With Scandium, Yttrium, Gallium, Rare Earth, Or Actinide Patents (Class 252/62.57)
  • Patent number: 10141091
    Abstract: A ferrite magnetic material comprising a primary phase of a magnetoplumbite-type hexagonal ferrite, the primary phase having a composition represented by formula (I), can provide improved magnetic properties in terms of the residual magnetic flux density (Br), intrinsic coercive force (iHc), squareness (Hk/iHc), and maximum energy product (B.Hmax). Therefore, a segment-type permanent magnet derived therefrom can be used in the manufacture of small type motors for automobiles, motors for electric equipments as well as for home appliances, and other devices.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 27, 2018
    Assignee: UNION MATERIALS CORPORATION
    Inventors: Kilsoo Park, Minho Kim, Dongyoung Lee
  • Patent number: 10096412
    Abstract: The present invention provides a rare earth based magnet including R2T14B main-phase crystal grains, and two-grain boundary phases between adjacent two R2T14B main-phase crystal grains, the two-grain boundary phases are controlled such that the thickness thereof is 5 nm or more and 500 nm or less, and it is composed of a phase with a magnetism different from that of a ferromagnet.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 9, 2018
    Assignee: TDK CORPORATION
    Inventors: Eiji Kato, Yoshinori Fujikawa, Taeko Tsubokura, Chikara Ishizaka, Katsuo Sato
  • Patent number: 9808543
    Abstract: Iron garnet nanoparticles and or iron garnet particles containing various activatable nuclides, such as holmium-165 (165Ho) and dysprosium-164 (164Dy), are disclosed in this application. The iron garnet (e.g., HoIG and DyIG) nanoparticles and iron garnet particles can prepared using hydroxide co-precipitation methods. In some embodiments, radiosensitizers can be loaded on radioactive magnetic nanoparticles or radioactive iron garnet particles and, optionally, coated with suitable lipid bilayers. Methods of using the disclosed nanoparticles and particles for mediating therapeutic benefit in diseases responsive to radiation therapy are also provided. Another aspect of the invention provides films, electrospun fabrics or bandage coverings for the delivery of radiation to the site of a skin lesion amenable to treatment with radiation (e.g., skin cancers or psoriasis).
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: November 7, 2017
    Assignees: UNIVERSITY OF NORTH TEXAS HEALTH SCIENCE CENTER AT FORT WORTH, THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Anthony J. Di Pasqua, Kenneth J. Balkus, Jr., Imalka S. Munaweera, Yi Shi
  • Patent number: 9697937
    Abstract: An object of the present invention is to provide a ferrite material that is excellent in temperature characteristic and DC superimposition characteristic. The present invention relates to Ni—Zn—Cu-based ferrite particles comprising 70 to 95% by weight of an Ni—Zn—Cu ferrite having a specific composition, 1 to 20% by weight of nickel oxide, 0 to 20% by weight of zinc oxide and 1 to 10% by weight of copper oxide, and a ferrite sintered ceramics obtained by sintering the ferrite particles.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: July 4, 2017
    Assignee: TODA KOGYO CORP.
    Inventors: Yoji Okano, Tomohiro Dote, Takanori Doi
  • Patent number: 9630172
    Abstract: Provided are a titanium dioxide-coated upconverting nanoparticle (UCNP) and a photocatalyst complex containing a gold nanorod (GNR) combined with the titanium dioxide-coated UCNP.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: April 25, 2017
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Gon Kim, Hyo-Young Mun, Ju-Young Byun, Taihua Li, Jin-Ho Park
  • Patent number: 9627112
    Abstract: A sintered ferrite magnet comprises a main phase of an M type Sr ferrite having a hexagonal crystal structure. An amount of Zn is 0.05 to 1.35 mass % in terms of ZnO and M1/M2 is 0.43 or less when an amount of a rare-earth element (R) is M1 in terms of mol and the amount of Zn is M2 in terms of mol.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: April 18, 2017
    Assignee: TDK CORPORATION
    Inventors: Yoshitaka Murakawa, Naoharu Tanigawa, Yoshihiko Minachi, Hitoshi Taguchi
  • Patent number: 9552914
    Abstract: This application relates to devices in which magnets are arranged so that an intensity of a magnetic field emitted by the magnets is substantially the same at a position of interest for at least two discrete positions of the magnets. The application describes how this can be achieved even when the discrete positions are different distances from the position of interest by identifying locations at which magnetic material can be added to balance the field intensity for both discrete locations. In some embodiments, this type of configuration can be helpful in accommodating movement of magnets between two common positions. When the magnetic field intensity for the position of interest is set near zero a magnetically sensitive component can be positioned at the point of interest with little or no effect from the magnetic field when the magnets are in any of the discrete positions.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: January 24, 2017
    Assignee: Apple Inc.
    Inventor: James A. Stryker
  • Patent number: 9527776
    Abstract: Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 27, 2016
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Bowie Cruickshank, Michael David Hill
  • Patent number: 9487411
    Abstract: The method of manufacturing magnetic particles, wherein the magnetic particles are magnetic particles for magnetic recording, and includes subjecting starting material magnetic particles to glass component-adhering treatment to be adhered with a glass component, and subjecting the magnetic particles after the glass component-adhering treatment to coercive force-reducing treatment with heating, to provide magnetic particles having lower coercive force than the starting material magnetic particles.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: November 8, 2016
    Assignee: FUJIFILM Corporation
    Inventor: Yasushi Hattori
  • Patent number: 9460837
    Abstract: Disclosed are a multilayered power inductor, including: a body in which a plurality of magnetic layers formed with inner electrodes are stacked; and a plurality of gap layers, wherein the plurality of gap layers are formed so as not to contact external electrodes formed at both sides of the body, and a gap composition of the multilayered power inductor. In addition, as the gap composition, the exemplary embodiment of present invention can prepare tetravalent or tetravalent dielectric oxide into the paste type and applies the gap layer structure thereto, thereby facilitating the structural design and the thickness control of the gap layer as compared with the case of forming the gap layer in the sheet shape of the related art and improving the DC-bias characteristics by maximally suppressing the diffusion with the body.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 4, 2016
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Soo Hwan Son, Sung Yong An, Myeong Gi Kim, So Yeon Song, Byeong Cheol Moon
  • Patent number: 9458026
    Abstract: To provide a method for improving a coercive force of epsilon-type iron oxide particles, and an epsilon-type iron oxide. Specifically, to provide a method for improving the coercive force of an epsilon-type iron oxide comprising: substituting Fe-site of the epsilon-type iron oxide with other element, while not substituting Fe of D-site in the epsilon-type iron oxide with other element, and the epsilon type iron oxide.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 4, 2016
    Assignees: THE UNIVERSITY OF TOKYO, DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shin-ichi Ohkoshi, Shunsuke Sakurai, Asuka Namai, Sayaka Umeda, Hiroshi Hachiya, Kazuyuki Matsumoto, Takashi Gotoh
  • Patent number: 9401235
    Abstract: A sintered ferrite magnet having a main phase composed of ferrite having a hexagonal, M-type magnetoplumbite structure, a grain boundary phase containing Si and Ca with a lower atomic ratio of La than in said main phase, and a third phase containing La at a higher atomic ratio than in said main phase, and a method for producing a sintered ferrite magnet having said third phase by calcining starting materials with more La than Ca, adding more than 1% and 1.8% or less by mass of SiO2 and 1-2% by mass (calculated as CaO) of CaCO3 to the calcined body, and pulverizing, molding and sintering it.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 26, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Yoshinori Kobayashi, Tsunehiro Kawata
  • Patent number: 9263175
    Abstract: Disclosed are synthetic garnets and related devices that can be used in radio-frequency (RF) applications. In some embodiments, such RF devices can include garnets having reduced or substantially nil Yttrium or other rare earth metals. Such garnets can be configured to yield high dielectric constants, and ferrite devices, such as TM-mode circulators/isolators, formed from such garnets can benefit from reduced dimensions. Further, reduced or nil rare earth content of such garnets can allow cost-effective fabrication of ferrite-based RF devices. In some embodiments, such ferrite devices can include other desirable properties such as low magnetic resonance linewidths. Examples of fabrication methods and RF-related properties are also disclosed.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: February 16, 2016
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Bowie Cruickshank, Rickard Paul O'donovan, Iain Alexander MacFarlane, Brian Murray, Michael David Hill
  • Publication number: 20150130550
    Abstract: Materials, devices and methods related to below-resonance radio-frequency (RF) circulators and isolators. In some embodiments, a circulator can include a conductor having a plurality of signal ports, and one or more magnets configured to provide a magnetic field. The circulator can further include one or more ferrite disks implemented relative to the conductor and the one or more magnets so that an RF signal can be routed selectively among the signal ports due to the magnetic field. Each of the one or more ferrite disks can include synthetic garnet material having dodecahedral sites, octahedral sites and tetrahedral sites, with bismuth (Bi) occupying at least some of the dodecahedral sites, and aluminum (Al) occupying at least some of the tetrahedral sites. Such synthetic garnet material can be represented by a formula Y3-x-2y?zBixCa2y+zFe5-y-z-aVyZrzAlaO12. In some embodiments, x?1.4, y?0.7, z?0.7, and a?0.75.
    Type: Application
    Filed: September 16, 2014
    Publication date: May 14, 2015
    Inventors: David Bowie CRUICKSHANK, Iain Alexander MACFARLANE, Michael David HILL
  • Patent number: 9028705
    Abstract: A capsule having a solid core, a primary shell of liquid encapsulating the solid core and a secondary shell of particles encapsulating the primary shell. The primary and secondary shells are generally repulsive to each other. Also provided is a process for the manufacture of capsules and a process for the manufacture of a magnetic body.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Magnequench Limited
    Inventors: Zhao Wei, Han Zhisan, David Miller
  • Patent number: 8980116
    Abstract: A sintered ferrite magnet having a ferrite phase with a hexagonal structure as the main phase, wherein the composition of the metal elements composing the main phase is represented by the following general formula (1): RxCamA1?x?m(Fe12?yMy)z: ??(1), x, m, y and z in formula (1) satisfying all of the conditions represented by the following formulas (2)-(6): 0.2?x?0.5: ??(2) 0.13?m?0.41: ??(3) 0.7x?m?0.15: ??(4) 0.18?yz?0.31: ??(5) 9.6?12z?11.8: ??(6), and wherein the density of the sintered ferrite magnet is at least 5.05 g/cm3, and the crystal grains of the sintered ferrite magnet satisfy all of the conditions represented by the following formulas (7) and (8), where L ?m is the average for the maximum value and S ?m is the average for the minimum value among the diameters passing through the center of gravity of each grains in the crystal cross-section parallel to the c-axis direction of hexagonal structures. L?0.95: ??(7) 1.8?L/S?2.5: ??(8).
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 17, 2015
    Assignee: TDK Corporation
    Inventors: Shigeki Yanagida, Noboru Ito, Yuuki Aburakawa, Naoki Mori, Yoshihiko Minachi
  • Publication number: 20150069286
    Abstract: The present invention relates generally to a magnetic catalyst for wet oxidation of organic waste and the preparation method thereof. According to the present invention, after the raw materials are dissolved and mixed in water, the pH value is adjusted for producing precipitates. Then after heating, filtering, drying, grinding, sifting, and calcinations are performed, the given magnetic catalyst can be reused without losing its activity. In addition, during treating organic waste by using wet oxidation method, no secondary waste is produced. Besides, the magnetic catalyst can be recycled by magnetic devices, making it excellent in terms of performance and convenience.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: YIH-PING CHEN, CHAO-RUI CHEN, YIN-MAO HSU
  • Patent number: 8920670
    Abstract: A magnetic material of an embodiment includes: first magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are 1 ?m or greater in particle size, and are 5 to 50 ?m in average particle size; second magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are smaller than 1 ?m in particle size, and are 5 to 50 nm in average particle size; and an intermediate phase that exists between the first magnetic particles and the second magnetic particles.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Harada, Tomohiro Suetsuna, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20140361214
    Abstract: An object of the present invention is to provide a ferrite magnetic material which can provide a permanent magnet retaining high Br and HcJ as well as having high Hk/HcJ. The ferrite magnetic material according to a preferred embodiment is a ferrite magnetic material formed of hard ferrite, wherein a P content in terms of P2O5 is 0.001% by mass or more.
    Type: Application
    Filed: August 11, 2014
    Publication date: December 11, 2014
    Inventors: Junichi NAGAOKA, Takahiro MORI, Hiroyuki MORITA, Yoshihiko MINACHI
  • Publication number: 20140291571
    Abstract: An object of the present invention is to provide, in order to deal with a high frequency band in which radio waves are expected to be increasingly used hereafter, a magnetoplumbite-type hexagonal ferrite material having significantly improved high-frequency property of magnetic permeability. Specifically, a magnetoplumbite-type hexagonal ferrite is represented by a composition formula: A(1-X)BxCx(D1yD2y)Fe(12-x-2y)O19 (where x: 0.1 to 0.3, y:0.1 to 0.5), wherein A is any one of Ba2+, Sr2+ and Ca2+, B is any one of La3+ and Nd3+, C and D1 are any one or more of Co2+, Mn2+, Mg2+, Zn2+, Cu2+ and Ni2+, and D2 is any one of Ti4+ and Zr4+.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 2, 2014
    Applicant: KABUSHIKI KAISHA RIKEN
    Inventor: Keita HIROSE
  • Patent number: 8828265
    Abstract: The invention relates to a modified strontium ferrite of the general chemical formula: Sr1-xLaxFe12-yCoyO19; in which x=y=0.01-1.00 or x=0.15 and y=x/1.6n to =x/2.6n, where n is the Fe2O3:SrO ratio used and may be 5-6. According to the invention, lanthanum and cobalt are added in an amount such that 0.14?x?0.145 and 0.14?y?0.145. The modified strontium ferrite thus prepared has excellent magnetic properties with regard to the remanence BR, the coercive force HCJ and the ratio of HK to HCJ.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 9, 2014
    Assignee: TRIDELTA Hartferrite GmbH
    Inventor: Kevin Mikenda
  • Patent number: 8821650
    Abstract: A process for mechanically strengthening a permanent magnet includes providing nanofibers or nanotubes, providing a ferromagnetic metal, defining a mixture by mixing the ferromagnetic metal with the nanofibers or nanotubes and sintering the mixture.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 2, 2014
    Assignee: The Boeing Company
    Inventor: Michael Strasik
  • Patent number: 8801956
    Abstract: A hexagonal crystal ferrite magnetic powder having high magnetic characteristics while having a small particle volume and a high specific surface area is provided, and a high-density magnetic recording medium using the powder. A method for producing a hexagonal crystal ferrite formed using a glass crystallization method includes the steps of: mixing a glass matrix with raw materials including iron, bismuth, a divalent metal (M1), a tetravalent metal (M2), any one kind (A) of barium, strontium, calcium, and lead, and at least one kind of rare earth element (represented by R) having a mole equal to or less than that of the iron; heating the mixed raw material to obtain a glass body; quenching the glass body, pulverizing the glass body, and performing a heat treatment, and washing the glass body after the heat treatment with an acid solution.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 12, 2014
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Kenji Masada, Tomoyuki Ishiyama, Gousuke Iwasaki
  • Patent number: 8769965
    Abstract: A magnetic refrigeration material includes: at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Tb by a range of 4 to 15 atomic percentages; at least one selected from the group consisting of Fe, Co, Ni, Mn and Cr by a range of 60 to 93 atomic percentages; at least one selected from the group consisting of Si, C, Ge, Al, Ga and In by a range of 2.9 to 23.5 atomic percentages; and at least one selected from the group consisting of Ta, Nb and W by a range of 1.5 atomic percentages or less, wherein the magnetic refrigeration material includes a NaZn13 type crystal structure as a main phase.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: July 8, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tsuji, Akiko Saito, Tadahiko Kobayashi
  • Publication number: 20140175327
    Abstract: Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: Skyworks Solutions, Inc.
    Inventors: David Bowie Cruickshank, Michael David Hill
  • Patent number: 8696925
    Abstract: Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 15, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Bowie Cruickshank, Michael D. Hill
  • Publication number: 20140097378
    Abstract: A ferrite magnet and a ferrite sintered magnet including a ferrite magnetic material are provided. A main phase of the ferrite magnetic material includes a ferrite phase having a hexagonal crystal structure, and metal element composition expressed by Ca1-w-x-yR wSr xBayFezMm wherein 0.25<w<0.5, 0.01<x<0.35, 0.0001<y<0.013, y<x, 8.7<z<9.9, 1.0<w/m<2.1, 0.017<m/z<0.055 and Si component is at least included as a sub-component, and wherein; when content y1 mass % of the Si component in the ferrite magnetic material, with respect to SiO2, is shown on Y-axis and a total content x1 of z and m is shown on X-axis, a relation between x1 and y1 is within a range surrounded by 4 points placed on X-Y coordinate having the X and Y axes.
    Type: Application
    Filed: November 4, 2013
    Publication date: April 10, 2014
    Applicant: TDK CORPORATION
    Inventors: Shigeki YANAGIDA, Takahiro MORI, Hiroyuki MORITA, Nobuhiro SUTO, Tatsuya KATOH, Yoshihiko MINACHI
  • Patent number: 8679362
    Abstract: Disclosed herein are a nickel-zinc-copper (NiZnCu) based ferrite composition containing 0.001 to 0.3 parts by weight of bivalent metal, 0.001 to 0.3 parts by weight of trivalent metal, and 0.001 to 0.5 parts by weight of tetravalent metal based on 100 parts by weight of main component containing 47.0 to 50.0 mol % of Fe2O3, 15.0 to 27.0 mol % of NiO, 18.0 to 25.0 mol % of ZnO, and 7.0 to 13.0 mol % of CuO, and a multilayered chip device and a toroidal core using the same. According to exemplary embodiments of the present invention, a bivalent metal, a trivalent metal, and a tetravalent are contained in a NiZuCu ferrite, thereby making it possible to provide a ferrite composition having excellent quality factor (Q) characteristics. Moreover, it is possible to provide a toroidal core and a multilayered chip device having excellent sinterability, permittivity, and quality factor (Q) characteristics using the ferrite composition.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myeong Gi Kim, Sung Yong An, Ic Seob Kim
  • Patent number: 8652347
    Abstract: Provided are new compositions of ruthenates in the pervoskite and layered pervoskite family, wherein the ruthenate compositions exhibit large magnetoresistance (MR) and electric-pulse-induced resistance (EPIR) switching effects, the latter observable at room temperature. This is the first time large MR and EPIR effects have been shown together in ruthenate compositions. Further provided are methods for synthesizing the class of ruthenates that exhibits such properties, as well as methods of use therefor in electromagnetic devices, thin films, sensors, semiconductors, insulators and the like.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: February 18, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: I-Wei Chen, Alexander Mamchik
  • Publication number: 20130307653
    Abstract: A ferrite magnetic material comprising a primary phase of a magnetoplumbite-type hexagonal ferrite, the primary phase having a composition represented by formula (I), can provide improved magnetic properties in terms of the residual magnetic flux density (Br), intrinsic coercive force (iHc), squareness (Hk/iHc), and maximum energy product (B.Hmax). Therefore, a segment-type permanent magnet derived therefrom can be used in the manufacture of small type motors for automobiles, motors for electric equipments as well as for home appliances, and other devices.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: SSANGYONG MATERIALS CORPORATION
    Inventors: Kilsoo Park, Minho Kim, Dongyoung Lee
  • Publication number: 20130284969
    Abstract: Disclosed are an R—Fe—B sintered magnet and a method for producing the same. More specifically, provided is an R—Fe—B (R=Nd, Dy, Pr, Tb, Ho, La, Ce, Sm, Gd, Er, Tm, Yb, Lu or Th) sintered magnet having a structure in which R2Fe14B crystal grains as major phases are surrounded with R-rich phases, wherein a dihedral angle between two adjacent R2Fe14B crystal grains and the R-rich phase contacting the R2Fe14B crystal grains is 70° or less in a triple junction formed by the R2Fe14B crystal grains. The sintered magnet maintains a high coercive force and exhibits improved mechanical properties and is thus applicable to motors or permanent magnets used at high temperatures.
    Type: Application
    Filed: January 6, 2012
    Publication date: October 31, 2013
    Applicant: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION, HANYANG UNIVERSITY
    Inventors: Young-Do Kim, Se-Hoon Kim, Jin-Woo Kim
  • Publication number: 20130256583
    Abstract: A method of preparing a dispersion of stabilized iron oxide nanoparticles that comprise cores and coatings on the cores, which comprise zwitterionic functional groups chemically bound to the cores, using a single solution that comprises dissolved iron ions and a zwitterion silane and/or a hydrolyzed product of the zwitterion silane.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 3, 2013
    Inventors: Joseph B. Schlenoff, Zaki G. Estephan
  • Publication number: 20130169488
    Abstract: A new magnetic substance having a high magnetic permeability and a low magnetic permeability loss over a wide frequency bandwidth, a composite material for antennas using the new magnetic substance and a polymer, and an antenna using the composite material for antennas.
    Type: Application
    Filed: September 6, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-sig KUM, Nak-hyun KIM, Hyun-jin KIM, Seung-kee YANG, Joong-hee LEE
  • Patent number: 8444872
    Abstract: Disclosed is a magnetic material having high Hc and High Curie point, which is capable of controlling such magnetic characteristics without requiring rare or expensive raw materials. Specifically disclosed is a magnetic material composed of particles of a magnetic iron oxide which is represented by the following general formula: ?-AxByFe2?x?yO3 or ?-AxByCzFe2?x?y?zO3 (wherein A, B and C each represents a metal excluding Fe and different from each other, satisfying 0<x, y, z<1), with ?-Fe2O3 as a main phase.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 21, 2013
    Assignees: The University of Tokyo, Dowa Electronics Materials Co., Ltd.
    Inventors: Shin-ichi Ohkoshi, Shunsuke Sakurai, Takenori Yorinaga, Kazuyuki Matsumoto, Shinya Sasaki
  • Publication number: 20130062553
    Abstract: Disclosed herein are a nickel-zinc-copper (NiZnCu) based ferrite composition containing 0.001 to 0.3 parts by weight of bivalent metal, 0.001 to 0.3 parts by weight of trivalent metal, and 0.001 to 0.5 parts by weight of tetravalent metal based on 100 parts by weight of main component containing 47.0 to 50.0 mol % of Fe2O3, 15.0 to 27.0 mol % of NiO, 18.0 to 25.0 mol % of ZnO, and 7.0 to 13.0 mol % of CuO, and a multilayered chip device and a toroidal core using the same. According to exemplary embodiments of the present invention, a bivalent metal, a trivalent metal, and a tetravalent are contained in a NiZuCu ferrite, thereby making it possible to provide a ferrite composition having excellent quality factor (Q) characteristics. Moreover, it is possible to provide a toroidal core and a multilayered chip device having excellent sinterability, permittivity, and quality factor (Q) characteristics using the ferrite composition.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 14, 2013
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myeong Gi Kim, Sung Yong An, Ic Seob Kim
  • Publication number: 20130050041
    Abstract: Disclosed are synthetic garnets and related devices that can be used in radio-frequency (RF) applications. In some embodiments, such RF devices can include garnets having reduced or substantially nil Yttrium or other rare earth metals. Such garnets can be configured to yield high dielectric constants, and ferrite devices, such as TM-mode circulators/isolators, formed from such garnets can benefit from reduced dimensions. Further, reduced or nil rare earth content of such garnets can allow cost-effective fabrication of ferrite-based RF devices. In some embodiments, such ferrite devices can include other desirable properties such as low magnetic resonance linewidths. Examples of fabrication methods and RF-related properties are also disclosed.
    Type: Application
    Filed: May 30, 2012
    Publication date: February 28, 2013
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: David Bowie CRUICKSHANK, Rickard Paul O'DONOVAN, Iain Alexander MACFARLANE, Brian MURRAY, Michael David HILL
  • Publication number: 20120326074
    Abstract: A sintered ferrite magnet comprising a first granular ferrite compound phase containing Ca, La, Fe and Co and having a Curie temperature Tc1 between 415° C. and 430° C., and a second granular ferrite compound phase containing Sr, La, Fe and Co and having a Curie temperature Tc2 between 437° C. and 455° C., the volume ratio of the first ferrite compound phase being 50-90%, and the volume ratio of the second ferrite compound phase being 10-50%, with their total volume ratio being 95% or more.
    Type: Application
    Filed: March 9, 2011
    Publication date: December 27, 2012
    Applicant: HITACHI METALS, LTD.
    Inventors: Seiichi Hosokawa, Etsushi Oda, Hiroshi Iwasaki
  • Patent number: 8335037
    Abstract: [Problem] When a nonreciprocal device operating at 100 GHz to 300 GHz is to be realized by using a conventional magnetic material of garnet-type ferrite or spinel-type ferrite, a huge permanent magnet is required and, therefore, it is very difficult to achieve a millimeter-wave band nonreciprocal device for practical use. [Solving means] To solve this problem, there is provided a millimeter-wave band nonreciprocal device composed of a magnetic material represented by a formula ?-MxFe2-xO3 (0<x<2), wherein M is at least one of elements In, Ga, Al, Sc, Cr, Sm, Yb, Ce, Ru, Rh, Ti, Co, Ni, Mn, Zn, Zr, and Y and the magnetic material having ?-phase hematite as a principal phase exhibits strong coercive force and anisotropic magnetic field at room temperature. Dimensions of a magnetic circuit containing a permanent magnet for operations of the nonreciprocal device can be made remarkably small and, by optimum design, the use of the magnetic circuit can be made unnecessary.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: December 18, 2012
    Assignees: The University of Tokyo, Dowa Electronics Materials Co., Ltd.
    Inventors: Shigeru Takeda, Shin-Ichi Ohkoshi
  • Patent number: 8303837
    Abstract: A rotating machine comprising a sintered ferrite magnet having an M-type ferrite structure, comprising Ca, an R element that is at least one of rare earth elements and indispensably includes La, Ba, Fe and Co as indispensable elements, and having a composition represented by the formula: Ca1-x-yRxBayFe2n-zCoz, wherein (1?x?y), x, y, z and n represent the contents of Ca, the R element, Ba and Co, and a molar ratio, meeting 0.3?1?x?y?0.65, 0.2?x?0.65, 0.001?y?0.2, 0.03?z?0.65, 4?n?7, and 1?x?y>y; a bonded magnet comprising ferrite powder having the above composition and a binder, and a magnet roll, at least one magnetic pole portion of which is made of the above bonded magnet.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 6, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takashi Takami, Hiroshi Iwasaki, Yoshinori Kobayashi, Naoki Mochi, Ryuji Gotoh
  • Publication number: 20120225264
    Abstract: A magnetic fluid composition include a suspension of nano-particles including cross-crystallized multi-metal compounds dispersed in a solvent, the cross-crystallized multi-metal compounds including at least two or more metals having different valencies or oxidation states, the metals selected from the group consisting of a monovalent metal (Me+), a divalent metal (Me2+), a trivalent metal (Me3+), a quadrivalent metal (Me4+) and a rare earth metal. The magnetic fluid having a viscosity and surface tension that permits dispensing from an inkjet printer at a rate of at least 2.5 m/s, at a resolution of at least 600 dpi, supporting jetting pulse frequencies of at least 15 KHz per nozzle (enabling high speed inkjet printing applications of at least 0.6 m/sec per individual nozzle row per print head), and enabling uninterrupted, industrial level print output of magnetic ink character recognition (MICR) code lines suitable for high speed magnetic data scanning per established industry regulations (ANSI X9).
    Type: Application
    Filed: March 1, 2012
    Publication date: September 6, 2012
    Inventor: Thomas Villwock
  • Patent number: 8246849
    Abstract: To provide a magnetic powder production method, a magnetic sheet production method, and an antenna module production method that are capable of reducing a size of magnetic particles, achieving thinning and a low loss, and improving magnetic permeability without lowering it. At least two oxide-based magnetic materials are mixed, preliminarily calcined, and pulverized. The pulverized magnetic materials are typically formed into a paste by being dispersed in an organic solvent, and the magnetic materials are applied onto a film after being subjected to defoaming processing. Accordingly, a sheet-like magnetic material is formed. The sheet-like magnetic material is cut into predetermined sizes so as to be fragmented into particles, with the result that magnetic particles are formed.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: August 21, 2012
    Assignee: Sony Corporation
    Inventor: Hiraku Akiho
  • Patent number: 8211327
    Abstract: A method for preparing a rare earth permanent magnet material comprising the steps of: disposing a powder comprising one or more members selected from an oxide of R2, a fluoride of R3, and an oxyfluoride of R4 wherein R2, R3 and R4 each are one or more elements selected from among rare earth elements inclusive of Y and Sc on a sintered magnet form of a R1—Fe—B composition wherein R1 is one or more elements selected from among rare earth elements inclusive of Y and Sc, and heat treating the magnet form and the powder at a temperature equal to or below the sintering temperature of the magnet in vacuum or in an inert gas. The invention offers a high performance, compact or thin permanent magnet having a high remanence and coercivity at a high productivity.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 3, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Koichi Hirota, Takehisa Minowa
  • Publication number: 20120161910
    Abstract: An object of the present invention is to provide a ferrite magnetic material capable of providing a permanent magnet in which high Br and HcJ are kept, and which has a high Hk/HcJ. A ferrite magnetic material in accordance with a preferred embodiment has a ferrite phase having a hexagonal structure and has a main composition represented by Ca1-w-x-yRwSrxBayFezMmO19(R is at least one element of rare earth elements (including Y) essentially including La, and Bi, and M is at least one element of Co, Mn, Mg, Ni, Cu, and Zn essentially including Co), where 0.25<w<0.65, 0.01<x<0.45, 0.0002<y<0.011, y<x, 8<z<11, 1.0<w/m<2.5, and 0.017<m/z<0.065 are satisfied. The total amount of a Si component is 0.1 to 3 mass % based on the amount of the main composition, and respective elements satisfy the relationship of 1.5?[(Ca+R+Sr+Ba)?(Fe+M)/12]/Si?3.5.
    Type: Application
    Filed: July 5, 2010
    Publication date: June 28, 2012
    Applicant: TDK Corporation
    Inventors: Junichi Nagaoka, Takahiro Mori, Hiroyuki Morita, Yoshihiko Minachi
  • Publication number: 20120133452
    Abstract: Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.
    Type: Application
    Filed: July 14, 2011
    Publication date: May 31, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: David Bowie Cruickshank, Michael D. Hill
  • Patent number: 8182712
    Abstract: Techniques for dyeing material are disclosed, including providing a magnetorheological fluid containing a coloring agent onto a contacting surface, applying a magnetic field to the magnetorheological fluid to increase viscosity of the magnetorheological fluid, and contacting the material with the magnetorheological fluid on the contacting surface to dye the material with the coloring agent.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 22, 2012
    Assignee: Empire Technology Development LLC
    Inventors: Maki Maekawa, Takahisa Kusuura
  • Publication number: 20120085963
    Abstract: Disclosed herein are a ferrite composition for a high frequency bead in that a part of Fe in M-type hexagonal ferrite represented by BaFe12O19 is substituted with at least one metal selected from a group consisting of 2-valence, 3-valence and 4-valence metals, as well as a chip bead material using the same. According to embodiments of the present invention, the dielectric composition is characterized in that a part of Fe as a constituent of M-type hexagonal barium ferrite is substituted by other metals, to thus decrease a sintering temperature to 920° C. or less without using any additive for low temperature sintering. Moreover, because of high SRF properties, the inventive composition is applicable to a multilayer type chip bead used at a high frequency of more than several hundreds MHz and a magnetic antenna.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Inventors: Sung Yong AN, Jin Woo HAHN, Jeong Wook KIM, Sung Lyoung KIM, So Yeon SONG, Soo Hwan SON, Ic Seob KIM
  • Patent number: 8153097
    Abstract: A method for manufacturing ferrite powder comprises a step (a) of causing a precursor, obtained by a liquid-phase reaction method, to pass through a sieve with openings of 2 mm or less, and a step (b) of causing free fall, through the interior of a furnace tube heated to the range 750 to 1250° C. by a heater, of the precursor which has passed through the sieve. In the process of causing free fall through the interior of the furnace tube heated by the heater, ferrite powder, which is a single phase of hexagonal ferrite, is obtained by heating the precursor to a prescribed temperature and holding the precursor at the prescribed temperature.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: April 10, 2012
    Assignee: TDK Corporation
    Inventor: Mamoru Satoh
  • Patent number: 8142676
    Abstract: The invention relates to a magnetic garnet single crystal and an optical element using the same, for the purpose of providing a magnetic garnet single crystal at a reduced Pb content, and an optical element using the same, where the magnetic garnet single crystal is represented by the chemical formula Bi?M13-?Fe5-?-?M2?M3?O12 (M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is Si; and M3 is at least one element selected from Zn, Ni, Cu and Mg, provided that 0.5<??2.0, 0<?, and 0<y).
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: March 27, 2012
    Assignee: TDK Corporation
    Inventor: Atsushi Ohido
  • Patent number: 8097180
    Abstract: Disclosed is a magnetic material comprising a crystal of ?-GaxFe2-xO3 (wherein 0<x<1) prepared by substituting a part of Ga3+ ion sites of an ?-Fe2O3 crystal with Fe3+ ions and having X-ray diffraction peaks corresponding to the crystal structure of ?-Fe2O3. The coercive force of the magnetic material lowers in accordance with the Ga content thereof, and the saturation magnetization thereof has a maximum value.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: January 17, 2012
    Assignees: The University of Tokyo, DOWA Electronics Materials Co., Ltd.
    Inventors: Shin-ichi Ohkoshi, Kazuhito Hashimoto, Shunsuke Sakurai, Shiro Kuroki, Kimitaka Sato, Shinya Sasaki
  • Patent number: 8072365
    Abstract: Disclosed is a magnetic crystal for electromagnetic wave absorbing materials, having a structure of ?-MxFe2-xO3 with 0<x<1, which has the same space group as that of an ?-Fe2O3 crystal and which is derived from an ?-Fe2O3 crystal by substituting a part of the Fe site therein with M. In this, M is a trivalent element having an effect of lowering the coercive force Hc of ?-Fe2O3 crystal by the substitution. Concretely, the element M includes Al and Ga. An electromagnetic wave absorber having a packed structure of particles having such a substituent element M-added “M-substituted ?-Fe2O3 crystal” as the magnetic phase may control the electromagnetic wave absorption peak frequency depending on the degree of substitution with the element M, and for example, the invention gives an electromagnetic wave absorber applicable to a 76 GHz band for on-vehicle radars.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 6, 2011
    Assignees: The University of Tokyo, DOWA Electronics Materials Co., Ltd.
    Inventors: Shin-ichi Ohkoshi, Shiro Kuroki, Shunsuke Sakurai, Asuka Namai, Kimitaka Sato, Shinya Sasaki