With Specified Distribution (e.g., Laterally Localized, With Specified Concentration Distribution Or Gradient) Patents (Class 257/611)
  • Patent number: 10833218
    Abstract: A semiconductor ingot is sliced to obtain a semiconductor slice with a front side surface and a rear side surface parallel to the front side surface. A passivation layer is formed directly on at least one of the front side surface and the rear side surface. A barrier layer including least one of silicon carbide, a ternary nitride, and a ternary carbide is formed on the rear side surface.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 10, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 10608404
    Abstract: A laser light source, a submount for a semiconductor laser, and a method of providing a laser light source are provided. The laser light source includes a submount with first and second electrical contacts thereon and a trench there-between. A semiconductor laser is bonded to the submount by bonding third and fourth electrical contacts of the laser to the first and second electrical contacts, respectively. The third and fourth electrical contacts of the laser are arranged on opposite side of a laser active stripe, which is arranged over the trench of the submount.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: March 31, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Mary Nadeau, Jarrett S. Neiman, Mittu Pannala
  • Patent number: 10253432
    Abstract: A semiconductor substrate manufacturing method includes: epitaxially growing a columnar III nitride semiconductor single crystal on a principal place of a circular substrate; removing a hollow cylindrical region at an outer peripheral edge side of the III nitride semiconductor single crystal to leave a solid columnar region at an inside of the hollow cylindrical region of the III nitride semiconductor single crystal; and slicing the solid columnar region after removing the hollow cylindrical region. The hollow cylindrical region is removed such that the shape of the III nitride semiconductor single crystal is always keeps an axial symmetry that a center axis of the III nitride semiconductor single crystal is defined as a symmetric axis.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: April 9, 2019
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Masatomo Shibata, Takehiro Yoshida, Toshio Kitamura, Yukio Abe
  • Patent number: 10096612
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 9, 2018
    Assignee: Intel Corporation
    Inventors: Sri Sai Sivakumar Vegunta, Gowrisankar Damarla, Jian Zhou
  • Patent number: 10079281
    Abstract: A method for forming a semiconductor device includes incorporating dopants of a first conductivity type into a nearby body region portion of a semiconductor substrate having a base doping of the first conductivity type. The incorporation of the dopants of the first conductivity type is masked by a mask structure at at least part of an edge region of the semiconductor substrate. The method further includes forming a body region of a transistor structure of a second conductivity type in the semiconductor substrate. The nearby body region portion of the semiconductor substrate is located adjacent to the body region of the transistor structure.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: September 18, 2018
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Schmidt, Erwin Lercher
  • Patent number: 9059040
    Abstract: The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes an SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qingqing Liang, Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Patent number: 9024414
    Abstract: A semiconductor device in which a gettering layer is formed in a semiconductor substrate, and a method for forming the same are disclosed, resulting in increased reliability of the semiconductor substrate including the gettering layer. The semiconductor device includes a semiconductor substrate; a gettering layer formed of a first-type impurity and a second-type impurity in the semiconductor substrate so as to perform gettering of metal ion; and a deep-well region formed over the gettering layer in the semiconductor substrate.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: May 5, 2015
    Assignee: SK Hynix Inc.
    Inventor: Jae Bum Kim
  • Patent number: 9018735
    Abstract: A silicon wafer and fabrication method thereof are provided. The silicon wafer includes a first denuded zone formed with a predetermined depth from a top surface of the silicon wafer, the first denuded zone being formed with a depth ranging from approximately 20 ?m to approximately 80 ?m from the top surface, and a bulk area formed between the first denuded zone and a backside of the silicon wafer, the bulk area having a concentration of oxygen uniformly distributed within a variation of 10% over the bulk area.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: April 28, 2015
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Jung-Goo Park
  • Patent number: 9006745
    Abstract: An MOSFET includes a silicon carbide substrate, an active layer, a gate oxide film, and a gate electrode. The active layer includes a body region where an inversion layer is formed at a region in contact with the gate oxide film by application of voltage to the gate electrode. The body region includes a low concentration region arranged at a region where an inversion layer is formed, and containing impurities of low concentration, and a high concentration region adjacent to the low concentration region in the carrier mobile direction in the inversion layer, arranged in a region where the inversion layer is formed, and containing impurities higher in concentration than in the low concentration region.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: April 14, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi
  • Patent number: 8957510
    Abstract: A semiconductor device includes a semiconductor die having a first major surface and a second major surface opposite the first major surface, a first minor surface and a second minor surface opposite the first minor surface, a plurality of contact pads on the first major surface, and a notch which extends from the first minor surface and the second major surface into the semiconductor die. The notch has a notch depth measured from the second major surface into the semiconductor die, wherein the notch depth is less than a thickness of the semiconductor die, and a notch length measured from the first minor surface into the semiconductor die, wherein the notch length is less than a length of the semiconductor die measured between the first and second minor surfaces. The device includes a lead having a first end in the notch, and an encapsulant over the first major surface.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: February 17, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tim V. Pham, James R. Guajardo, Michael B. McShane
  • Patent number: 8927965
    Abstract: A light-receiving element includes a III-V group compound semiconductor substrate, a light-receiving layer having a type II multi-quantum well structure disposed on the substrate, and a type I wavelength region reduction means for reducing light in a wavelength region of type I absorption in the type II multi-quantum well structure disposed on a light incident surface or between the light incident surface and the light-receiving layer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuhiro Iguchi, Hiroshi Inada
  • Patent number: 8895419
    Abstract: This nitride-based semiconductor light-emitting element includes: a nitride-based semiconductor multilayer structure including a p-type semiconductor region, the nitride-based semiconductor multilayer structure having a growing plane which is an m-plane; and an electrode which is arranged on an AldGaeN layer. The AldGaeN layer is formed of a GaN-based semiconductor. The electrode includes Ag as the principal component and also includes Ge and at least one of Mg and Zn.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Naomi Anzue, Toshiya Yokogawa
  • Patent number: 8836141
    Abstract: A semiconductor device is prepared by an annealing process to interconnect at least two components of the device by a conductor line surrounded by an insulator material. The annealing process results in formation of residual stresses within the conductor line and the insulator material. A notch is designed in the layout on a selective portion of the mask for patterning conductor line. The existence of a shape of notch on the selective portion generates extra stress components within the conductor line than if without the existence of the notch. The position of the notch is selected so that the extra stress components substantially counteract the residual stresses, thereby causing a net reduction in the residual stresses. The reduction in the residual stresses results in a corresponding mechanical stress migration and therefore improvement in the reliability of the device.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Hwa Chi, Tai-Chun Huang, Chih-Hsiang Yao
  • Patent number: 8836066
    Abstract: An avalanche photodiode includes silicon crystal doped with impurities, where the doping profile of the silicon crystal includes a smoothly arcing donor-acceptor concentration curve decreasing with respect to distance into the interior of the silicon crystal that is interrupted by a narrower peak of increased concentration in the interior of the silicon crystal prior to further decreasing with respect to distance along the smoothly arcing donor-acceptor concentration curve.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 16, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Robert G. Brown, Steven E. Koenck
  • Patent number: 8823001
    Abstract: The present disclosure discloses a method for manufacturing a TFT array substrate, comprising: depositing a gate metal layer, a gate insulating layer, a semiconductor layer and a source-drain electrode layer in this order on a base substrate, performing a first photolithograph process to form a common electrode line, a gate line, a gate electrode, a source electrode, a drain electrode and a channel defined between the source electrode and the drain electrode; depositing a passivation layer, performing a second photolithograph process to form a first via hole and a second via hole in the passivation layer; and depositing a pixel electrode layer and a data line layer in this order, perform a third photolithograph process to form a data line connected to the source electrode through the first via hole and a pixel electrode connected to the drain electrode through the second via hole.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 2, 2014
    Assignees: Boe Technology Group Co., Ltd., Hefei Boe Optoelectronics Technology Co., Ltd.
    Inventor: Yunqi Zhang
  • Patent number: 8803231
    Abstract: Trench portions (10) are formed in a well (5) in order to provide unevenness in the well (5). A gate electrode (2) is formed via an insulating film (7) on the upper surface and inside of the trench portions (10). A source region (3) is formed on one side of the gate electrode (2) in a gate length direction while a drain region (4) on another side. Both of the source region (3) and the drain region (4) are formed down to near the bottom portion of the gate electrode (2). By deeply forming the source region (3) and the drain region (4), current uniformly flows through the whole trench portions (10), and the unevenness formed in the well (5) increases the effective gate width to decrease the on-resistance of a semiconductor device 1 and to enhance the drivability thereof.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 12, 2014
    Assignee: Seiko Instruments, Inc.
    Inventors: Tomomitsu Risaki, Jun Osanai
  • Patent number: 8772878
    Abstract: A silicon/germanium material and a silicon/carbon material may be provided in transistors of different conductivity type on the basis of an appropriate manufacturing regime without unduly contributing to overall process complexity. Furthermore, appropriate implantation species may be provided through exposed surface areas of the cavities prior to forming the corresponding strained semiconductor alloy, thereby additionally contributing to enhanced overall transistor performance. In other embodiments a silicon/carbon material may be formed in a P-channel transistor and an N-channel transistor, while the corresponding tensile strain component may be overcompensated for by means of a stress memorization technique in the P-channel transistor. Thus, the advantageous effects of the carbon species, such as enhancing overall dopant profile of P-channel transistors, may be combined with an efficient strain component while enhanced overall process uniformity may also be accomplished.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon
  • Publication number: 20140015104
    Abstract: An embodiment is a method comprising diffusing carbon through a surface of a substrate, implanting carbon through the surface of the substrate, and annealing the substrate after the diffusing the carbon and implanting the carbon through the surface of the substrate. The substrate comprises a first gate, a gate spacer, an etch stop layer, and an inter-layer dielectric. The first gate is over a semiconductor substrate. The gate spacer is along a sidewall of the first gate. The etch stop layer is on a surface of the gate spacer and over a surface of the semiconductor substrate. The inter-layer dielectric is over the etch stop layer. The surface of the substrate comprises a surface of the inter-layer dielectric.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Chen Su, Huang-Ming Chen, Chun-Feng Nieh, Pei-Chao Su
  • Patent number: 8604591
    Abstract: A nitride-based semiconductor device includes a p-type AldGaeN layer 25 whose growing plane is an m-plane and an electrode 30 provided on the p-type AldGaeN layer 25. The AldGaeN layer 25 includes a p-AldGaeN contact layer 26 that is made of an AlxGayInzN (x+y+z=1, x?0, y>0, z?0) semiconductor, which has a thickness of not less than 26 nm and not more than 60 nm. The p-AldGaeN contact layer 26 includes a body region 26A which contains Mg of not less than 4×1019 cm?3 and not more than 2×1020 cm?3 and a high concentration region 26B which is in contact with the electrode 30 and which has a Mg concentration of not less than 1×1021 cm?3.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 10, 2013
    Assignee: Panasonic Corporation
    Inventors: Toshiya Yokogawa, Ryou Kato, Naomi Anzue
  • Patent number: 8598025
    Abstract: An improved method of doping a workpiece is disclosed. In this method, a film comprising the species to be implanted is introduced to the surface of a planar or three-dimensional workpiece. This film can be grown using CVD, a bath or other means. The workpiece with the film is then subjected to ion bombardment to help drive the dopant into the workpiece. This ion bombardment is performed at elevated temperatures to reduce crystal damage and create a more abrupt doped region.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: December 3, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Louis Steen, Yuri Erokhin, Hans-Joachin Ludwig Gossmann
  • Patent number: 8575011
    Abstract: A semiconductive device is fabricated by forming, within a semiconductive substrate, at least one continuous region formed of a material having a non-uniform composition in a direction substantially perpendicular to the thickness of the substrate.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 5, 2013
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Daniel-Camille Bensahel, Yves Morand
  • Patent number: 8557692
    Abstract: A method of forming an integrated circuit includes providing a semiconductor wafer; and forming a fin field-effect transistor (FinFET) including implanting the semiconductor wafer using a hot-implantation to form an implanted region in the FinFET. The implanted region comprises a region selected from the group consisting essentially of a lightly doped source and drain region, a pocket region, and a deep source drain region.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chien-Chang Su, Tsung-Hung Li, Da-Wen Lin, Wen-Sheh Huang
  • Patent number: 8525302
    Abstract: A bipolar diode is provided having a drift layer of a first conductivity type on a cathode side and an anode layer of a second conductivity type on an anode side. The anode layer includes a diffused anode contact layer and a double diffused anode buffer layer. The anode contact layer is arranged up to a depth of at most 5 ?m, and the anode buffer layer is arranged up to a depth of 18 to 25 ?m. The anode buffer layer has a doping concentration between 8.0*1015 and 2.0*1016 cm?3 in a depth of 5 ?m and between 1.0*1014 up to 5.0*1014 cm?3 in a depth of 15 ?m (Split C and D), resulting in good softness of the device and low leakage current. Split A and B show anode layer doping concentrations of known diodes, which have either over all depths lower doping concentrations resulting in high leakage current or enhanced doping concentration resulting in bad softness.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 3, 2013
    Assignee: ABB Technology AG
    Inventor: Sven Matthias
  • Patent number: 8513664
    Abstract: A thin film transistor includes, as a buffer layer, an amorphous semiconductor layer having nitrogen or an NH group between a gate insulating layer and source and drain regions and at least on the source and drain regions side. As compared to a thin film transistor in which an amorphous semiconductor is included in a channel formation region, on-current of a thin film transistor can be increased. In addition, as compared to a thin film transistor in which a microcrystalline semiconductor is included in a channel formation region, off-current of a thin film transistor can be reduced.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 20, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshiyuki Isa, Yasuhiro Jinbo, Sachiaki Tezuka, Koji Dairiki, Hidekazu Miyairi, Shunpei Yamazaki
  • Patent number: 8440547
    Abstract: Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ashima B. Chakravarti, Michael P. Chudzik, Judson R. Holt, Dominic J. Schepis
  • Patent number: 8431450
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Patent number: 8421195
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICS, improvement in refresh time for DRAM's, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFET's, and a host of other applications.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 16, 2013
    Inventor: G. R. Mohan Rao
  • Patent number: 8405148
    Abstract: An integrated circuit structure having an LDMOS transistor and a CMOS transistor includes a p-type substrate having a surface, an n-well implanted in the substrate, the first n-well providing a CMOS n-well, a CMOS transistor including a CMOS source with a first p+ region implanted in the n-well, a CMOS drain with a second p+ region implanted in the n-well, and a CMOS gate between the first p+ region and the second p+ region, and an LDMOS transistor including an LDMOS source with an LDMOS source including a p-body implanted in the n-well, a third p+ region implanted in the p-body, and a first n+ region implanted in the p-body, an LDMOS drain including an n-doped shallow drain implanted in the n-well, and a second n+ region implanted in the n-doped shallow drain, and an LDMOS gate between the third p+ region and the second n+ region.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: March 26, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Budong You, Marco A. Zuniga
  • Patent number: 8399953
    Abstract: A semiconductor device includes a semiconductor substrate, an element isolation insulating film dividing an upper portion of the substrate into a plurality of first active regions, a source layer and a drain layer, a gate electrode, a gate insulating film, a first punch-through stopper layer, and a second punch-through stopper layer. The source layer and the drain layer are formed in spaced to each other in an upper portion of each of the first active regions. The first punch-through stopper layer is formed in a region of the first active region directly below the source layer and the second punch-through stopper layer is formed in a region of the first active region directly below the drain layer. The first punch-through stopper layer and the second punch-through stopper layer each has an effective impurity concentration higher than the semiconductor substrate. The first punch-through stopper layer and the source layer are separated in the channel region.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Yoshiko Kato, Norihisa Arai, Tomoaki Hatano
  • Patent number: 8373156
    Abstract: Provided is a biological component detection device with which a biological component can be detected at high sensitivity by using an InP-based photodiode in which a dark current is reduced without using a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 ?m or more. An absorption layer 3 has a multiple quantum well structure composed of group III-V semiconductors, a pn-junction 15 is formed by selectively diffusing an impurity element in the absorption layer, and the concentration of the impurity element in the absorption layer is 5×1016/cm3 or less, the diffusion concentration distribution control layer has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the absorption layer, the portion having a low impurity concentration.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: February 12, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Youichi Nagai, Yasuhiro Iguchi
  • Patent number: 8319316
    Abstract: A semiconductor memory device includes a first transistor. The first transistor includes a gate electrode, a channel region, a source region, a source region, an overlapping region, a contact region, and an impurity diffusion region. The channel region has a first impurity concentration. The source and drain regions have a second impurity concentration. The overlapping region is formed in the semiconductor layer where the channel region overlaps the source region and the drain region, and has a third impurity concentration. The contact region has a fourth impurity concentration. The impurity diffusion region has a fifth impurity concentration higher than the second impurity concentration and lower than the fourth impurity concentration. The impurity diffusion region is in contact with the contact region and away from the overlapping region and positioned at least in a region between the contact region and the overlapping region.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Yoshiko Kato, Mitsuhiro Noguchi, Masato Endo
  • Patent number: 8236648
    Abstract: Provided is a semiconductor device formed with a trench portion for providing a concave portion having a continually varying depth in a gate width direction and with a gate electrode provided within the trench portion and on a top surface thereof via a gate insulating film. Before the formation of the gate electrode, an impurity is added to at least a part of the source region and the drain region by ion implantation from an inner wall of the trench portion, and then heat treatment is performed for diffusion and activation to form a diffusion region from the surface of the trench portion down to a bottom portion thereof. Current flowing through a top surface of the concave portion of the gate electrode at high concentration can flow uniformly through the entire trench portion.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 7, 2012
    Assignee: Seiko Instruments Inc.
    Inventor: Masayuki Hashitani
  • Patent number: 8217440
    Abstract: MOSFETs and methods of making MOSFETs are provided. According to one embodiment, a semiconductor device includes a substrate and a Metal-Oxide-Semiconductor (MOS) transistor that includes a semiconductor region formed on the substrate, a source region and drain region formed in the semiconductor region that are separated from each other, a channel region formed in the semiconductor region that separates the source region and the drain region, an interfacial oxide layer (IL) formed on the channel region into which at least one element disparate from Si, O, or N is incorporated at a peak concentration greater than 1×1019 atoms/cm2, and a high-k dielectric layer formed on the interfacial oxide layer having a high-k/IL interface at a depth substantially adjacent to the IL. In addition, at least one depth of peak density of the incorporated element(s) is located substantially below the high-k/IL interface.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaihsa Toshiba
    Inventor: Yoshinori Tsuchiya
  • Patent number: 8211784
    Abstract: A semiconductor device has at least two main carbon-rich regions and two additional carbon-rich regions. The main carbon-rich regions are separately located in a substrate so that a channel region is located between them. The additional carbon-rich regions are respectively located underneath the main carbon-rich regions. The carbon concentrations is higher in the main carbon-rich regions and lower in the additional carbon-rich regions, and optionally, the absolute value of a gradient of the carbon concentration of the bottom portion of the main carbon-rich regions is higher than the absolute value of a gradient of the carbon concentration of the additional carbon-rich regions. Therefore, the leakage current induced by a lattice mismatch effect at the carbon-rich and the carbon-free interface can be minimized.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 3, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Jason Hong, Daniel Tang
  • Patent number: 8183666
    Abstract: A semiconductor device includes first semiconductor zones of a first conductivity type having a first dopant species of the first conductivity type and a second dopant species of a second conductivity type different from the first conductivity type. The semiconductor device also includes second semiconductor zones of the second conductivity type including the second dopant species. The first and second semiconductor zones are alternately arranged in contact with each other along a lateral direction extending in parallel to a surface of a semiconductor body. One of the first and second semiconductor zones constitute drift zones and a diffusion coefficient of the second dopant species is at least twice as large as the diffusion coefficient of the first dopant species. A concentration profile of the first dopant species along a vertical direction perpendicular to the surface of the semiconductor body includes at least two maxima.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: May 22, 2012
    Assignee: Infineon Technologies AG
    Inventor: Hans-Joachim Schulze
  • Patent number: 8168494
    Abstract: Trench portions (10) are formed in a well (5) in order to provide unevenness in the well (5). A gate electrode (2) is formed via an insulating film (7) on the upper surface and inside of the trench portions (10). A source region (3) is formed on one side of the gate electrode (2) in a gate length direction while a drain region (4) on another side. Both of the source region (3) and the drain region (4) are formed down to near the bottom portion of the gate electrode (2). By deeply forming the source region (3) and the drain region (4), current uniformly flows through the whole trench portions (10), and the unevenness formed in the well (5) increase the effective gate width to decrease the on-resistance of a semiconductor device 1 and to enhance the drivability thereof.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: May 1, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Tomomitsu Risaki, Jun Osanai
  • Patent number: 8072019
    Abstract: A flash memory includes a shallow trench isolation and an active region formed at a substrate, a plurality of stacked gates formed on and/or over the active region, a deep implant region formed at a lower portion of the shallow trench isolation and the active region between the stacked gates and a shallow implant region formed at a surface of the active region between the stacked gates.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: December 6, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung-Kun Park
  • Publication number: 20110284992
    Abstract: The present invention provides a 3D integrated circuit and a manufacturing method thereof. The circuit structure comprises: a semiconductor substrate; at least one semiconductor device formed on the upper surface of the semiconductor substrate; a through-Si-via through the semiconductor substrate and comprising an insulating layer covering sidewalls of the through-Si-via and conductive material filled in the insulating layer; an interconnection structure connecting the at least one semiconductor device and the through-Si-via; and a diffusion trapping region formed on the lower surface of the semiconductor substrate. The present invention is applicable in manufacture of the 3D integrated circuit.
    Type: Application
    Filed: September 19, 2010
    Publication date: November 24, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Huilong Zhu
  • Patent number: 8035196
    Abstract: The present invention provides a method of forming a bipolar transistor. The method includes doping a silicon layer with a first type of dopant and performing a first implant process to implant dopant of a second type opposite the first type in the silicon layer. The implanted dopant has a first dopant profile in the silicon layer. The method also includes performing a second implant process to implant additional dopant of the second type in the silicon layer. The additional implanted dopant has a second dopant profile in the silicon layer different than the first dopant profile. The method further includes growing an insulating layer formed over the silicon layer by consuming a portion of the silicon layer and the first type of dopant.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: October 11, 2011
    Assignee: Zarlink Semiconductor (US) Inc.
    Inventors: Thomas J. Krutsick, Christopher J. Speyer
  • Patent number: 7994612
    Abstract: A method patterns pairs of semiconducting fins on an insulator layer and then patterns a linear gate conductor structure over and perpendicular to the fins. Next, the method patterns a mask on the insulator layer adjacent the fins such that sidewalls of the mask are parallel to the fins and are spaced from the fins a predetermined distance. The method performs an angled impurity implant into regions of the fins not protected by the gate conductor structure and the mask. This process forms impurity concentrations within the fins that are asymmetric and that mirror one another in adjacent pairs of fins.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Josephine B. Chang, Omer H. Dokumaci, Edward J. Nowak
  • Patent number: 7943957
    Abstract: A diode 10 comprises an SOI substrate in which are stacked a semiconductor substrate 20, an insulator film 30, and a semiconductor layer 40. A bottom semiconductor region 60, an intermediate semiconductor region 53, and a surface semiconductor region 54 are formed in the semiconductor layer 40. The bottom semiconductor region 60 includes a high concentration of n-type impurity. The intermediate semiconductor region 53 includes a low concentration of n-type impurity. The surface semiconductor region 54 includes p-type impurity.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 17, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Taki, Masahiro Kawakami, Kiyoharu Hayakawa, Masayasu Ishiko
  • Publication number: 20110101501
    Abstract: A semiconductor device includes first semiconductor zones of a first conductivity type having a first dopant species of the first conductivity type and a second dopant species of a second conductivity type different from the first conductivity type. The semiconductor device also includes second semiconductor zones of the second conductivity type including the second dopant species. The first and second semiconductor zones are alternately arranged in contact with each other along a lateral direction extending in parallel to a surface of a semiconductor body. One of the first and second semiconductor zones constitute drift zones and a diffusion coefficient of the second dopant species is at least twice as large as the diffusion coefficient of the first dopant species. A concentration profile of the first dopant species along a vertical direction perpendicular to the surface of the semiconductor body includes at least two maxima.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Hans-Joachim Schulze
  • Patent number: 7880272
    Abstract: Aspects of the present invention include a semiconductor device and method. In a transition region of a semiconductor material region, a near-surface compensation doping area with a conductivity type, which is different than the conductivity type of a transition doping area of the semiconductor material region, is provided in the surface region of the semiconductor material region. The doping of the near-surface compensation doping area of the semiconductor device at least partially compensates for the doping in the transition doping area.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventor: Gerhard Schmidt
  • Patent number: 7868378
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: January 11, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Patent number: 7847313
    Abstract: A group III-V nitride-based semiconductor substrate is formed of a group III-V nitride-based semiconductor single crystal containing an n-type impurity. The single crystal has a periodical change in concentration of the n-type impurity in a thickness direction of the substrate. The periodical change has a minimum value in concentration of the n-type impurity not less than 5×1017 cm?3 at an arbitrary point in plane of the substrate.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: December 7, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventor: Masatomo Shibata
  • Patent number: 7786550
    Abstract: A p-type semiconductor includes a host material that is a semiconductor, an acceptor element and a localized band formation element. The acceptor element is doped to the host material and has fewer valence electrons than valance electrons of at least one of the elements which compose the host material. The localized band formation element is doped to the host material, is isovalent with at least one of the elements which compose the host material, has smaller electronegativity than the electronegativity of the element(s), and forms the localized band which activates holes of an acceptor level.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: August 31, 2010
    Assignee: Panasonic Corporation
    Inventor: Toshiyuki Takizawa
  • Patent number: 7713851
    Abstract: A silicon epitaxial layer 2 is grown in vapor phase on a silicon single crystal substrate 1 manufactured by the Czochralski method, and doped with boron so as to adjust the resistivity to 0.02 ?·cm or below, oxygen precipitation nuclei 11 are formed in the silicon single crystal substrate 1, by carrying out annealing at 450° C. to 750° C., in an oxidizing atmosphere, for a duration of time allowing formation of a silicon oxide film only to as thick as 2 nm or below on the silicon epitaxial layer 2 as a result of the annealing, and thus-formed silicon oxide film 3 is etched as the first cleaning after the low-temperature annealing, using a cleaning solution. By this process, the final residual thickness of the silicon oxide film can be suppressed only to a level equivalent to native oxide film, without relying upon the hydrofluoric acid cleaning.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: May 11, 2010
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Fumitaka Kume, Tomosuke Yoshida, Ken Aihara, Ryoji Hoshi, Satoshi Tobe, Naohisa Toda, Fumio Tahara
  • Patent number: 7671358
    Abstract: A transistor device having a conformal depth of impurities implanted by isotropic ion implantation into etched junction recesses. For example, a conformal depth of arsenic impurities and/or carbon impurities may be implanted by plasma immersion ion implantation in junction recesses to reduce boron diffusion and current leakage from boron doped junction region material deposited in the junction recesses. This may be accomplished by removing, such as by etching, portions of a substrate adjacent to a gate electrode to form junction recesses. The junction recesses may then be conformally implanted with a depth of arsenic and carbon impurities using plasma immersion ion implantation. After impurity implantation, boron doped silicon germanium can be formed in the junction recesses.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 2, 2010
    Assignee: Intel Corporation
    Inventors: Nick Lindert, Mitchell C. Taylor
  • Patent number: 7560783
    Abstract: The present invention relates to a metal-semiconductor contact comprising a semiconductor layer and comprising a metallization applied to the semiconductor layer, a high dopant concentration being introduced into the semiconductor layer such that a non-reactive metal-semiconductor contact is formed between the metallization and the semiconductor layer. The metallization and/or the semiconductor layer are formed in such a way that only a fraction of the introduced doping concentration is electrically active, and a semiconductor layer doped only with this fraction of the doping concentration only forms a Schottky contact when contact is made with the metallization. Furthermore, the invention relates to a semiconductor component comprising a drain zone, body zones embedded therein and source zones again embedded therein. The semiconductor component has metal-semiconductor contacts in which the contacts made contact only with the source zones but not with the body zones.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 14, 2009
    Assignee: Infineon Technologies AG
    Inventors: Holger Kapels, Anton Mauder, Hans-Joachim Schulze, Helmut Strack, Jenoe Tihanyi
  • Patent number: 7537657
    Abstract: A process for producing a single-crystal silicon wafer, comprises the following steps: producing a layer on the front surface of the silicon wafer by epitaxial deposition or production of a layer whose electrical resistance differs from the electrical resistance of the remainder of the silicon wafer on the front surface of the silicon wafer, or production of an external getter layer on the back surface of the silicon wafer, and heat treating the silicon wafer at a temperature which is selected to be such that an inequality (1) [ Oi ] < [ Oi ] eq ? ( T ) ? exp ? 2 ? ? SiO ? ? 2 ? ? rkT is satisfied, where [Oi] is an oxygen concentration in the silicon wafer, [Oi]eq(T) is a limit solubility of oxygen in silicon at a temperature T, ?SiO2 is the surface energy of silicon dioxide, ? is a volume of a precipitated oxygen atom, r is a mean COP and k the Boltzmann constant, with the silicon wafer, during the heat treatment, at least part of the time being exposed to an oxygen-con
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 26, 2009
    Assignee: Siltronic AG
    Inventors: Christoph Seuring, Robert Hoelzl, Reinhold Wahlich, Wilfried Von Ammon