Plural Dram Cells Share Common Contact Or Common Trench Patents (Class 257/905)
  • Patent number: 7034408
    Abstract: A memory device includes a DRAM memory cell array, which is implemented as a 6 F×F array, and peripheral circuitry. The word lines of the memory cell array are implemented as buried word lines, and, in addition, the bit lines including the bit line contacts are made of a bit line layer stack. The peripheral circuitry includes a peripheral transistor including first and second source/drain regions, a channel connecting the first and the second source/drain regions as well as a peripheral gate electrode for controlling an electrical current of the channel. The peripheral gate electrode is made of a peripheral gate stack including a layer stack which is identical with the bit line stack.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: April 25, 2006
    Assignee: Infineon Technologies, AG
    Inventor: Till Schloesser
  • Patent number: 7022579
    Abstract: A method of filling vias for a PCRAM cell with a metal is described. A PCRAM intermediate structure including a substrate, a first conductor, and an insulator through which a via extends has a metallic material formed within the via and on a surface of the insulator. The metallic material may be deposited on the surface and within the via. A hard mask of a flowable oxide is deposited over the metallic material in the via to protect the metallic material in the via. A subsequent dry sputter etch removes the metallic material from the surface of the insulator and a portion of the hard mask. After complete removal of the hard mask, a glass material is recessed over the metallic material in the via. Then, a layer of a metal-containing material is formed over the glass material. Finally, a second conductor is formed on the surface of the insulator.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Jiutao Li
  • Patent number: 6992343
    Abstract: A semiconductor memory device is provided which can achieve the high integration, ultra-high speed operation, and significant reduction of power consumption during the information holding time, by reducing the increase in the area of a memory cell and obtaining a period of the ultra-high speed readout time and ensuring a long refresh period at the time of the self refresh. A DRAM employing a one-intersection cell·two cells/bit method has a twin cell structure employing a one-intersection 6F2 cell, the structure in which: memory cells are arranged at positions corresponding to all of the intersections between a bit-line pair and a word line; and when a half pitch of the word line is defined as F, a pitch of each bit line of the bit-line pair is larger than 2F and smaller than 4F. Further, an active region in the silicon substrate, on which a source, channel and drain of the transistor of each memory cell are formed, is obliquely formed relative to the direction of the bit-line pair.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 31, 2006
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd., Elpida Memory, Inc.
    Inventors: Shinichi Miyatake, Kazuhiko Kajigaya, Kazuyuki Miyazawa, Tomonori Sekiguchi, Riichiro Takemura, Takeshi Sakata
  • Patent number: 6974987
    Abstract: A memory cell transistor and a trench capacitor are provided in a memory region, and both transistors of CMOS are provided in a logic circuit region. There are provided a bit line contact 31 and a bit line 32 extending on an inter-level dielectric 30. In a memory cell transistor, a source diffusion layer 18 is covered with two dielectric sidewalls 25a and 25b in the memory cell transistor so that no silicide layer is formed on the source diffusion layer 18. A plate contact 31 is provided to pass through the inter-level dielectric 30 and connect a shield line 33 to a plate electrode 16b. The shield line 33 is arranged in the same interconnect layer as the bit line 32.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: December 13, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisashi Ogawa, Isao Miyanaga, Koji Eriguchi, Takayuki Yamada, Kazuichiro Itonaga, Yoshihiro Mori
  • Patent number: 6967348
    Abstract: A signal sharing circuit includes a first pad adapted to receive a signal and a first sharing device associated with a first microelectronic die. The first sharing device is adapted to selectively share the signal with at least a second microelectronic die on one side of the first microelectronic die in response to a first share control signal.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Timothy B. Cowles, Aron T. Lunde
  • Patent number: 6936881
    Abstract: A decoupling capacitor is formed on a semiconductor substrate that includes a silicon surface layer. A substantially flat bottom electrode is formed in a portion of the semiconductor surface layer. A capacitor dielectric overlies the bottom electrode. The capacitor dielectric is formed from a high permittivity dielectric with a relative permittivity, preferably greater than about 5. The capacitor also includes a substantially flat top electrode that overlies the capacitor dielectric. In the preferred application, the top electrode is connected to a first reference voltage line and the bottom electrode is connected to a second reference voltage line.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: August 30, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Chenming Hu
  • Patent number: 6921939
    Abstract: A method for making a power MOSFET includes forming a trench in a semiconductor layer, forming a gate dielectric layer lining the trench, forming a gate conducting layer in a lower portion of the trench, and forming a dielectric layer to fill an upper portion of the trench. Portions of the semiconductor layer laterally adjacent the dielectric layer are removed so that an upper portion thereof extends outwardly from the semiconductor layer. Spacers are formed laterally adjacent the outwardly extending upper portion of the dielectric layer, the spacers are used as a self-aligned mask for defining source/body contact regions.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 26, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Zeng
  • Patent number: 6911687
    Abstract: Active areas of a Dynamic Random Access Memory (DRAM) formed on a semiconductor substrate are defined by buried bit lines on two sides and by conductors separated from the semiconductor substrate by electrically insulating layers on two other sides. The conductors are electrically biased during operation of the DRAM to cause portions of the semiconductor substrate therebelow to increase in majority carrier concentration and thus to inhibit inversion thereof. Each buried bit line is formed in a trench in the semiconductor substrate. Each trench houses a separate bit line and is lined with an electrical insulator and has a conductor in a bottom portion thereof.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: June 28, 2005
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Jack A. Mandelman, Gerhard Kunkel
  • Patent number: 6885044
    Abstract: In a nonvolatile memory array in which each cell (110) has two floating gates (160), for any two consecutive memory cells, one source/drain region (174) of one of the cells and one source/drain region of the other one of the cells are provided by a contiguous region of the appropriate conductivity type (e.g. N type) formed in a semiconductor substrate (120). Each such contiguous region provides source/drain regions to only two of the memory cells in that column. The bitlines (180) overlie the semiconductor substrate in which the source/drain regions are formed. The bitlines are connected to the source/drain regions.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: April 26, 2005
    Assignee: ProMOS Technologies, Inc.
    Inventor: Yi Ding
  • Patent number: 6872627
    Abstract: A new processing sequence is provided for the creation of a metal gate electrode. At least two polysilicon gate electrodes are provided over the surface of a substrate, these polysilicon gate electrodes having a relatively thick layer of gate dielectric making these polysilicon gate electrodes suitable for high-voltage applications. The two polysilicon gate electrodes are divided into a first and a second gate electrode, both gate electrodes are imbedded in a layer of Intra Metal Dielectric (IMD). The first gate electrode is removed by applying a lift-off process to this first gate electrode, creating an opening in the layer of IMD. The second gate structure is shielded by a photoresist mask during the removal of the first gate electrode. A metal gate electrode is created in the opening created in the layer of IMD, using a thin layer of gate dielectric.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: March 29, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Sheng Hsiung Chen, Minghsing Tsai
  • Patent number: 6861691
    Abstract: A memory cell includes a bit line contact feature that is characterized by a contact hole bounded by insulating side walls including first and second pairs of opposing insulating side walls. The first pair of opposing insulating side walls comprises respective layers of insulating spacer material formed over a conductive line. The second pair of opposing insulating side walls comprises respective layers of insulating material formed between respective contact holes. The contact hole is filled to an uppermost extent of the insulating side walls with a conductively doped polysilicon plug defining a substantially convex upper plug surface profile. The contact hole may define either a bitline contact or a storage node contact.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: March 1, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Luan Tran
  • Patent number: 6838722
    Abstract: In a trench-gated MIS device contact is made to the gate within the trench, thereby eliminating the need to have the gate material, typically polysilicon, extend outside of the trench. This avoids the problem of stress at the upper corners of the trench. Contact between the gate metal and the polysilicon is normally made in a gate metal region that is outside the active region of the device. Various configurations for making the contact between the gate metal and the polysilicon are described, including embodiments wherein the trench is widened in the area of contact. Since the polysilicon is etched back below the top surface of the silicon throughout the device, there is normally no need for a polysilicon mask, thereby saving fabrication costs.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: January 4, 2005
    Assignee: Siliconix Incorporated
    Inventors: Anup Bhalla, Dorman Pitzer, Jacek Korec, Xiaorong Shi, Sik Lui
  • Patent number: 6794698
    Abstract: A DRAM cell capacitor is described. Capacitor formation and cell isolation methods are integrated by using existing isolation trench sidewalls to form DRAM capacitors. A doped silicon substrate adjacent to the vertical sidewalls of the isolation trench provides one DRAM cell capacitor plate. The DRAM capacitor also contains a dielectric material that partially covers the interior vertical sidewalls of the isolation trench. A conductive layer covering the dielectric material on the vertical sidewalls of the isolation trench forms the second capacitor plate and completes the DRAM capacitor.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: September 21, 2004
    Assignee: LSI Logic Corporation
    Inventors: Dung-Ching Perng, Yauh-Ching Liu
  • Patent number: 6791132
    Abstract: In a semiconductor memory device which is intended to have a smaller sense amplifier forming area to match with small-sized bit lines, first bit lines BL (e.g., BL2a) are formed on a first layer, and lines M2 (e.g., M2a) are formed on a second layer and connected to the first bit lines in a first connecting area located between a first memory cell area and a sense amplifier area. Second bit lines BL (e.g., BL1c) are formed on the first layer, and lines M2 (e.g., M2c) are formed on the second layer and connected to the second bit lines in a second connecting area located between a second memory cell area and the sense amplifier area. As a result, the lines M2 on the second layer can have a smaller line interval.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoshi Nakai, Hidetoshi Iwai
  • Patent number: 6791200
    Abstract: An SRAM includes a plurality of memory cells which are arranged in an extension direction of bit lines, each of which has a long edge and a short edge, an extension direction of the short edge being equal to the extension direction of the bit lines. A distance between polysilicon wirings which are formed in one of the memory cells and which become gates of NMOS transistors arranged in the extension direction of the bit lines, respectively, differs from a distance between the polysilicon wiring and the polysilicon wiring which becomes a gate of an NMOS transistor formed in the other memory cell.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 14, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Koji Nii
  • Patent number: 6784474
    Abstract: A memory cell in a DRAM, which is a semiconductor memory device, is provided with a bit line 21a connected to a bit line plug 20b and a local interconnect 21b, over a first interlevel insulating film 18. A conductor sidewall 40 of TiAlN is formed on side faces of hard mask 37, upper barrier metal 36, Pt film 35 and BST film 34. No contact hole is provided on the Pt film 35 constituting an upper electrode 35a. The upper electrode 35a is connected to an upper interconnect (a Cu interconnect 42) via the conductor sidewall 40, dummy lower electrode 33b, dummy cell plug 30 and local interconnect 21b. The Pt film 35 is not exposed to a reducing atmosphere, and therefore deterioration in characteristics of the capacitive insulating film 34a can be prevented.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: August 31, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisashi Ogawa, Yoshihiro Mori, Akihiko Tsuzumitani
  • Patent number: 6744089
    Abstract: A self-aligned lateral-transistor DRAM cell structure is disclosed by the present invention, in which a trench structure comprises a trench region and a trench-isolation region being formed in a side portion of the trench region and a self-aligned lateral-transistor structure comprises a merged common-source diffusion region, a self-aligned gate-stack region, and a self-aligned common-drain diffusion region being formed in another side portion of the trench region by using spacer-formation techniques. The unit cell size of the self-aligned lateral-transistor DRAM cell structure can be fabricated to be equal to 6 F2 or smaller. The self-aligned lateral-transistor DRAM cell structure is used to implement two contactless DRAM arrays for high-speed read and write operations.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 1, 2004
    Assignee: Intelligent Sources Development Corp.
    Inventor: Ching-Yuan Wu
  • Patent number: 6740555
    Abstract: A method for forming substantially uniformly thick, thermally grown, silicon dioxide material on a silicon body independent of axis. A trench is formed in a surface of the silicon body, such trench having sidewalls disposed in different crystallographic planes, one of such planes being the <100> crystallographic plane and another one of such planes being the <110> plane. A substantially uniform layer of silicon nitride is formed on the sidewalls. The trench, with the substantially uniform layer of silicon nitride, is subjected to a silicon oxidation environment with sidewalls in the <110> plane being oxidized at a higher rate than sidewalls in the <100> plane producing silicon dioxide on the silicon nitride layer having thickness over the <110> plane greater than over the <100> plane.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 25, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Helmut Horst Tews, Alexander Michaelis, Stephan Kudelka, Uwe Schroeder, Raj Jammy, Ulrike Gruening
  • Patent number: 6740918
    Abstract: The invention provides a semiconductor memory device having a trench part serving as an isolation area formed on semiconductor substrate, control gate used for controlling write-operation and read-operation formed orthogonally to the trench part, a source line of a first diffused layer formed on the surface of the trench part along one of the longitudinal sides of the control gate, and on the semiconductor substrate between the neighboring trench parts, silicide layer formed over the surface of the source line, and a drain of a second diffused layer formed between the trench parts in the other of the longitudinal sides.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: May 25, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Makoto Ooi
  • Patent number: 6727541
    Abstract: A semiconductor memory device having a trench capacitor, comprising: a semiconductor substrate of a fist conductivity type, having a trench which is formed from an upper surface of the semiconductor substrate to a predetermined depth; a capacitor formed in a lower portion of the trench and the semiconductor substrate of the fist conductivity type which is adjacent to the lower portion of the trench; a first conductive layer formed in the first trench and right above the first capacitor to which the first conductive layer is electrically connected; a first insulation film formed in the trench and right above the first conductive layer; a first diffusion layer formed in the semiconductor substrate of the fist conductivity type which is adjacent to the first conductive layer and the first insulation film, the first diffusion layer served as a source/drain electrode; a gate insulation film formed on a predetermined portion of the trench, the predetermined portion being located above the first insulation film; a s
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: April 27, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenichi Nishikawa
  • Patent number: 6707092
    Abstract: In a semiconductor memory including a dynamic random access memory, a memory cell of the dynamic random access memory includes: a semiconductor pillar (a silicon pillar); a capacitor in which one side of the silicon pillar is used as a charge accumulation electrode; and a longitudinal insulated gate static induction transistor in which the other side of the silicon pillar is used as an active region (a source region, a channel formation region and a drain region), and a bit line is connected to the silicon pillar.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: March 16, 2004
    Inventor: Masayoshi Sasaki
  • Patent number: 6700150
    Abstract: A self-aligned vertical transistor DRAM structure comprising a self-aligned trench structure and a self-aligned common-drain structure are disclosed by the present invention, in which the self-aligned trench structure comprises a deep-trench capacitor region having a vertical transistor and a second-type shallow-trench-isolation region being defined by a spacer technique and the self-aligned common-drain structure comprises a common-drain region being defined by another spacer technique. The self-aligned vertical transistor DRAM structure is used to implement two contactless DRAM arrays. A first-type contactless DRAM array comprises a plurality of metal bit-lines integrated with planarized common-drain conductive islands and a plurality of highly conductive word-lines. A second-type contactless DRAM array comprises a plurality of metal word-lines integrated with planarized common-gate conductive islands and a plurality of common-drain conductive bit-lines.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Intelligent Sources Development Corp.
    Inventor: Ching-Yuan Wu
  • Patent number: 6677630
    Abstract: First and second semiconductor regions are formed separately from each other in a semiconductor substrate. A gate electrode is formed above the semiconductor substrate which lies between the first and second semiconductor regions. An interlayer insulating film is formed on the semiconductor substrate to cover the first and second semiconductor regions and the gate electrode. First and second lower electrodes are formed on the interlayer insulating film. A first contact plug is formed in the interlayer insulating film in contact with the first lower electrode. A second contact plug is formed in the interlayer insulating film in contact with the second lower electrode. A first ferroelectric film is formed on the first lower electrode. A first upper electrode is formed on the first ferroelectric film. A second ferroelectric film is formed on the second lower electrode. A second upper electrode is formed on the second ferroelectric film.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: January 13, 2004
    Assignees: Kabushiki Kaisha Toshiba, Infineon Technologies, AG
    Inventors: HIroyuki Kanaya, Andreas Hilliger
  • Patent number: 6649959
    Abstract: A method of forming a semiconductor device, includes forming at least one conductive island having a predetermined sidewall angle in a conductive substrate, forming a dielectric material over the at least one island, forming a conductive material over the dielectric material, and forming a contact to the conductive material and the at least one island.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: November 18, 2003
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Li-Kong Wang
  • Patent number: 6624460
    Abstract: A memory device and a method for fabricating the same are described. The memory device includes a substrate, buried bit lines, word line structures, a dielectric layer, conductive lines in trenches and self-aligned contacts. The buried bit lines are located in the substrate, and the word line structures are disposed on the substrate crossing over the buried bit lines. Each word line structure consists of a word line, a gate oxide layer, a capping layer and a spacer. Each conductive line is disposed in the dielectric layer and over a buried bit line, and crosses over the capping layers. The dielectric layer is disposed between the word line structures and between the conductive lines. Each self-aligned contact is disposed under a conductive line and between two adjacent word lines to electrically connect the conductive line and the corresponding buried bit line.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: September 23, 2003
    Assignee: Macronix International Co., Ltd.
    Inventors: Weng-Hsing Huang, Kent Kuohua Chang
  • Patent number: 6621129
    Abstract: A MROM memory cell structure for storing multi level bit information is disclosed. First of all, a substrate is provided. The substrate has first and second trenches therein, wherein the first trench is deeper than second trench. A conformnal dielectric layer formed on sidewall and bottom of the first and second trenches. A conductive layer filled in the first and second trenches and on the substrate. A first doped region is formed under the first trench. A second doped region is formed under the second trench. A third doped region is formed in surface of the substrate and between the first and second trenches.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: September 16, 2003
    Assignee: Macronix International Co., Ltd.
    Inventors: Chun-Jung Lin, Ful-Long Ni, Chang-Ju Chen
  • Patent number: 6608342
    Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 19, 2003
    Assignee: Micron Technology, Inc.
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez, Er-Xuan Ping
  • Publication number: 20030132438
    Abstract: A structure and a manufacture method of a DRAM device with deep trench capacitors are described. Each capacitor has a collar oxide layer with different height for electrical isolation and leakage reduction. Further, the DRAM device has strip-type active areas to improve some optical errors and thus reduce sufficiently the contact resistance of a buried strap film of a capacitor.
    Type: Application
    Filed: January 14, 2002
    Publication date: July 17, 2003
    Applicant: WINBOND ELECTRONICS CORPORATION
    Inventor: Wen-Yueh Jang
  • Publication number: 20030107069
    Abstract: Each of a plurality of repeating units comprises a plurality of memory cells. A second-conductivity-type well is formed in a surface layer of a semiconductor substrate extending over the plurality of the repeating units. In the second-conductivity-type well, first-conductivity-type channel MOS transistors of the plurality of the repeating units are provided. A second-conductivity-type well tap region is formed in one of the memory cells in each repeating unit and in the second-conductivity-type well. In the memory cell provided with the second-conductivity-type well tap region or in the memory cell adjacent thereto, an interlayer connection member is provided. The interlayer connection member is connected to the source region of one of the first-conductivity-type channel MOS transistors and to the corresponding second-conductivity-type well tap region.
    Type: Application
    Filed: March 25, 2002
    Publication date: June 12, 2003
    Applicant: Fujitsu Limited
    Inventor: Yoshihiro Takao
  • Patent number: 6569727
    Abstract: A 16 megabit (224) or greater density single deposition layer metal Dynamic Random Access Memory (DRAM) part is described which allows for a die that fits within an industry-standard 300 ml wide SOJ (Small Outline J-wing) package or a TSOP (Thin, Small Outline Package) with little or no speed loss over previous double metal deposition layered 16 megabit DRAM designs. This is accomplished using a die architecture which allows for a single metal layer signal path, together with the novel use of a lead frame to remove a substantial portion of the power busing from the die, allowing for a smaller, speed-optimized DRAM. The use of a single deposition layer metal results in lower production costs, and shorter production time.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: May 27, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L. Casper, Timothy J. Allen, D. Mark Durcan, Brian M. Shirley, Howard E. Rhodes
  • Patent number: 6570207
    Abstract: An integrated circuit chip is provided having both a conventional DRAM vertical transfer device and an integrated vertical storage capacitor or anti-fuse that can be accessed directly without having to turn on a transfer gate. The mechanism for accessing the integrated capacitor or anti-fuse directly can be a modified doping profile within the vertical cell that provides a low resistance punch-through FET. Alternatively, the mechanism can be a pair of overlapping or nearly overlapping diffusions within the vertical cell.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: May 27, 2003
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Jack A. Mandelman, Carl J. Radens, William R. Tonti
  • Patent number: 6551846
    Abstract: A test signal generating circuit generates internal test control signals from a small number of signals supplied via an address terminal in a test mode operation. According to the test control signals, the values of internal row address signal bits from an address buffer are set, while a row-related control circuit with test control function controls operations of a row selection circuit and bit line peripheral circuitry according to the test control signals. A plurality of word lines are driven simultaneously into a selected state and an acceleration test is performed according to a small number of control signals in a short period of time. Voltage stress applied between memory cell capacitors and between word lines can be accelerated with a small number of control signals.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: April 22, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kiyohiro Furutani, Mikio Asakura, Tetsuo Katoh
  • Patent number: 6545310
    Abstract: A first plurality of memory cells (32, 33) connected in series lies within a first well (47) that is separated and electrically isolated (42) from a second plurality of memory cells (36 et al.) connected in series lying within a second well (46). In one embodiment, the first and second wells (46, 47) are doped p-type and are contained within an n-well (48) and a substrate (49). Applying a negative voltage to its corresponding bit line and a positive voltage to its corresponding word line programs a predetermined memory cell within the first plurality. A lesser positive voltage than that applied to the predetermined memory cell's word line is applied to all other bit lines and word lines of non-selected memory cells. By utilizing a negative voltage while programming a memory cell, the magnitude of programming voltages is reduced, thereby, removing the need for an elaborate charge pump to generate a much higher programming voltage.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: April 8, 2003
    Assignee: Motorola, Inc.
    Inventors: Chi Nan Brian Li, Kuo-Tung Chang
  • Patent number: 6518612
    Abstract: A semiconductor device for use in a memory cell including an active matrix provided with a silicon substrate, at least one transistor formed on the silicon substrate, a number of bottom electrodes formed over the transistors, a plurality of conductive plugs to electrically connect the bottom electrodes to the transistors, respectively, and an insulating layer formed around the conductive plugs. In the device, by carrying out a carbon treatment to top surface portions of the bottom electrode structure, it is possible to secure enough space to prevent the formation of bridges between the bottom electrodes.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: February 11, 2003
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Se-Min Lee, Dong-Hwan Kim, Keun-Il Lee
  • Patent number: 6518589
    Abstract: An electronic device includes a FET that is capable of operating in a negative differential resistance mode as well as in a conventional FET mode. The selection of the mode can be accomplished by providing a control signal to a body terminal of the FET as needed for a particular application. By providing two different operating modes a multi-function logic gate is effectuated that can perform two or more different logical functions on an input signal. Furthermore the device can be used as an element of a new logic family and synthesized into suitable configurations so that more sophisticated and complex functions are achieved with increased density, lower power, etc. over conventional semiconductor FETs.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 11, 2003
    Assignee: Progressant Technologies, Inc.
    Inventor: Tsu-Jae King
  • Patent number: 6512276
    Abstract: In a mask ROM, bit lines 1 composed of a diffused region formed in a semiconductor substrate are formed in such a zigzag pattern that in a region where each of the bit lines overlaps word lines 2 formed of a patterned conductive film formed on an oxide film covering the diffused region of the bit lines 1, the bit line is perpendicular to the word lines, and in a region where each of the bit lines does not overlap the word lines, the bit line has a predetermined angle to the word lines, with the result that channel regions of memory cell transistors are located in a checker pattern. Thus, it is possible to minimize influence of a code ion implanted impurity diffused region 3A to a low-threshold memory cell transistor C.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 28, 2003
    Assignee: NEC Corporation
    Inventor: Takao Tanaka
  • Patent number: 6476489
    Abstract: A semiconductor device adopting an interlayer contact structure between upper and lower conductive layers and a method of manufacturing the semiconductor device adopting the structure are provided. The lower conductive layer includes a first conductive layer and a first silicide layer stacked together. The upper conductive layer includes a second conductive layer doped with impurities and a second silicide layer stacked together. In the interlayer contact structure, the first and second conductive layers are in direct contact with each other. This decreases the contact resistance between the two conductive layers and improves the electrical properties of the device.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 5, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-young Yoo, Dae-hong Ko, Nae-in Lee, Young-wook Park
  • Publication number: 20020145917
    Abstract: An apparatus and method of operating an open digit line and a folded digit line DRAM memory array having a plurality of memory cells wherein, in a plan view, each memory cell, in one embodiment, has an area of 6F2. One method comprises, storing a first bit in a first memory cell and storing a second bit that is complementary to the first bit in a second memory cell. The first bit and the second bit form a data bit. The data bit is read by comparing a voltage difference between the first memory cell and the second memory cell.
    Type: Application
    Filed: April 9, 2001
    Publication date: October 10, 2002
    Applicant: Micron Technology, Inc.
    Inventor: David L. Pinney
  • Patent number: 6459610
    Abstract: The invention includes several aspects related to semiconductor-on-insulator transistors, to memory and other DRAM circuitry and arrays, to transistor gate arrays, and to methods of fabricating such constructions. In one aspect, a semiconductor-on-insulator transistor includes, a) an insulator layer; b) a layer of semiconductor material over the insulator layer; c) a transistor gate provided within the semiconductor material layer; and d) an outer elevation source/drain diffusion region and an inner elevation diffusion region provided within the semiconductor material layer in operable proximity to the transistor gate. In another aspect, DRAM circuitry includes a plurality of memory cells not requiring sequential access, at least a portion of the plurality having more than two memory cells for a single bit line contact.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Patent number: 6452269
    Abstract: A semiconductor integrated circuit according to the present invention comprises a memory array, an input circuit for writing data in the memory array and reading data from the memory array, an output circuit and a package, including 100 pins, storing the memory array, the input circuit and the output circuit. A fourth pin, an eleventh pin, a twentieth pin, a twenty-seventh pin, a fifty-fourth pin, a sixty-first pin, a seventieth pin and a seventy-seventh pin are supplied with the same voltage. The input circuit and the output circuit receive a power supply voltage from different ones of these pins. Thus, a semiconductor integrated circuit resistant against noise and capable of responding to a high operating frequency is provided.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: September 17, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeki Ohbayashi
  • Publication number: 20020109173
    Abstract: A folded bit line DRAM device is provided. The folded bit line DRAM device includes an array of memory cells. Each memory cell in the array of memory cells includes a pillar extending outwardly from a semiconductor substrate. Each pillar includes a single crystalline first contact layer and a single crystalline second contact layer separated by an oxide layer. A single crystalline vertical transistor is formed along alternating sides of the pillar within a row of pillars. The single crystalline vertical transistor includes an ultra thin single crystalline vertical first source/drain region coupled to the first contact layer, an ultra thin single crystalline vertical second source/drain region coupled to the second contact layer, and an ultra thin single crystalline vertical body region which opposes the oxide layer and couples the first and the second source/drain regions.
    Type: Application
    Filed: February 9, 2001
    Publication date: August 15, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 6410955
    Abstract: A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: June 25, 2002
    Assignee: Micron Technology, Inc.
    Inventors: R. Jacob Baker, Kurt D. Beigel
  • Patent number: 6380576
    Abstract: A memory cell is defined along first, second, and third orthogonal dimensions and comprises an electrically conductive word line, an electrically conductive bit line, an electrical charge storage structure, a transistor structure, and a bit line contact. The charge storage structure is conductively coupled to the bit line via the transistor structure and the bit line contact. The transistor structure is conductively coupled to the word line. The first dimension is characterized by one-half of a bit line contact feature, one word line feature, one word line space feature, and one-half of a field poly line feature. The second dimension is characterized by two one-half field oxide features and one active area feature. The first and second dimensions define a 6F2 memory cell. The bit line contact feature is characterized by a contact hole bounded by insulating side walls.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: April 30, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Luan Tran
  • Patent number: 6372639
    Abstract: A workpiece and method are provided for forming N polysilicon interconnects coupled to N contact openings in a semiconductor device. The workpiece includes an active area and N potential contact openings covered with a dielectric layer, a first through hole etched in the dielectric layer to expose substantially all of the workpiece corresponding to the active area to thereby expose the N contact openings, a monolithic polysilicon plug deposited in the first through hole, and N−1 second through holes etched in the polysilicon plug and disposed between the N contact openings to thereby divide the polysilicon plug into the N polysilicon interconnects, where N is an integer greater than or equal to 2. According to one aspect of the invention, the workpiece includes N−1 conductors traversing the active area, the N contact openings are disposed adjacent to the N−1 conductors, and each of the N contact openings is separated from the other contact openings by one of the N−1 conductors.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventor: William Stanton
  • Patent number: 6362043
    Abstract: An integrated circuit comprising stacked capacitor memory cells having sub-lithographic, edge-defined word lines and a method for forming such an integrated circuit. The method forms conductors adjacent to sub-lithographic word lines in order to couple a stacked capacitor to the access transistor of the memory cell. The conductors are bounded by the word lines. The bit line and capacitor are formed with a single mask image in such a manner as to self-align the bit line and the capacitor and to maximize the capacitance of the memory device. The method may be used to couple any suitable circuit element to a semiconductor device in an integrated circuit having edge-defined, sub-lithographic word lines.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: March 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6355985
    Abstract: The present invention includes integrated circuit devices, synchronous-link dynamic random access memory devices, methods of forming an integrated circuit device and methods of forming a synchronous-link dynamic random access memory edge-mounted device. According to one aspect of the present invention, an integrated circuit device includes a semiconductor die and a first housing encapsulating the semiconductor die. A heat sink is positioned proximate the first housing and a second housing is formed to encapsulate at least a portion of the heat sink. The heat sink is preferably thermally coupled with the semiconductor die and configured to expel heat therefrom. Another aspect provides a method of forming an integrated circuit device including the steps of providing a semiconductor die; forming a first housing about the semiconductor die; thermally coupling a heat sink with the first housing; and forming a second housing about at least a portion of the heat sink following the thermally coupling.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: March 12, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Joseph M. Brand
  • Patent number: 6355954
    Abstract: A method for fabricating a bit line junction in a DRAM array device which improves the doping profile in the channel region. The method includes contradoping via ion implantation through the bit line contact opening made in the device during processing. This particular doping method increases the concentration of dopants in the channel region on the bit line side of the array, without a corresponding increase of dopants on the buried strap side. Such a doping profile results in an improvement in the off current behavior of the device. Depending on the aspect ratio of the contact opening, tilt angles for the ion implantation are possible and can be adjusted for maximum off current efficiency.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: March 12, 2002
    Assignee: Siemens Aktiengesellscahft
    Inventors: Martin Gall, Johann Alsmeier
  • Publication number: 20020014645
    Abstract: A method of operating a semiconductor memory device capable of writing or reading in parallel a plurality of memory transistors connected to a word line in a memory cell array including a plurality of memory cells each having, alternately provided in a word line direction, an active region (channel forming region) comprised of a first conductivity type semiconductor and impurity regions comprised of a second conductivity type semiconductor shared by adjacent memory cells, for example, a VG type memory cell array, comprising driving the control gates capacitively coupled with the borders of the active regions with impurity regions and electrically isolated from the word lines to electrically divide the physical memory cell array into n number of memory cell arrays and driving the impurity regions and word lines in the same memory cell array to operate in parallel the plurality of memory cells connected to the same word line out of the cell columns.
    Type: Application
    Filed: June 8, 2001
    Publication date: February 7, 2002
    Inventor: Toshio Kobayashi
  • Patent number: 6342420
    Abstract: An apparatus and method for fabrication a hexagonally symmetric cell, (e.g., a dynamic random access memory cell (100)). The cell can comprise a bitline contact (38), storage node contacts (32) hexagonally surrounding the bitline contact (38), storage nodes (36) also surrounding the bitline contact (38), a wordline (30) portions of which form field effect transistor gates. Large distances between bitline contacts (38) and storage node contact (32) cause large problems during photolithography because dark areas are difficult to achieve when using Levenson Phaseshift. Because Levenson Phaseshift depends on wave cancellations between nearby features, commonly known as destructive interferences, the resultant printability of the pattern is largely a function of the symmetry and separation distances. When non-symmetries in the pattern occur, the result is weaker cancellations of fields (i.e. between features) and a large loss of image contrast and depth of focus during the printing step.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: January 29, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Akitoshi Nishimura, Yasutoshi Okuno, Rajesh Khamankar, Shane R. Palmer
  • Publication number: 20010054729
    Abstract: A memory device structure is provided in which the array oxide layer has a thickness that is greater than the thickness of the support oxide layer.
    Type: Application
    Filed: July 27, 2001
    Publication date: December 27, 2001
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ramachandra Divakaruni, James William Adkisson, Mary Elizabeth Weybright, Scott Halle, Jeffrey Peter Gambino, Heon Lee