-like structure with the continuous second clusters.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Harada, Tomohiro Suetsuna, Seiichi Suenaga
  • Publication number: 20130009089
    Abstract: The invention relates to a method for the carbon coating of metallic nanoparticles. The metallic nanoparticles, which are produced using the metal-salt hydrogen-reduction method, can be coated with carbon by adding a hydrocarbon (for example, ethylene, ethane, or acetylene) to the hydrogen using in the synthesis. The carbon layer protects the metallic particles from oxidation, which greatly facilitates the handling and further processing of the particles. By altering the concentration of the hydrocarbon, it is possible, in addition, to influence the size of the metallic particles created, because the coating takes place simultaneously with the creation of the particles, thus stopping the growth process. A carbon coating at most two graphene layers thick behaves like a semiconductor. As a thicker layer, the coating is a conductor. If the hydrocarbon concentration is further increased, a metal-CNT composite material is formed in the process.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 10, 2013
    Applicant: TEKNOLOGIAN TUTKIMUSKESKUS VTT
    Inventors: Ari Auvinen, Jorma Jokiniemi, Johanna Forsman, Pipsa Mattila, Unto Tapper
  • Publication number: 20130009736
    Abstract: The anisotropic rare earth magnet powder of the present invention includes powder particles having R2TM14B1-type crystals of a tetragonal compound of a rare earth element (R), boron (B), and a transition element (TM) having an average crystal grain diameter of 0.05 to 1 ?m, and enveloping layers containing at least a rare earth element (R?) and copper (Cu) and enveloping surfaces of the crystals. Owing to the presence of the enveloping layers, coercivity of the anisotropic rare earth magnet powder can be remarkably enhanced without using a scarce element such as Ga and Dy.
    Type: Application
    Filed: October 8, 2010
    Publication date: January 10, 2013
    Applicant: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Chisato Mishima, Masao Yamazaki
  • Publication number: 20120328880
    Abstract: A process is provided for producing carbon microparticles, wherein resin microparticles, metal-containing resin microparticles or daughter-particle-containing resin microparticles are subjected to carbonization baking, and wherein the synthetic resin microparticles, the metal-containing resin microparticles or the daughter-particle-containing resin microparticles are produced by a process comprising mixing a polymer (A) such as polyacrylonitrile copolymer microparticles composed of a copolymer of an acrylonitrile monomer and a hydrophilic vinyl monomer with a polymer (B) that is different from the polymer (A) in an organic solvent to produce an emulsion and bringing the emulsion into contact with a poor solvent for the polymer (A), thereby causing the polymer (A) to precipitate; and the carbon microparticles.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 27, 2012
    Applicant: Toray Industries, Inc.
    Inventors: Itaru Asano, Hiroshi Takezaki
  • Patent number: 8334667
    Abstract: A permanent magnet rotating electrical machine capable of conducting a variable speed operation at high output in a wide range from low speed to high speed and improving efficiency and reliability in a wide operating range. Two kinds of permanent magnets having different shapes or different magnetic characteristics are embedded in a rotor core, to form a magnetic pole. The permanent magnets arranged at the magnetic pole include a permanent magnet whose product of coercive force and thickness along a magnetizing direction is small and a permanent magnet whose product of coercive force and thickness along the magnetizing direction is large. A magnetic field created by passing a current to an armature coil for a short time is used to irreversibly magnetize the permanent magnet whose product of coercive force and thickness along magnetizing direction is small, thereby changing a total linkage flux amount, and a positive d-axis current is passed when torque is large.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Sakai, Kazuaki Yuuki
  • Patent number: 8317002
    Abstract: An apparatus includes a damper, a source of magnetic field coupled to the damper, a colloidal ferro-fluidic damping medium disposed in the damper, a sensor installed on the host structure to measure vibrations, and a vibration control circuit. The output of the sensor is fed back to the control circuit, which outputs a command signal to the source of the magnetic field applied to the damper to change the magnetic field in the damper as well as its damping curve so that the dynamic performance of the host structure installed with the damper is changed automatically to yield maximum vibration mitigation.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: November 27, 2012
    Assignee: The Regents of the University of California
    Inventors: Gangyi Zhou, Lizhi Sun
  • Publication number: 20120292555
    Abstract: A ferromagnetic powder composition including soft magnetic iron-based core particles, wherein the surface of the core particles is provided with a first inorganic insulating layer and at least one metal-organic layer, located outside the first layer, of a metal-organic compound having the following general formula: (R1[(R1)x(R2)y(MOn-1)]nR1, wherein M is a central atom selected from Si, Ti, Al, or Zr; O is oxygen; R1 is a hydrolysable group; R2 is an organic moiety and wherein at least one R2 contains at least one amino group; wherein n is the number of repeatable units being an integer between 1 and 20; wherein the x is an integer between 0 and 1; wherein y is an integer between 1 and 2; wherein a metallic or semi-metallic particulate compound having a Mohs hardness of less than 3.5 is adhered to a metal-organic layer; wherein the powder composition further includes a particulate lubricant.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 22, 2012
    Applicant: HOGANAS AB (PUBL)
    Inventors: Björn Skårman, Zhou Ye, Hilmar Vidarsson
  • Patent number: 8313666
    Abstract: There is provided novel curable ink compositions comprising polymer-coated magnetic metal nanoparticles. In particular, there is provided ultraviolet (UV) curable gel inks comprising at least the coated magnetic metal nanoparticles, one curable monomer, a radiation activated initiator that initiates polymerization of curable components of the ink, a gellant. The inks may also include optional colorants and one or more optional additives. These curable gel UV ink compositions can be used for ink jet printing in a variety of applications.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: November 20, 2012
    Assignee: Xerox Corporation
    Inventors: Gabriel Iftime, Naveen Chopra, Barkev Keoshkerian, Peter G. Odell, Marcel P. Breton