With Specified Housing Or Contact Patents (Class 257/602)
  • Patent number: 10622492
    Abstract: Certain aspects of the present disclosure provide semiconductor variable capacitors. One example semiconductor variable capacitor generally includes a semiconductor region, an insulative layer, and a first non-insulative region, the insulative layer being disposed between the semiconductor region and the first non-insulative region. In certain aspects, the semiconductor variable capacitor may also include a second non-insulative region disposed adjacent to the semiconductor region, and a third non-insulative region disposed adjacent to the semiconductor region, the second non-insulative region and the third non-insulative region having different doping types. In certain aspects, the semiconductor variable capacitor may also include an implant region disposed between the semiconductor region and the insulative layer. The implant region may be used to adjust the flat-band voltage of the semiconductor variable capacitor.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 14, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Fabio Alessio Marino, Narasimhulu Kanike, Francesco Carobolante, Paolo Menegoli, Qingqing Liang
  • Patent number: 10553550
    Abstract: Disclosed is a semiconductor device having a radio frequency switch. Also disclosed are an antenna switch module and a method of manufacturing the semiconductor device. The semiconductor device includes a metal wiring insulating film bonded to a silicon substrate. In the semiconductor device, a crystal defect layer extends into the silicon substrate from a surface of the silicon substrate. Crystal defects are throughout the crystal defect layer. The semiconductor device and an integrated circuit are in the antenna switch module. The integrated circuit in the antenna switch module is mounted with the radio-frequency switch device and the silicon substrate. The method of manufacturing the semiconductor device includes a step of forming crystal defects throughout a silicon substrate. Radiation or a diffusion is used to form the crystal defects. After the step of forming the crystal defects, the method includes a step of implanting ions into a surface of the silicon substrate to form a crystal defect layer.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: February 4, 2020
    Assignee: Sony Corporation
    Inventors: Yoshikazu Motoyama, Hiroki Tsunemi, Hideo Yamagata
  • Patent number: 10283650
    Abstract: Certain aspects of the present disclosure generally relate to a semiconductor variable capacitor offering at least two types of capacitance tuning, as well as techniques for fabricating the same. For example, a CMOS-compatible silicon on insulator (SOI) process with a buried oxide (BOX) layer may provide a transcap with a front gate (above the BOX layer) and a back gate (beneath the BOX layer). The front gate may offer lower voltage, coarse capacitance tuning, whereas the back gate may offer higher voltage, fine capacitance tuning. By offering both types of capacitance tuning, such transcaps may provide greater capacitance resolution. Several variations of transcaps with front gate and back gate tuning are illustrated and described herein.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: May 7, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Bin Yang, Gengming Tao
  • Patent number: 10256201
    Abstract: A method for fabricating a bonding pad structure includes forming a dielectric layer on a substrate; forming a first metal pattern layer in the dielectric layer. The first metal pattern layer includes a first body portion having a plurality of first openings in a central region of the first body portion and a plurality of second openings arranged along a peripheral region of the first body portion and surrounding the plurality of first openings; and a plurality of first island portions correspondingly disposed in the plurality of second openings and spaced apart from the first body portion. The method further includes forming a plurality of first interconnect structures in the dielectric layer and corresponding to the plurality of first island portions; and forming a bonding pad on the dielectric layer and directly above the first metal pattern layer.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: April 9, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Chi-Li Tu, Hung-Wei Chen, Shi-Hsiang Lu, Ching-Wen Wang
  • Patent number: 9537005
    Abstract: Disclosed is a semiconductor device having a radio frequency switch. Also disclosed are an antenna switch module and a method of manufacturing the semiconductor device. The semiconductor device includes a metal wiring insulating film bonded to a silicon substrate. In the semiconductor device, a crystal defect layer extends into the silicon substrate from a surface of the silicon substrate. Crystal defects are throughout the crystal defect layer. The semiconductor device and an integrated circuit are in the antenna switch module. The integrated circuit in the antenna switch module is mounted with the radio-frequency switch device and the silicon substrate. The method of manufacturing the semiconductor device includes a step of forming crystal defects throughout a silicon substrate. Radiation or a diffusion is used to form the crystal defects. After the step of forming the crystal defects, the method includes a step of implanting ions into a surface of the silicon substrate to form a crystal defect layer.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 3, 2017
    Assignee: Sony Corporation
    Inventors: Yoshikazu Motoyama, Hiroki Tsunemi, Hideo Yamagata
  • Patent number: 9502586
    Abstract: A symmetric varactor structure may include a first varactor component. The first varactor component may include a gate operating as a second plate, a gate oxide layer operating as a dielectric layer and a body operating as a first plate of an area modulating capacitor. In addition, doped regions may surround the body of the first varactor component. The first varactor component may be supported on a backside by an isolation layer. The symmetric varactor structure may also include a second varactor component electrically coupled to the backside of the first varactor component through a backside conductive layer.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 22, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Daeik Daniel Kim, David Francis Berdy, Je-Hsiung Jeffrey Lan, Changhan Hobie Yun, Jonghae Kim
  • Patent number: 9379239
    Abstract: Disclosed is a semiconductor device having a radio frequency switch. Also disclosed are an antenna switch module and a method of manufacturing the semiconductor device. The semiconductor device includes a metal wiring insulating film bonded to a silicon substrate. In the semiconductor device, a crystal defect layer extends into the silicon substrate from a surface of the silicon substrate. Crystal defects are throughout the crystal defect layer. The semiconductor device and an integrated circuit are in the antenna switch module. The integrated circuit in the antenna switch module is mounted with the radio-frequency switch device and the silicon substrate. The method of manufacturing the semiconductor device includes a step of forming crystal defects throughout a silicon substrate. Radiation or a diffusion is used to form the crystal defects. After the step of forming the crystal defects, the method includes a step of implanting ions into a surface of the silicon substrate to form a crystal defect layer.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: June 28, 2016
    Assignee: Sony Corporation
    Inventors: Yoshikazu Motoyama, Hiroki Tsunemi, Hideo Yamagata
  • Patent number: 9035428
    Abstract: A Micro-Electro-Mechanical Systems (MEMS) device includes a first substrate with a first surface and a second surface, the first substrate including a base layer, a moveable beam disposed on the base layer, at least one metal layer, and one or more standoffs disposed on the base layer such that one or more metal layers are situated on the top surface of the one or more standoffs. The MEMS device further includes a second substrate including one or more metal layers bonded to the one or more standoffs resulting in an electrical connection between at least a portion of the one or more metal layers of the second substrate and one or more of the at least one electrode on the bottom surface and the at least one electrode on the top surface.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 19, 2015
    Assignee: INVENSENSE, INC.
    Inventors: Michael Julian Daneman, Martin Lim, Li-Wen Hung, Stephen Lloyd
  • Patent number: 8963289
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable capacitor with MOS compatible structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the capacitance value between the other two terminals of the device, by increasing or decreasing its DC voltage with respect to one of the main terminals of the device. Furthermore, the present invention decouples the AC signal and the DC control voltage preventing distortion of the RF signal. The present invention describes a controllable capacitor whose capacitance value is not necessarily linear with its control voltage, but although possibly abrupt in its characteristic, is utilized to manufacture a semiconductor variable capacitor with digital control to improve its noise and linearity performance while maintaining high quality factor.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: February 24, 2015
    Assignee: ETA Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Publication number: 20140332928
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable capacitor with MOS compatible structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the capacitance value between the other two terminals of the device, by increasing or decreasing its DC voltage with respect to one of the main terminals of the device. Furthermore, the present invention decouples the AC signal and the DC control voltage preventing distortion of the RF signal. The present invention describes a controllable capacitor whose capacitance value is not necessarily linear with its control voltage, but although possibly abrupt in its characteristic, is utilized to manufacture a semiconductor variable capacitor with digital control to improve its noise and linearity performance while maintaining high quality factor.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8803288
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable MOS capacitor structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the equivalent capacitor area of the MOS structure by increasing or decreasing its DC voltage with respect to another terminal of the device, in order to change the capacitance over a wide ranges of values. Furthermore, the present invention decouples the AC signal and the DC control voltage avoiding distortion and increasing the performance of the device, such as its control characteristic. The present invention is simple and only slightly dependent on the variations due to the fabrication process. It exhibits a high value of capacitance density and, if opportunely implemented, shows a quasi linear dependence of the capacitance value with respect to the voltage of its control terminal.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: August 12, 2014
    Assignee: Eta Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8729656
    Abstract: A germanium semiconductor radiation detector contact made of yttrium metal. A thin (˜1000 ?) deposited layer of yttrium metal forms a thin hole-barrier and/or electron-barrier contact on both p- and n-type germanium semiconductor radiation detectors. Yttrium contacts provide a sufficiently high hole barrier to prevent measurable contact leakage current below ˜120 K. The yttrium contacts can be conveniently segmented into multiple electrically independent electrodes having inter-electrode resistances greater than 10 G?. Germanium semiconductor radiation detector diodes fabricated with yttrium contacts provide good gamma-ray spectroscopy data.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 20, 2014
    Inventors: Ethan Hull, Richard Pehl, Bruce Suttle, James Lathrop
  • Patent number: 8686508
    Abstract: Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, Robert Robison
  • Patent number: 8558350
    Abstract: A metal-oxide-metal capacitor comprises a first electrode, a second electrode, a plurality of first fingers and a plurality of second fingers. Each first finger and its corresponding second finger are in parallel and separated by a low k dielectric material. A guard ring is employed to enclose the metal-oxide-metal capacitor so as to prevent moisture from penetrating into the low k dielectric material.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiun-Jie Huang, Ling-Sung Wang, Chi-Yen Lin
  • Publication number: 20130234293
    Abstract: A semiconductor ceramic contains a donor element solid-solved in crystal grains of a SrTiO3-based compound, and an acceptor element in a grain boundary layer. The number of tetravalent acceptor elements is 1×1017/g or more, as determined from an electron spin resonance absorption spectrum. A mixture of a calcined powder and an acceptor compound is pulverized to a specific surface area of 5.0 to 7.5 m2/g before mixing with a binder. Semiconductor ceramic layers having a varistor function are formed by using the semiconductor ceramic forming a highly reliable capacitor which can suppress characteristics variations to stably obtain good electrical characteristics.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 12, 2013
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Mitsutoshi Kawamoto
  • Publication number: 20130113081
    Abstract: A plate varactor includes a dielectric substrate and a first electrode embedded in a surface of the substrate. A capacitor dielectric layer is disposed over the first electrode, and a layer of graphene is formed over the dielectric layer to contribute a quantum capacitance component to the dielectric layer. An upper electrode is formed on the layer of graphene. Other embodiments and methods for fabrication are also included.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: ZHIHONG CHEN, SHU-JEN HAN, SIYURANGA O. KOSWATTA, ALBERTO VALDES GARCIA
  • Publication number: 20130100090
    Abstract: This disclosure provides systems, methods and apparatus for electromechanical systems variable capacitance devices. In one aspect, an electromechanical systems variable capacitance device includes a substrate with a first metal layer including a first bias electrode overlying the substrate. A member suspended above the first metal layer includes a dielectric beam and a second metal layer including a first radio frequency electrode and a ground electrode. The member and the first metal layer define a first air gap. A third metal layer over the member includes a second bias electrode, and the third metal layer and the member define a second air gap. The member includes a plane of symmetry substantially parallel a plane containing the first bias electrode.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Daniel FELNHOFER, Wenyue ZHANG, Je-Hsuing LAN
  • Patent number: 8362591
    Abstract: A three-dimensional integrated circuit includes a semiconductor substrate where the substrate has an opening extending through a first surface and a second surface of the substrate and where the first surface and the second surface are opposite surfaces of the substrate. A conductive material substantially fills the opening of the substrate to form a conductive through-substrate-via (TSV). An active circuit is disposed on the first surface of the substrate, an inductor is disposed on the second surface of the substrate and the TSV is electrically coupled to the active circuit and the inductor. The three-dimensional integrated circuit may include a varactor formed from a dielectric layer formed in the opening of the substrate such that the conductive material is disposed adjacent the dielectric layer and an impurity implanted region disposed surrounding the TSV such that the dielectric layer is formed between the impurity implanted region and the TSV.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Hsien-Pin Hu, Jhe-Ching Lu, Chin-Wei Kuo, Ming-Fa Chen, Sally Liu
  • Patent number: 8310028
    Abstract: A semiconductor device includes a semiconductor substrate that is made of either of silicon carbide (SiC) and gallium nitride (GaN), and has a defect region containing a crystal defect; a first insulating film that coats the defect region and is arranged on the semiconductor substrate; and a conductor film that electrically connects to a principal surface of the semiconductor substrate, the principal surface being exposed to a region that is not coated with the first insulating film.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: November 13, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Tatsuya Kiriyama, Noriaki Kawamoto
  • Patent number: 8115281
    Abstract: A high-Q differential varactor includes reduced inner spacing dimensions between differential fingers.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: February 14, 2012
    Assignee: Atmel Corporation
    Inventors: Adam H. Pawlikiewicz, Samir el Rai
  • Publication number: 20110298551
    Abstract: A three-dimensional integrated circuit includes a semiconductor substrate where the substrate has an opening extending through a first surface and a second surface of the substrate and where the first surface and the second surface are opposite surfaces of the substrate. A conductive material substantially fills the opening of the substrate to form a conductive through-substrate-via (TSV). An active circuit is disposed on the first surface of the substrate, an inductor is disposed on the second surface of the substrate and the TSV is electrically coupled to the active circuit and the inductor. The three-dimensional integrated circuit may include a varactor formed from a dielectric layer formed in the opening of the substrate such that the conductive material is disposed adjacent the dielectric layer and an impurity implanted region disposed surrounding the TSV such that the dielectric layer is formed between the impurity implanted region and the TSV.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 8, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Tsung YEN, Hsien-Pin HU, Jhe-Ching LU, Chin-Wei KUO, Ming-Fa CHEN, Sally LIU
  • Publication number: 20110147894
    Abstract: A semiconductor device includes a diode, a passivation layer and a conductive layer. The diode includes an epitaxial layer on a semiconductor substrate, and first and second diode contacts on different planes. The passivation layer has a planar top surface, and includes multiple consecutive layers of a benzocyclobutene (BCB) material formed on the diode, an aggregate thickness of the passivation layer exceeding a thickness of the epitaxial layer. The conductive layer is formed on the top surface of passivation layer, the conductive layer connecting with the first and the second diodes contact through first and second openings in the passivation layer, respectively. The passivation layer enhances a capacitive isolation between the conductive layer and the diode.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Applicant: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventor: Rick D. Snyder
  • Patent number: 7893644
    Abstract: Featured is a controller for a motor that is ultra-compact, with a power density of at least about 20 watts per cubic cm (W/cm3). The controller utilizes a common ground for power circuitry, which energizes the windings of the motor, and the signal circuitry, which controls this energization responsive to signals from one or more sensors. Also, the ground is held at a stable potential without galvanic isolation. The circuits, their components and connectors are sized and located to minimize their inductance and heat is dissipated by conduction to the controller's exterior such as by a thermally conductive and electrically insulating material (e.g., potable epoxy). The controller uses a single current sensor for plural windings and preferably a single heat sensor within the controller. The body of the controller can also function as the sole plug connector.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 22, 2011
    Assignee: Barrett Technology, Inc.
    Inventors: William T. Townsend, Adam Crowell, Gill Pratt, Traveler Hauptman
  • Patent number: 7808117
    Abstract: A pad (20) is electrically connected to a first I/O cell (14) while also physically overlying active circuitry of a second I/O cell (16). Note that although the pad (20) overlies the second I/O cell (16), the pad (20) is not electrically connected to the I/O cell (16). Such a pattern may be replicated in any desired manner so that the I/O cells (e.g. 300-310) may have a finer pitch than the corresponding pads (320-324 and 330-335). In addition, the size of the pads may be increased (e.g. pad 131 may be bigger than pad 130) while the width “c” of the I/O cells (132-135) does not have to be increased. Such a pattern (e.g. 500) may be arranged so that the area required in one or more dimensions may be minimized.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 5, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Nhat D. Vo, Tu-Anh N. Tran, Burton J. Carpenter, Dae Y. Hong, James W. Miller, Kendall D. Phillips
  • Publication number: 20100237468
    Abstract: On-chip capacitors with a variable capacitance, as well as design structures for a radio frequency integrated circuit, and method of fabricating and method of tuning on-chip capacitors. The on-chip capacitor includes first and second ports powered with opposite polarities, first and second electrodes, and first and second voltage-controlled units. Each of the first and second voltage-controlled units is switched between a first state in which the first and second electrodes are electrically isolated from the first and second ports and a second state. When the first voltage-controlled unit is switched to the second state, the first electrode is electrically connected with the first port. When the second voltage-controlled unit is switched to the second state the second electrode is electrically connected with the second port. The on-chip capacitor has a larger capacitance value when the first and second voltage-controlled units are in the second state.
    Type: Application
    Filed: September 2, 2009
    Publication date: September 23, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas M. Daley, Mete Erturk, Edward J. Gordon
  • Patent number: 7763923
    Abstract: A semiconductor capacitor device. A dielectric layer is on a substrate. A stack capacitor structure is disposed in the dielectric layer and comprises first and overlying second MIM capacitors electrically connected in parallel. The first and second MIM capacitors have individual upper and lower electrode plates and different compositions of capacitor dielectric layers.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: July 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Der-Chyang Yeh, Chie-Iuan Lin, Chuan-Ying Lee, Yi-Ting Chao, Ming-Hsien Chen
  • Patent number: 7696604
    Abstract: Methods and heterostructure barrier varactor (HBV) diodes optimized for application with frequency multipliers at providing outputs at submillimeter wave frequencies and above. The HBV diodes include a silicon-containing substrate, an electrode over the silicon-containing substrate, and one or more heterojunction quantum wells of alternating layers of Si and SiGe of one or more electrodes of the diode. Each SiGe quantum well preferably has a floating SiGe layer between adjacent SiGe gradients followed by adjacent Si layers, such that, a single homogeneous structure is provided characterized by having no distinct separations. The plurality of Si/SiGe heterojunction quantum wells may be symmetric or asymmetric.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Erik M. Dahlstrom, Alvin J. Joseph, Robert M. Rassel, David C. Sheridan
  • Patent number: 7655996
    Abstract: A MEMS device and method comprising a MEMS structure adjacent to a SOI base; a sacrificial support operatively connecting the base to the MEMS structure; a suspension member operatively connecting the base to the MEMS structure, wherein the suspension member is longer than the sacrificial support; and an electrode operatively connected to the base. The device may further comprise a current pulse generator adapted to send a current pulse through the sacrificial support, wherein the current pulse causes the sacrificial support to detach from the MEMS structure. Moreover, the sacrificial support structures may be electrically resistive.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: February 2, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Alan S. Edelstein
  • Publication number: 20090091000
    Abstract: In an embodiment of the present invention is provided a varactor comprising a substrate, a plurality of bottom electrodes positioned on a surface of the substrate separated to form a gap therein, a tunable dielectric material positioned on the surface of the substrate and within the gap, the tunable dielectric at least partially overlaying the plurality of electrodes, and a top electrode in contact with the tunable dielectric.
    Type: Application
    Filed: November 20, 2008
    Publication date: April 9, 2009
    Inventors: Xubai Zhang, Louise C. Sengupta, Jason Sun, Nicolass DuToit
  • Publication number: 20080315362
    Abstract: A micro-electro-mechanical system varactor. The varactor includes a substrate, a lower bias conductor partially overlaying the substrate, a first signal conductor partially overlaying the substrate, a dielectric layer at least partially overlaying the first signal conductor, a support structure coupled to the substrate, and a flexible structure coupled to the support structure. The flexible structure is suspended over the substrate, includes an upper bias conductor overlaying at least part of the lower bias conductor and a top conductor overlaying at least part of the first signal conductor, configured to deflect in response to a bias voltage applied between the upper bias conductor and the lower bias conductor, and configured for separation between the top conductor and the dielectric layer by a varying separation distance dependent upon the bias voltage.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Applicant: MOTOROLA, INC.
    Inventors: Robert B. Lempkowski, Lih-Tyng Hwang
  • Patent number: 7432528
    Abstract: Active devices in a thin film diode (TFD) liquid crystal display (LCD) panel used to control liquid crystal are formed by a metal layer, a transparent conductive layer, and an insulating layer sequentially on a substrate, wherein the metal layer is used as transmitting signal and the transparent conductive layer is used as bottom metal layer of metal-insulator-metal (MIM) thin film diode. The metal layer, the transparent conductive layer, and the insulating layer are defined with desired patterns. Further, a dielectric layer is formed over the substrate, metal layer, the transparent conductive layer, and the insulating layer, and defined to form the locations of electrode terminal and MIM thin film diode by using lithographic process. Next, another transparent conductive layer is formed on the dielectric layer and defined to form a pixel electrode and top metal layer of the MIM thin film diode by using lithographic process.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 7, 2008
    Assignee: AU Optronics Corporation
    Inventor: Weng-Bing Chou
  • Patent number: 7391005
    Abstract: A direct attach optical receiver module and a system and method for testing the direct attach optical receiver module are provided. An optical receiver module may include an optical detector and an integrated circuit with an integrated amplifier circuit and at least one integrated capacitor. In one example, the optical detector may be physically attached to the integrated circuit and the output port of the optical detector may be electrically coupled to the input port of the integrated circuit. In another example, a redistribution layer that includes a tuning inductor may be being physically attached between the optical detector and the integrated circuit.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 24, 2008
    Assignee: Gennum Corporation
    Inventors: Iman Sherazi, Stephen J. Kovacic
  • Patent number: 7388275
    Abstract: Generally provided is a circuit assembly construction for controlling impedance in an electronic package. A large scale, parallel-plate capacitor includes two electrodes separated by a dielectric material. The electrodes serve as reference voltage planes for the electronic package. At least one of the electrodes is patterned such that both electrodes are accessible from a common side of the capacitor. The capacitor is positioned with a first electrode mounted adjacent to an interconnect circuit portion of the electronic package. An electronic device portion of the electronic package is electrically connected, directly or indirectly, to one or more of the electrodes of the capacitor.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: June 17, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: John D. Geissinger, Paul M. Harvey, Robert R. Kieschke
  • Patent number: 7388247
    Abstract: A high precision microelectromechanical capacitor with programmable voltage source includes a monolithic MEMS device having a capacitance actuator, a trim capacitor, and a high precision, programmable voltage source. The trim capacitor has a variable capacitance value, preferably for making fine adjustments in capacitance. The capacitance actuator is preferably mechanically coupled to and electrically isolated from the trim capacitor and is used to control the capacitance value of the trim capacitor. The capacitance adjustment of the trim capacitor is non-destructive and may be repeated indefinitely. The trim capacitor may be adjusted by mechanically changing the distance between its electrodes. The programmable voltage source provides a highly accurate and stable output voltage potential corresponding to control signals for controlling the capacitance actuator.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 17, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Isaac Lagnado, Paul R. de la Houssaye
  • Patent number: 7345354
    Abstract: The present invention provides an varactor, a method of manufacture thereof. In an exemplary embodiment, the varactor includes a semiconductor substrate and well of a first and second conductivity type, respectively. A conductive region in the well has a same conductivity type as the well but a lower resistivity than the well. At least a portion of the well is between at least two sides of the conductive region and an area delineated by an outer perimeter of a conductive layer over the well. Such varactors have a lower series resistance and therefore have an increased quality factor.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: March 18, 2008
    Assignee: Agere Systems Inc.
    Inventors: Debra Johnson, Shye Shapira, Shahriar Moinian
  • Patent number: 7319553
    Abstract: Disclosed herein is an optical modulator module package structure. In the optical modulator module package structure, an optical modulator device and a drive integrated circuit device are flip-chip bonded to a substrate, and an opening of the substrate is blocked using a piece of glass.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: January 15, 2008
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Suk Kee Hong
  • Patent number: 7294895
    Abstract: A capacitive dynamic quantity sensor whose size is small and whose reliability and mass productivity are high is provided. In order to realize signal transmission from a lower electrode to an upper electrode, silicon columns which are electrically isolated from one another but not mechanically isolated from one another are formed to connect both electrodes.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 13, 2007
    Assignee: Seiko Instruments Inc.
    Inventors: Mitsuo Yarita, Minoru Sudou, Kenji Kato
  • Patent number: 7202567
    Abstract: A lower interconnection is provided on a semiconductor substrate. A MIM capacitive element is provided on a first interlayer insulation film in which the lower interconnection is buried, and includes a lower electrode, an upper electrode, and a dielectric film sandwiched therebetween. An upper interconnection is provided on a second interlayer insulation film in which the MIM capacitive element is buried. A contact electrically connects the lower electrode and the upper interconnection. The lower electrode is mainly formed of Al, so that they are lower in electrical resistance than barrier metal, and also low in stress value. Therefore, it becomes possible to widen the area of the lower electrode for electrically connecting the contact while restraining their influences on charge accumulation and close contact between the lower electrode and the insulation film. In addition, since the electrical resistance is lowered, the thickness of the lower electrode can be increased.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: April 10, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Kuniko Kikuta, Makoto Nakayama
  • Patent number: 7132723
    Abstract: A radio frequency (RF) micro electro-mechanical system (MEMS) device and method of making same are provided, the device including an RF circuit substrate and an RF conducting path disposed on the RF circuit substrate, a piezoelectric thin film actuator, and a conducting path electrode. The piezoelectric thin film actuator has a proximal end that is fixed relative to the RF circuit substrate and a cantilever end that is spaced from the RF circuit substrate. The conducting path electrode is disposed on the cantilever end of the piezoelectric thin film actuator. The cantilever end of the piezoelectric thin film actuator is movable between a first position whereat the conducting path electrode is spaced from the RF path electrode and a second position whereat the conducting path electrode is spaced from the RF path electrode a second distance, wherein the second distance is less than the first distance. The RF MEMS device is particularly useful as a tunable capacitor.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: November 7, 2006
    Assignee: Raytheon Company
    Inventors: Joon Park, Ron K. Nakahira, Robert C. Allison
  • Patent number: 7053462
    Abstract: A conductive material is provided in an opening formed in an insulative material. The process involves first forming a conductive material over at least a portion of the opening and over at least a portion of the insulative material which is outside of the opening. Next, a metal-containing fill material is formed over at least a portion of the conductive material which is inside the opening and which is also over the insulative material outside of the opening. The metal-containing material at least partially fills the opening. At least a portion of both the metal-containing fill material and the conductive material outside of the opening is then removed. Thereafter, at least a portion of the metal-containing fill material which is inside the opening is then removed.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: May 30, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Sam Yang, John M. Drynan
  • Patent number: 7030463
    Abstract: Electrically tunable electromagnetic bandgap (“TEBG”) structures using a ferroelectric thin film on a semiconductor substrate, tunable devices that include such a TEBG structure, such as a monolithic microwave integrated circuit (“MMIC”), and a method producing such a TEBG structure are disclosed. The present invention provides a semiconductive substrate having an oxide layer, a first conductive layer positioned on the oxide layer, a ferroelectric layer covering the first conductive layer, and a second conductive layer positioned on a surface of the tunable ferroelectric layer. The use of the ferroelectric layer, which have a DC electric field dependent permittivity, enables a small size, tunable EBG structure.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: April 18, 2006
    Assignee: University of Dayton
    Inventors: Guru Subramanyam, Spartak Gevorgian
  • Patent number: 6980412
    Abstract: The invention relates to a variable capacitor and method of making it. The variable capacitor comprises a fixed charge plate disposed in a substrate, a movable charge plate disposed above the fixed charge plate, and a stiffener affixed to the movable charge plate. The movable charge plate may be patterned to form a movable actuator plate where the fixed charge plate is elevated above a fixed actuator plate.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: December 27, 2005
    Assignee: Intel Corporation
    Inventors: Peng Cheng, Qing Ma
  • Patent number: 6885079
    Abstract: An electronic device supported on a semiconductor substrate. The semiconductor device includes a diffusion area in the substrate and a polysilicon layer extending over the substrate and contacting the diffusion area. The electronic device further includes a conductive contact covering and contacting both the polysilicon layer and the diffusion area. Therefore, the semiconductor device disclosed in this invention includes poly-to-diffusion connection for a semiconductor device that has a diffusion are and a polysilicon area. The semiconductor device further includes a contact that covers both the diffusion area and the polysilicon area with a contact filling material forming the connection between these two areas.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 26, 2005
    Inventor: Jeng-Jye Shau
  • Patent number: 6835977
    Abstract: A variable capacitor comprising a substrate having a first type ion-doped buried layer, a first type ion-doped well, a second type ion-doped region and a conductive layer thereon. The first type ion-doped well is formed within the substrate. The first type ion-doped well has a cavity. The first type ion-doped buried layer is in the substrate underneath the first type ion-doped well. The first type ion-doped buried layer and the first type ion-doped well are connected. The second type ion-doped region is at the bottom of the cavity of the first type ion-doped well. The conductive layer is above and in connection with the first type ion-doped buried layer.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: December 28, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Jing-Horng Gan, Anchor Chen
  • Publication number: 20040232523
    Abstract: A packaged semiconductor chip comprising a first semiconductor chip 120 having an upwardly-facing front face 145, a downwardly-facing rear face 155, edges 160 bounding the faces and contacts 150 exposed at the front surface 145, the first semiconductor chip 120 including active components. The packaged semiconductor chip 100 further includes a connecting element 105 which may include passive components, the connecting element 105 may be electrically connected to at least some of the contacts 150, the connecting element 105 overlying the front face 145 of the first chip 120 and projecting outwardly beyond the edges 160 of the first chip 120.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 25, 2004
    Inventors: Khosro Shamsaifar, Nicolaas du Toit, Louise C. Sengupta
  • Publication number: 20040173876
    Abstract: Micro-electro-mechanical system (MEMS) variable capacitor apparatuses, system and related methods are provided.
    Type: Application
    Filed: December 15, 2003
    Publication date: September 9, 2004
    Inventors: Francois-Xavier Musalem, Arthur S. Morris, John Richard Gilbert, Siebe Bouwstra, Randy J. Richards
  • Patent number: 6787882
    Abstract: A semiconductor device includes a plurality of barrier layers and a plurality of quantum well layers which are alternately interleaved with each other and disposed on a substrate of semiconductor material so as to form a multiple-heterojunction varactor diode. The barrier layers and quantum well layers are doped with impurities. The varactor diode includes an ohmic contact which is electrically connected to a heavily doped embedded region and a Schottky contact which is electrically connected to a depletion region of the diode. The ohmic contact and the Schottky contact enable an external voltage source to be applied to the contacts so as to provide a bias voltage to the varactor diode. A variable capacitance is produced as a result of the depletion region varying with a variation in the bias voltage. The varactor diode also provides a constant series resistance.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: September 7, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Steven Kirchoefer
  • Patent number: 6762482
    Abstract: A memory device with composite contact plug and method for manufacturing the same. The composite contact plug comprises a first insulating layer deposited on a semiconductor substrate. A contact hole is formed to penetrate through the first insulation layer. A barrier layer is deposited in the contact hole and fills a portion of the contact hole. A contact plug is formed on the barrier layer and fills the contact hole. The first insulating layer is etched back until the surface of the first insulating layer is below the contact plug. A diffusion barrier layer is then deposited on the first insulating layer and the contact plug. The diffusion barrier layer is planarized until the contact plug is exposed to form a composite contact plug. The memory device is constructed on the composite contact plug.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: July 13, 2004
    Assignees: Winbond Electronics Corporation, Kabushiki Kaisha Toshiba
    Inventors: Wen-Chung Liu, Bor-Ru Sheu, Yoshiaki Fukuzumi
  • Patent number: 6717238
    Abstract: A low-capacitance bonding pad for a semiconductor device. A diffusion region is formed in a substrate, and a bonding pad is formed on the substrate and aligned with the diffusion region. The bonding pad is made from a stacked metal layer and a metal layer. The stacked metal layer is made from a plurality of metal layers and a plurality of dielectric layers, and the metal layers and the dielectric layers are stacked alternately. The metal layers stacked in the stacked metal layer are formed with small areas. Each of the metal layers stacked in the stacked metal layer is coupled with the adjacent metal layer by via plugs.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: April 6, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Dou Ker, Hsin-Chin Jiang
  • Publication number: 20040018692
    Abstract: A variable capacitor includes an N+ layer including a variable capacitance region, a P+ layer epitaxially grown on the N+ layer and formed from a SiGe film and a Si film, and a P-type electrode. An NPN-HBT (Hetero-junction Bipolar Transistor) includes a collector diffusion layer formed simultaneously with the N+ layer of the variable capacitor, a collector layer, and a Si/SiGe layer epitaxially grown simultaneously with the P+ layer of the variable capacitor. Since a depletion layer formed in a PN junction of the variable capacitor can extend entirely across the N+ layer, reduction in variation range of the capacitance can be suppressed.
    Type: Application
    Filed: July 17, 2003
    Publication date: January 29, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Teruhito Ohnishi, Takeshi Takagi, Akira Asai, Taizo Fujii, Mitsuo Sugiura, Yoshihisa Minami