Vaporization, Or Expansion, Refrigeration Or Heat Or Energy Exchange Patents (Class 252/67)
  • Patent number: 8486294
    Abstract: The present invention relates to compositions containing hydrofluoroolefins and to the uses thereof as heat transfer fluids, blowing agents, solvents and aerosols. More particularly, the invention relates to compositions having: 10 to 90% by weight, of 2,3,3,3-tetrafluoropropene, 5 to 85% by weight of HFC-134a and 2 to 20% by weight of HFC-152a.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: July 16, 2013
    Assignee: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20130160447
    Abstract: A method for converting heat from a heat source to mechanical energy is provided. The method comprises heating a working fluid E-1,1,1,4,4,5,5,5-octafluoro-2-pentene (E-HFO-1438mzz) and optionally 1,1,1,2,3-pentafluoropropane (HFC-245eb) using heat supplied from the heat source; and expanding the heated working fluid to lower the pressure of the working fluid and generate mechanical energy as the pressure of the working fluid is lowered. Additionally, a power cycle apparatus containing a working fluid to convert heat to mechanical energy is provided. The apparatus contains a working fluid comprising E-HFO-1438mzz and optionally HFC-245eb. A working fluid is provided comprising E-HFO-1438mzz and HFC-245eb. The working fluid (i) has a temperature of at least about 150° C.; (ii) further comprises Z-HFO-1438mzz; or both (i) and (ii).
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: E I Du Pont De Nemours And Company
    Inventor: E I Du Pont De Nemours And Company
  • Publication number: 20130153817
    Abstract: The present technology relates to compositional blends that can be used as refrigerants, and more specifically to blends of vinylidene fluoride and at least one other component for use in very low temperature applications. In at least some examples, the second component can be selected from the group consisting of carbon dioxide and pentafluoroethane. Further, the compositions can be azeotropic or azeotrope-like.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Rajiv Ratna Singh, Ryan Hulse
  • Publication number: 20130152626
    Abstract: A composition is described including a first fluorinated hydrocarbon compound according to the formula: wherein R1, R2, R3, R4, and R5 are each independently H, F, Cl, Br, or I, n is 0, 1, 2, or 3, and each R? group is independently H, F, Cl, Br, or I, with the proviso that zero to three of R1, R2, R3, R4, and R5 are F; a second fluorinated hydrocarbon compound according to the formula: wherein m is 0 or 1, and R6, R7, and R8 are each independently H, F, Cl, Br, or I, with the proviso that one of R6, R7, and R8 is F; and a third fluorinated hydrocarbon compound according to the formula: wherein R9, R10, R11, R12 and R13 are each independently H, Cl, Br, or I.
    Type: Application
    Filed: August 11, 2011
    Publication date: June 20, 2013
    Applicant: CARRIER CORPORATION
    Inventors: Yinshan Feng, Parmesh Verma
  • Patent number: 8465664
    Abstract: A refrigerant composition consists essentially of three hydrofluorocarbon components selected from HFC134a, HFC125 and HFC143a and an additive selected from a saturated or unsaturated hydrocarbon or mixture thereof boiling in the range ?50° C. and +40° C.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: June 18, 2013
    Assignee: RPL Holdings Limited
    Inventors: John Edward Poole, Richard Powell
  • Patent number: 8465665
    Abstract: The present invention provides a refrigerator oil composition which satisfies both sludge dispersibility and prevention of wear and seizing of sliding parts made of aluminum and/or iron, and a compressor and a refrigeration apparatus using the refrigerator oil composition. The refrigerator oil composition is characterized by comprising a base oil which is at least one member selected from mineral oils and synthetic oils, and at least one polyamide compound having two or more amide groups in the molecule and being present in an amount of 0.01 to 5% by mass based on the total amount of the refrigerator oil composition.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 18, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Masato Kaneko
  • Publication number: 20130145778
    Abstract: Compositions, methods and systems which comprise or utilize a multi-component mixture comprising: (a) HFC-32; (b) HFC-125; (c) HFO-1234yf and/or HFO-1234ze; (d) HFC-134a. In certain non-limiting aspects, such refrigerants may be used as a replacement for R-404A.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 13, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Publication number: 20130140482
    Abstract: The invention provides a heat transfer composition comprising R-1234ze (E), R-32 and 1,1,1,2-tetrafluoroethane (R-134a).
    Type: Application
    Filed: December 18, 2012
    Publication date: June 6, 2013
    Applicant: MEXICHEM AMANCO HOLDING S.A. DE C.V.
    Inventor: MEXICHEM AMANCO HOLDING S.A. DE C.V.
  • Publication number: 20130126777
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from 1,1-difluoroethane (R-152a), fluoroethane (R-161), and mixtures thereof.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 23, 2013
    Applicant: Mexichem Mnco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20130126778
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from 2,3,3,3-tetrafluoropropene (R-1234yf), 3,3,3-trifluoropropene (R-1243zf), and mixtures thereof.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 23, 2013
    Applicant: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20130126776
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), and mixtures thereof.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 23, 2013
    Applicant: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8444873
    Abstract: A composition which comprises or consists of more than 75 to less than 80 wt. % of pentafluoroethane (HFC-125); more than 17 to less than 22.7 wt. % of 1,1,1,2-tetrafluoroethane (HFC-134a); and more than 2.3 to less than 3.0 wt. % of n-butane (R600).
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 21, 2013
    Assignee: Solvay Fluor GmbH
    Inventors: Christoph Meurer, Felix Flohr, Helge Rau
  • Publication number: 20130119299
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from difluoromethane (R-32) 1,1,1,2-tetrafluoroethane (R-134a) and mixtures thereof.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 16, 2013
    Applicant: MEXICHEM AMANCO HOLDING SA DE CV
    Inventor: Robert E. Low
  • Publication number: 20130119292
    Abstract: Azeotropic or azeotrope-like compositions are disclosed. The azeotropic or azeotrope-like compositions are mixtures of Z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene and 1,1,1,3,3-pentafluorobutane. Also disclosed is a process of preparing a thermoplastic or thermoset foam by using such azeotropic or azeotrope-like compositions as blowing agents. Also disclosed is a process of producing refrigeration by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as solvents. Also disclosed is a process of producing an aerosol product by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing afire by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as dielectrics.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 16, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark Robin, Joan Ellen Bartelt
  • Publication number: 20130109771
    Abstract: The present invention relates, in part, to azeotrope and azeotrope-like mixtures consisting essentially of consisting essentially of cis-1-chloro-3,3,3-trifluoropropene and a second component selected from the group water, hexane, HFC-365mfc, and perfluoro(2-methyl-3-pentanone).
    Type: Application
    Filed: December 20, 2012
    Publication date: May 2, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Publication number: 20130104548
    Abstract: A method is provided for converting heat from a heat source to mechanical energy. The method comprises heating a working fluid using heat supplied from the heat source; and expanding the heated working fluid to lower the pressure of the working fluid and generate mechanical energy as the pressure of the working fluid is lowered. The method is characterized by using a working fluid comprising HFC-245eb and optionally Z-HFO-1336mzz. A power cycle apparatus containing a working fluid to convert heat to mechanical energy is also provided. The apparatus is characterized by containing a working fluid comprising HFC-245eb and optionally Z-HFO-1336mzz. A working fluid comprising HFC-245eb and optionally Z-HFO-1336mzz is also provided. The working fluid (i) further comprises E-HFO-1336mzz, (ii) has a temperature above its critical temperature, or both (i) and (ii).
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I DU PONT DE NEMOURS AND COMPANY
  • Publication number: 20130104575
    Abstract: A method for producing heating in a high temperature heat pump is provided comprising condensing a vapor working fluid comprising HFC-245eb and optionally Z—HFO-1336mzz, in a condenser, thereby producing a liquid working fluid. Also a method of raising the maximum feasible condenser operating temperature in a high temperature heat pump apparatus is provided. The method comprises charging the high temperature heat pump with a working fluid comprising HFC-245eb and optionally Z—HFO-1336mzz. Also a high temperature heat pump apparatus is provided containing a working fluid comprising HFC-245eb and optionally Z—HFO-1336mzz. Also a composition is provided comprising: (i) a working fluid consisting essentially of HFC-245eb and optionally Z—HFO-1336mzz; and (ii) a stabilizer to prevent degradation at temperatures of 55° C. or above, (iii) a lubricant suitable for use at 55° C. or above, or both (ii) and (iii).
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I DU PONT DE NEMOURS AND COM
  • Patent number: 8425795
    Abstract: The present invention relates to fluoroolefin compositions. The fluoroolefin compositions of the present invention are useful as refrigerants or heat transfer fluids and in processes for producing cooling or heat. Additionally, the fluoroolefin compositions of the present invention may be used to replace currently used refrigerant or heat transfer fluid compositions that have higher global warming potential.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 23, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mario Joseph Nappa, Barbara Haviland Minor, Allen Capron Sievert
  • Publication number: 20130091843
    Abstract: Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and optionally at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 18, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Honeywell International Inc.
  • Publication number: 20130096218
    Abstract: The present invention relates to heat transfer compositions comprising 2,3,3,3-tetrafluoropropene, difluoromethane, pentafluoroethane, and 1,1,1,2-tetrafluoroethane for use in refrigeration, air-conditioning, heat pump systems, and other heat transfer applications. The inventive heat transfer compositions can possess reduced global warming potential while providing good capacity and performance.
    Type: Application
    Filed: June 20, 2011
    Publication date: April 18, 2013
    Applicant: Arkema Inc.
    Inventors: Wissam Rached, Brett L. Van Horn, Stephen Spletzer
  • Patent number: 8420585
    Abstract: The present invention relates to compositions comprising fluorinated olefins or fluorinated ketones, and at least one alcohol, halocarbon, hydrofluorocarbon, or fluoroether and combinations thereof. In one embodiment, these compositions are azeotropic or azeotrope-like. In another embodiment, these compositions are useful in cleaning applications as a degreasing agent or defluxing agent for removing oils and/or other residues from a surface.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: April 16, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Barbara Haviland Minor, Melodie A. Schweitzer
  • Publication number: 20130075063
    Abstract: The present invention provides azeotrope-like compositions of cis-1,3,3,3-tetrafluoroprone (HFO-1234ze (Z)) with 1,1,1,3,3-pentafluoropropane (HFC-245fa) and uses thereof, including use in refrigerant compositions, refrigeration systems, blowing agent compositions, and aerosol propellants.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Inventors: Ryan Hulse, Hang T. Pham, Martin R. Paonessa, Rajiv Ratna Singh
  • Patent number: 8402778
    Abstract: The present invention relates to a method for increasing the solubility of oils in refrigerant compositions within a system using a refrigerant compressed with a mechanical device by adding polyolester directly to the refrigerant followed by charging a mixture of the polyolester and refrigerant into the system (air conditioner, refrigerator, etc.). The present invention also relates to a method of optimizing mineral oil return in a system using a refrigerant compressed with a mechanical device and a method of cleansing heat exchange tubes of a system using a refrigerant compressed with a mechanical device by adding polyolesters directly to a refrigerant composition followed by charging a mixture of the polyolester and refrigerant into the system.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: National Refrigerants, Inc.
    Inventors: Robert W. Yost, James P. Lavelle, Umar M. Khokhar
  • Publication number: 20130068989
    Abstract: Disclosed are compositions comprising HFC-245eb and at least one additional compound selected from the group consisting of HFO-1234ze, HFC-245fa, HFC-236cb, HFC-236ea, HFC-236fa, HFC-227ea, HFC-227ca, HFO-1225yc, HFO-1225zc, HFO-1225ye, methane, ethane, propane, HFC-23, HFC-143a, HFC-134, HFC-134a, FC-1216, HFO-1234yf, HFC-254eb, HFO-1243zf, and HFC-254fb. Compositions comprising HFC-245eb are useful in processes to make HFO-1234yf. Also disclosed are compositions comprising HFO-1234yf and at least one additional compound selected from the group consisting of HFO-1234ze, HFC-254eb, HFC-254fb, HFO-1243zf, HFCHFC-245eb, HFC-245fa, HFC-245cb, HFC-236cb, HFC-236ea, HFC-236fa, HFC-227ea, HFC-227ca, HFO-1225yc, HFO-1225zc, HFO-1225ye, methane, ethane, propane, HFC-23, HFC-134, HFC-134a, HFO-1132a and FC-1216. Compositions comprising HFO-1234yf are useful as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
    Type: Application
    Filed: November 14, 2012
    Publication date: March 21, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I DU PONT DE NEMOURS AND COMPANY
  • Patent number: 8398882
    Abstract: A process is disclosed for making CF3CF2CH3, CF3CF?CH2 and/or CF3CCl?CH2. The process involves reacting at least one starting material selected from the group consisting of halopropanes of the formula CX3CHClCH2X, halopropenes of the formula CClX2CCl?CH2 and halopropenes of the formula CX2?CClCH2X, wherein each X is independently F or Cl, with HF in a reaction zone to produce a product mixture comprising HF, HCl, CF3CF2CH3, CF3CF?CH2 and CF3CCl?CH2; and recovering the CF3CF2CH3, CF3CF?CH2 and/or CF3CCl?CH2 from the product mixture.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 19, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 8398881
    Abstract: The present invention provides a refrigerating oil composition containing a refrigerant (A) containing as a predominant component a C1-C8 hydrocarbon compound and a base oil (B) composed of a polyalkylene glycol ether having a specific structure and/or a polyvinyl ether having a specific structure, and satisfying the following conditions: solubility of the refrigerant (A) in the base oil (B) of 40 mass % or less at 40° C. and 1.2 MPa and mixture viscosity of the refrigerating oil composition of 0.1 mm2/s or more at 90° C. and 2.3 MPa. According to the refrigerating oil composition of the present invention, refrigerating oil and hydrocarbon-based refrigerant are mutually dissolved at an appropriate degree, and lubrication can be fully attained by the refrigerating oil. Even when the hydrocarbon-based refrigerant is used in an amount smaller than the conventional amount, cooling can be performed satisfactorily.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: March 19, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Takeo Tokiai
  • Publication number: 20130061613
    Abstract: The invention relates to a process for cooling or heating a fluid or a body by means of a vapour compression circuit comprising a centrifugal compressor and containing a heat-transfer fluid, the heat-transfer fluid comprising at least two compounds selected from 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene, 1,1,1,2-tetrafluoropropene, 1,1-difluoroethane and 3,3,3-trifluoropropene, in which: the ratio of the Mach number of the centrifugal compressor to the Mach number which the centrifugal compressor has under the same operating conditions if the heat-transfer fluid is replaced with 1,1,1,2-tetrafluoroethane in the vapour compression circuit is greater than or equal to 0.97 and less than or equal to 1.03; the compression ratio of the centrifugal compressor is less than or equal to the compression ratio which the centrifugal compressor has under the same operating conditions if the heat-transfer fluid is replaced with 1,1,12-tetrafluorethane in the vapour compression circuit.
    Type: Application
    Filed: February 28, 2011
    Publication date: March 14, 2013
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Patent number: 8394287
    Abstract: A non-aqueous, reduced toxicity polyhydric alcohol based heat transfer fluid is provided comprised of at least one polyhydric alcohol that acts as an ADH enzyme inhibitor, such as for example propylene glycol, thereby reducing the toxicity of ethylene glycol if ethylene glycol. The heat transfer fluid may also include corrosion inhibitors that are soluble in the polyhydric alcohols used for the heat transfer fluid. The heat transfer fluid may be used as a coolant in internal combustion engines such as automobile engines, a coolant for cooling electrical or electronic components, as a heat transfer fluid for solar energy heating systems, or a heat transfer fluid for maintaining temperatures in industrial processes. A low toxicity preparation fluid for absorbing water from heat exchange systems prior to installation of the heat transfer fluid is also provided that is comprised of ethylene glycol and at least one polyhydric alcohol, preferably propylene glycol, that acts as an ADH enzyme inhibitor.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: March 12, 2013
    Assignee: Evans Cooling Systems, Inc.
    Inventors: John W. Evans, J. Thomas Light
  • Patent number: 8394286
    Abstract: The present disclosure relates to compositions comprising at least one fluoroolefin and an effective amount of a stabilizer comprising at least one thiol or thioether, or mixtures thereof. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: March 12, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Thomas J. Leck, Barbara Haviland Minor, Mario Joseph Nappa, Nandini C. Mouli
  • Publication number: 20130055738
    Abstract: The invention relates to a ternary composition comprising: from 5 to 50% of difluoromethane;—from 2 to 20% of pentafluoroethane; and—from 30 to 90% of tetrafluoropropeae. The tetrafluoropropeae may be 1,3,3,3-tetrafluoropropene or 2,3,3,3-tetrafluoropropene. This composition can he used as a heat-transfer fluid in vapor compression circuit.
    Type: Application
    Filed: April 18, 2011
    Publication date: March 7, 2013
    Applicant: ARKEMA FRANCE
    Inventor: Wissam Rached
  • Publication number: 20130055739
    Abstract: The invention relates to a ternary composition comprising difluoromethane, 1,3,3,3-tetrafluoropropene and a hydrocarbon-derived compound containing at least two fluorine atoms and having a boiling point of between ?30 and ?20° C., which is selected from 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane and 2,3,3,3-tetrafluoropropene. This composition is particularly suitable for use as a heat-transfer fluid in the presence of countercurrent heat exchangers.
    Type: Application
    Filed: April 18, 2011
    Publication date: March 7, 2013
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20130055733
    Abstract: The invention relates to a ternary composition comprising difluoromethane, 3,3,3-trifluoropropene and a hydrocarbon-derived compound containing at least two fluorine atoms and having a boiling point of between ?30 and ?18° C., which is selected from 1,1-difluoroethane, 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene. This composition is particularly suitable for use as a heat-transfer fund in the presence of countercurrent heat exchangers.
    Type: Application
    Filed: April 18, 2011
    Publication date: March 7, 2013
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Patent number: 8388857
    Abstract: Disclosed is a combination of hydrofluoroolefins and/or hydrochlorofluoroolefins with stabilizers wherein the stabilizers minimize the degradation of the hydrofluoroolefins and hydrochlorofluoroolefins during storage, handling and use yet allow for atmospheric degradation. The combinations exhibit low or zero ozone depletion potential and lower global warming potential making them of interest as replacements for chlorofluorocarbons and hydrfluorocarbons. The combinations of the present invention comprise hydrofluoroolefins and/or hydrochlorofluoroolefins in combination with a stabilizer or stabilizers selected from free radical scavengers, acid scavengers, oxygen scavengers, polymerization inhibitors and combinations thereof.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 5, 2013
    Assignee: Arkema Inc.
    Inventors: Maher Y. Elsheikh, Philippe Bonnet, Benjamin Bin Chen, Brett L. Van Horn
  • Patent number: 8383004
    Abstract: The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be an amine or a mixture of an amine with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 26, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Nandini C. Mouli, Barbara Haviland Minor, Mario Joseph Nappa, Thomas J. Leck
  • Patent number: 8377327
    Abstract: A process is disclosed for the manufacture of CF3CF?CH2 and CF3CH?CHF. The process involves dehydrofluorinating CF3CHFCH2F in the presence of a dehydrofluorination catalyst to produce a product mixture comprising CF3CF?CH2 and CF3CH?CHF, and recovering said CF3CF?CH2 and CF3CH?CHF from the product mixture. The present invention also provides a composition comprising (a) the Z-isomer of CF3CH?CHF and (b) HF; wherein the HF is present in an effective amount to form an azeotropic combination with the Z—CF3CH?CHF.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 19, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, Mario Joseph Nappa, Allen Capron Sievert, Ralph Newton Miller
  • Publication number: 20130032751
    Abstract: The invention provides a heat transfer composition consisting essentially of from about 82 to about 88% by weight of trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and from about 12 to about 18% by weight of 1,1-difluoroethane (R-152a). The invention also provides a heat transfer composition comprising from about 5 to about 85% by weight R-1234ze(E), from about 2 to about 20% by weight R-152a, and from about 5 to about 60 by weight 1,1,1,2-tetrafluoroethane (R-134a).
    Type: Application
    Filed: February 14, 2011
    Publication date: February 7, 2013
    Applicant: Mexichem Amamco Holdings S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20130025299
    Abstract: Disclosed herein is a chiller apparatus containing a composition comprising from about 6 to about 70 weight percent 2,3,3,3-tetrafluoropropene and from about 30 to about 94 weight percent 1,1,1,2-tetrafluoroethane. Also disclosed herein are compositions comprising from about 58.0 to about 59.5 weight percent 2,3,3,3-tetrafluoropropene and from about 42.0 to about 40.5 weight percent 1,1,1,2-tetrafluoroethane. Also disclosed herein are compositions comprising from about 54.0 to about 56.0 weight percent 2,3,3,3-tetrafluoropropene and from about 46.0 to about 44.0 weight percent 1,1,1,2-tetrafluoroethane. Also disclosed herein is a composition comprising a refrigerant consisting essentially of from about 58.0 to about 59.5 weight percent 2,3,3,3-tetrafluoropropene and from about 42.0 to about 40.5 weight percent 1,1,1,2-tetrafluoroethane. Also disclosed herein is a composition comprising a refrigerant consisting essentially of from about 54.0 to about 56.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 31, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Konstantinos Kontomaris, Thomas Joseph Leck
  • Publication number: 20130020528
    Abstract: Heat transfer compositions, methods and use wherein the composition comprising: (a) from about 5 to about 20% by weight of HFC-32 and (b) from about 80% to about 95% by weight of HFO-1234ze.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 24, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Samuel F. Yana Motta, Mark W. Spatz, Christopher J. Seeton
  • Publication number: 20130015395
    Abstract: Heat transfer compositions, methods and use wherein the composition comprising: (a) from about 5 to about 20% by weight of HFC-32; (b) from about 70% to about 90% by weight of HFO-1234ze; and (c) from about 5% to less than about 20% by weight of HFC-152a and/or HFC-134a.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 17, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Samuel F. Yana Motta, Mark W. Spatz, Christopher J. Seeton
  • Patent number: 8354039
    Abstract: Halocarbons of the structure CF3CF2CH2X, wherein X is either F or Cl or mixtures thereof prepared by: contacting at least one 2-fluorochloropropane with hydrogen fluoride in a first fluorination step in the gas phase or liquid phase under substantially anhydrous conditions, in the absence of added catalyst to partially fluorinate said 2-fluorochloropropane; contacting said partially fluorinated 2-fluorochloropropane with at least the stoichiometric molar equivalent of hydrogen fluoride under substantially anhydrous conditions, in the presence of at least one fluorination catalyst in a second fluorination step; removing said reaction products from contact with said catalyst, and isolating a substantial yield of at least 1,1,1,2,2,3-hexafluoropropane or 1,1,1,2,2, penta-3-chloropropane, or mixtures thereof, respectively.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 15, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert, Jeffrey P. Knapp
  • Patent number: 8349213
    Abstract: This invention relates to cleaning compositions comprising unsaturated fluorinated hydrocarbons. The invention further relates to use of said cleaning compositions in methods to clean, degrease, deflux, dewater, and deposit fluorolubricant. The invention further relates to novel unsaturated fluorinated hydrocarbons and their use as cleaning compositions and in the methods listed above.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 8, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mario Joseph Nappa, Melodie A. Schweitzer, Allen Capron Sievert, Ekaterina N. Swearingen
  • Publication number: 20120326105
    Abstract: The present invention relates to compositions comprising flammable refrigerant, fire hazard-reducing agent, and optionally a lubricant suitable for use in a refrigeration or air conditioning apparatus. Further, the present invention relates to compositions comprising lubricant and fire hazard-reducing agent and methods for reducing flammability of flammable refrigerant, for delivering a fire hazard-reducing agent to a refrigeration or air conditioning apparatus, and for replacing a non-flammable refrigerant with a flammable refrigerant.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Thomas J. Leck, Howard S. Hammel, Nancy Lynn Tucker
  • Publication number: 20120324926
    Abstract: The invention relates to a method of heat transfer by means of a vapor compression circuit containing a heat transfer fluid, said method including, consecutively, evaporating the heat transfer fluid, compressing the heat transfer fluid, condensing the heat transfer fluid to a temperature greater than or equal to 70? C., and decompressing the heat transfer fluid. In said method, the heat transfer fluid includes 1,1,1,3,3-pentafluorobutane and 1,1,1,3,3-pentafluoropropane, the compounding weight ratio of 1,1,1,3,3-pentafluorobutane in the fluid being no higher than 20%. The invention also relates to a heat transfer fluid suitable for implementing said method and to a facility that is also suitable for implementing said method.
    Type: Application
    Filed: February 15, 2011
    Publication date: December 27, 2012
    Applicant: Arkema France
    Inventors: Wissam Rached, Laurent Abbas
  • Patent number: 8338355
    Abstract: There is provided an azeotrope or azeotrope-like composition containing (A) 1,1,2,2-tetrafluoro-1-methoxyethane and (B) a compound formed of at least one selected from the group consisting of (Z)-1-chloro-3,3,3-trifluoropropene, 2-bromo-3,3,3-trifluoropropene, and (E)-2-bromo-1,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: December 25, 2012
    Assignee: Central Glass Company, Limited
    Inventors: Akira Ishihara, Yasuo Hibino
  • Patent number: 8333902
    Abstract: Disclosed are compositions comprising HFC-245eb and at least one additional compound selected from the group consisting of HFO-1234ze, HFC-245fa, HFC-236cb, HFC-236ea, HFC-236fa, HFC-227ea, HFC-227ca, HFO-1225yc, HFO-1225zc, HFO-1225ye, methane, ethane, propane, HFC-23, HFC-143a, HFC-134, HFC-134a, FC-1216, HFO-1234yf, HFC-254eb, HFO-1243zf, and HFC-254fb. Compositions comprising HFC-245eb are useful in processes to make HFO-1234yf. Also disclosed are compositions comprising HFO-1234yf and at least one additional compound selected from the group consisting of HFO-1234ze, HFC-254eb, HFC-254fb, HFO-1243zf, HFCHFC-245eb, HFC-245fa, HFC-245cb, HFC-236cb, HFC-236ea, HFC-236fa, HFC-227ea, HFC-227ca, HFO-1225yc, HFO-1225zc, HFO-1225ye, methane, ethane, propane, HFC-23, HFC-134, HFC-134a, HFO-1132a and FC-1216. Compositions comprising HFO-1234yf are useful as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: December 18, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Barry Asher Mahler, Mario Joseph Nappa, Jeffrey P. Knapp
  • Patent number: 8333901
    Abstract: The invention provides a heat transfer composition comprising R-1234ze(E), R-32 and 1,1,1,2-tetrafluoroethane (R-134a).
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 18, 2012
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20120312048
    Abstract: Non ozone depleting and non flammable refrigerant compositions with GWPs less than 2,000 ITH which replace R404A, R507, HCFC22 and CFC502 in refrigeration systems.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 13, 2012
    Applicant: RPL HOLDINGS LIMITED
    Inventors: John Edward Poole, Richard Powell
  • Patent number: 8329057
    Abstract: A method for operating a latent heat transport apparatus by providing a working liquid for a latent heat transport apparatus, which includes a compound of the formula C6F13C2H5 at an operation temperature of from ?50 to 200° C.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 11, 2012
    Assignee: Asahi Glass Company, Limited
    Inventor: Masato Fukushima
  • Publication number: 20120305830
    Abstract: The invention provides a heat transfer composition consisting essentially of from about 45 to about 58% by weight trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and from about 42 to about 55% by weight of 1,1-difluoroethane (R-152a). The invention also provides a heat transfer composition comprising from about 40 to about 60% by weight R-152a, from about 5 to about 50% R-134a, and from about 5 to about 50% by weight R-1234ze(E).
    Type: Application
    Filed: February 14, 2011
    Publication date: December 6, 2012
    Applicant: Mexichem Amanco Holdings S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20120309824
    Abstract: Azeotropic or azeotrope-like compositions are disclosed. The azeotropic or azeotrope-like compositions are mixtures of E-1,1,1,4,4,4-hexafluoro-2-butene and ethylene oxide. Also disclosed are double azeotropic compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and ethylene oxide. Also disclosed is a process of preparing a thermoplastic or thermoset foam by using such azeotropic or azeotrope-like compositions as blowing agents. Also disclosed is a process of producing refrigeration by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as solvents. Also disclosed is a process of producing an aerosol product by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing a fire by using such azeotropic or azeotrope-like compositions.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 6, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark L. Robin, Ralph Newton Miller