Including Only Thin Film Solar Cells Deposited On A Substrate (epo) Patents (Class 257/E27.125)
  • Patent number: 11978816
    Abstract: Object of the invention is to provide a new thin film device comprising at least one thin film cell, wherein the thin film cell comprises a first electrode, a photoactive layer and a second electrode, wherein the photoactive layer is arranged between the first and the second electrode, wherein at least one additional conductive line is arranged within an active area of the thin film cell and included in the photoactive layer and electrically interconnected with the first electrode and electrically insulated from the second electrode. Furthermore, the invention provides a method of forming a thin film device comprising at least one thin film cell, wherein the thin film cell comprises a first electrode, a photoactive layer and a second electrode and the photoactive layer is arranged between the first and the second electrode.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 7, 2024
    Assignees: China Triumph International Engineering Co., Ltd., CTF Solar GmbH
    Inventors: Shou Peng, Michael Harr, Xinjian Yin, Ganhua Fu, Krishnakumar Velappan, Bastian Siepchen
  • Patent number: 11929382
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor layer having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor layer and positioned to interact with electromagnetic radiation. The textured region can be formed from a series of shallow trench isolation features.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: March 12, 2024
    Assignee: SIONYX, INC.
    Inventors: Homayoon Haddad, Jutao Jiang
  • Patent number: 11695086
    Abstract: Solar devices and methods for producing solar devices are disclosed. In some examples, a solar device includes solar cells arranged in a shingled manner such that adjacent long edges of adjacent ones of the solar cells overlap. The adjacent long edges have a non-linear shape that has protruding portions. The solar device includes contact pads arranged in the protruding portions of the adjacent long edges such that the contact pads of the adjacent ones of the solar cells are electrically connected.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: July 4, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Nathaniel Alexis Caswell, Maritza Ruiz, Tamir Lance, Nathan Beckett, David DeGraaff
  • Patent number: 11604323
    Abstract: An optical fiber includes an optical fiber core for high-power laser transmission, an optical cladding disposed radially around the optical fiber core, and at least one harvesting cell disposed axially along the optical fiber core, the harvesting cell including an anode surrounding the optical cladding, a photovoltaic layer having a polymer-based photovoltaic material disposed radially around and electrically connected to the anode, and a cathode disposed radially around the photovoltaic layer and electrically connected to the photovoltaic layer.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: March 14, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventor: Damian Pablo San Roman Alerigi
  • Patent number: 11575096
    Abstract: Visually undistorted thin film electronic devices are provided. In one embodiment, a method for producing a thin-film electronic device comprises: opening a scribe in a stack of thin film material layers deposited on a substrate to define an active region and an inactive region of the thin-film electronic device, the stack comprising at least one active semiconductor layer. The active region comprises a non-scribed area of the stack and the inactive region comprises a region of the stack where thin film material was removed by the scribe. The method further comprises depositing at least one scribe fill material into a gap opened by the scribe. The scribe fill material has embedded therein one or more coloring elements that alter an optical characteristics spectrum of the inactive region to obtain an optical characteristics spectrum of the active region within a minimum perceptible difference for an industry defined standard observer.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 7, 2023
    Assignees: SolarWindow Technologies, Inc., Alliance for Sustainable Energy, LLC
    Inventors: Scott R. Hammond, Marinus Franciscus Antonius Maria van Hest, John A. Conklin
  • Patent number: 11489081
    Abstract: A photoelectric conversion device includes: a substrate; a first photoelectric conversion element including a first substrate electrode, a first photoelectric conversion layer, and a first counter electrode; a second photoelectric conversion element including a second substrate electrode, a second photoelectric conversion layer, and a second counter electrode; and a connection including a groove, a conductive portion and a conductive layer, the conductive portion being provided in the groove and including a part of the first counter electrode, and the conductive portion and the conductive layer electrically connecting the first counter electrode and the second substrate electrode. The conductive layer overlaps the first counter electrode on an edge of the groove, and a total thickness of the conductive portion and the conductive layer is larger than a thickness of the first counter electrode.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 1, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Akio Amano, Kenji Todori, Kenji Fujinaga
  • Patent number: 11457514
    Abstract: A resin window capable of preventing breakage of defogger wires, and a method for producing the same. The resin window includes a plate-like resin glass extending from one end side to the other end side and having a curved portion formed thereon in the extending direction of the resin glass, and a film disposed so as to follow the shape of the resin glass and having a defogger wire extending in the extending direction of the resin glass. When seen in the direction normal to the resin glass, the defogger wire has a wave-shaped portion in at least a portion at a position corresponding to the curved portion.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: September 27, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TSUCHIYA CO., LTD.
    Inventors: Nobutaka Honma, Ai Nishida, Kazuhiro Yoshida
  • Patent number: 11431282
    Abstract: One embodiment can provide a solar roof tile. The solar roof tile can include a front cover, a back cover, one or more photovoltaic structures positioned between the front cover and the back cover, and an optical filter positioned between the front cover and the photovoltaic structures. The optical filter is configured to block light within a predetermined spectral range, thereby preventing the light from reflecting off surfaces of the photovoltaic structures to exit the solar roof tile.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: August 30, 2022
    Assignee: Tesla, Inc.
    Inventors: Ollivier J. Lefevre, John Liu
  • Patent number: 11431279
    Abstract: One embodiment can provide a photovoltaic roof tile. The photovoltaic roof tile can include a transparent front cover, a back cover, a plurality of photovoltaic structures positioned between the front cover and the back cover, and a front-cover-colorant layer positioned on an interior surface of the transparent front cover that faces a top surface of the photovoltaic structures. A color of the front-cover-colorant layer can substantially match a color of the top surface of the photovoltaic structures, and the front-cover-colorant layer can be configured to cover regions of the interior surface that are not directly above the top surface of the photovoltaic structures, thereby enabling a substantially uniform appearance of the photovoltaic roof tile.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: August 30, 2022
    Assignee: Tesla, Inc.
    Inventors: Carl Peterson, John Liu, Milan Padilla
  • Patent number: 11302837
    Abstract: A solar cell panel can include solar cell parts including a solar cell and a wiring member connected to the solar cell; a first cover member disposed at a front surface of the solar cell; a second cover member disposed at a rear surface of the solar cell; a sealing member disposed between the first cover member and the second cover member, the sealing member surrounding the solar cell parts; and one or more of a plurality of fixing members including at least one of a first fixing member and a second fixing member, in which the first fixing member is disposed at a rear surface of the first cover member and fixes at least part of one of the solar cell parts to the first cover member, and the second fixing member fixes the second cover member to the first cover member.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: April 12, 2022
    Assignee: LG ELECTRONICS INC.
    Inventors: Jungguen Kim, Jangyong Kim, Yong Song, Junghwan Yeom, Jeonghun Woo, Joonho Jeon, Youngbok Jung, Yoonsuk Choi, Eonjoo Hwang
  • Patent number: 11037963
    Abstract: A thin film transistor and a method for manufacturing the same, and a display device including the same are disclosed, in which a P type semiconductor characteristic is realized using an active layer that includes a Sn based oxide. The thin film transistor comprises an active layer that includes an Sn(II)O based oxide; a metal oxide layer being in contact with one surface of the active layer; a gate electrode overlapped with the active layer; a gate insulating film provided between the gate electrode and the active layer; a source electrode being in contact with a first side of the active layer; and a drain electrode being in contact with a second side of the active layer.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: June 15, 2021
    Assignee: LG DISPLAY CO., LTD.
    Inventor: HyungJoon Koo
  • Patent number: 10988384
    Abstract: In order to attain an object to achieve a graphite sheet processed product which is made of high quality graphite and which has a smooth cut surface even after being subjected to a cut process, a graphite sheet processed product of the present invention has a thickness of not less than 10 nm and not more than 20 ?m, has a cross-sectional area 90% or more of which is occupied by graphite layers each extending continuously or discontinuously in a horizontal direction, the cross-sectional area being observed with use of a scanning electron microscope (SEM), includes therein graphite crystal having an average crystal grain size of not less than 0.35 ?m and not more than 25 ?m, and has, on a cut surface thereof, a burr having a size that is not more than 15% of a line width thereof, the line width being less than 400 ?m.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 27, 2021
    Assignee: KANEKA CORPORATION
    Inventors: Atsushi Tatami, Mutsuaki Murakami, Masamitsu Tachibana
  • Patent number: 9825583
    Abstract: A solar energy system for portably providing solar energy features a base unit having a base cavity located therein. A cable notch and an annular panel notch are located on a base side wall. A base first end or a base second end features an opening located therein featuring a first end cap or a second end cap located thereon. The system features power inverter located in the base cavity operatively connected to a power storage component and a solar controller. The system features a solar panel wrapped around the panel notch of the base unit. The solar panel is operatively connected to the solar controller, the power inverter, and the power storage component via cables for operation.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: November 21, 2017
    Inventor: Carl Riley
  • Patent number: 9447489
    Abstract: One aspect of the present invention includes method of making a photovoltaic device. The method includes disposing an absorber layer on a window layer, wherein the absorber layer includes a first region and a second region. The method includes disposing the first region adjacent to the window layer in a first environment including oxygen at a first partial pressure; and disposing the second region on the first region in a second environment including oxygen at a second partial pressure, wherein the first partial pressure is greater than the second partial pressure. One aspect of the present invention includes a photovoltaic device.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: September 20, 2016
    Assignee: First Solar, Inc.
    Inventors: James Neil Johnson, Bastiaan Arie Korevaar, Yu Zhao
  • Patent number: 9006851
    Abstract: A stand-alone device comprising a silicon wafer having its front surface including a first layer of a first conductivity type and a second layer of a second conductivity type forming a photovoltaic cell; first vias crossing the wafer from the rear surface of the first layer and second vias crossing the wafer from the rear surface of the second layer; metallization levels on the rear surface of the wafer, the external level of these metallization levels defining contact pads; an antenna formed in one of the metallization levels; and one or several chips assembled on said pads; the metallization levels being shaped to provide selected interconnects between the different elements of the device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 14, 2015
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
    Inventors: Christophe Regnier, Olivier Hinsinger, Daniel Gloria, Pascal Urard
  • Patent number: 8993366
    Abstract: The method of the invention includes the sequential steps of providing a plurality of solar cells, interconnecting the solar cells using one or more interconnect tabs, attaching the interconnect tabs to a top side of the solar cell to interconnect the plurality of solar cells by coupling an exposed top surface of a first solar cell to a top surface of an adjacent second solar cell, attaching one or more bypass diodes to a top side of the solar cell, then next applying an adhesive to a first film layer, placing the plurality of solar cells onto the first film layer, then next applying an adhesive to a second film layer, placing the plurality of solar cells and first film layer onto the second film layer to form a sheet assembly, and then forming the solar sheet from the sheet assembly.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 31, 2015
    Assignee: MicroLink Devices, Inc.
    Inventors: Raymond Chan, Haruki Miyamoto
  • Patent number: 8957489
    Abstract: A component assembly including a carrier element including a first contact face and a semiconductor component disposed on the carrier element, wherein the semiconductor component includes a second contact face. The component assembly further includes a contact-making bonding wire, wherein one end of the contact-making bonding wire is connected to the first contact face and a second end of the contact-making bonding wire is connected to the second contact face. The component assembly includes a flow stop bonding wire positioned on the second contact face, wherein the flow stop bonding wire defines on the second contact face a first zone and a second zone. An encapsulation material is applied from the first zone to the first contact face so as to define an encapsulation for the flow stop bonding wire, wherein the flow stop bonding wire prevents an uncontrolled flow of the encapsulation material into the second zone.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: February 17, 2015
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventor: Roman Angerer
  • Patent number: 8945978
    Abstract: A metal contact of a solar cell is formed by electroplating copper using an electroplating seed that is formed on a dielectric layer. The electroplating seed includes an aluminum layer that connects to a diffusion region of the solar cell through a contact hole in the dielectric layer. A nickel layer is formed on the aluminum layer, with the nickel layer-aluminum layer stack forming the electroplating seed. The copper is electroplated in a copper plating bath that has methanesulfonic acid instead of sulfuric acid as the supporting electrolyte.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 3, 2015
    Assignee: SunPower Corporation
    Inventor: Joseph Frederick Behnke
  • Patent number: 8916905
    Abstract: It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency that improves reliability by increasing contact force between a light absorbing layer and an electrode layer. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer contains a compound semiconductor. The light absorbing layer comprises a first layer close to the electrode layer and a second layer located on the first layer. The first layer has a void ratio lower than that of the second layer.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 23, 2014
    Assignee: KYOCERA Corporation
    Inventors: Shintaro Kubo, Shuji Nakazawa, Rui Kamada, Seiji Oguri, Shinnosuke Ushio, Shuichi Kasai, Seiichiro Inai
  • Patent number: 8883545
    Abstract: The invention relates to the production of solar panels which comprise solar cells connected to one another. In this case, various layers are stacked onto one another, such as a film layer, bonding agent, insulating film, solar cells and a support layer. Combining all these layers to form the final panel is carried out on a carrier which stabilizes and supports the stack while it is conveyed past the various treatment stations. The turning over of the stack can also be carried out in a reliable manner by means of such a carrier without shifts between the various components with respect to one another occurring.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: November 11, 2014
    Assignee: Eurotron B.V.
    Inventors: Jan Bakker, Abraham Jan Verschoor, Simon Den Hartigh
  • Patent number: 8859346
    Abstract: A method for manufacturing array substrate with embedded photovoltaic cell includes: providing a substrate; forming a buffer layer on the substrate; forming an amorphous silicon layer on the buffer layer; converting the amorphous silicon layer into a polysilicon layer; forming a pattern on the polysilicon layer; forming a first photoresist pattern on the polysilicon layer and injecting N+ ions; forming a gate insulation layer on the polysilicon layer; forming a second photoresist pattern on the gate insulation layer and injecting N? ions; forming a third photoresist pattern on the gate insulation layer and injecting P+ ions; forming a metal layer on the gate insulation layer so as to form a gate terminal; forming a hydrogenated insulation layer on the metal layer; forming a first ditch in the first insulation layer; and forming a second metal layer on the first insulation layer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Xindi Zhang
  • Patent number: 8828787
    Abstract: Processes for making a thin film solar cell on a substrate by providing a substrate coated with an electrical contact layer, depositing an ink onto the contact layer of the substrate, wherein the ink contains an alkali ion source compound suspended or dissolved in a carrier along with photovoltaic absorber precursor compounds, and heating the substrate. The alkali ion source compound can be MalkMB(ER)4 or Malk(ER). The processes can be used for CIS or CIGS.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: September 9, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, David Padowitz, Paul R. Markoff Johnson, Wayne A. Chomitz, Matthew C. Kuchta
  • Patent number: 8778723
    Abstract: The invention relates to a serial connection of thin layer solar cells. The invention provides a structuring method for creating a reliable and effective connections, preventing short-circuits and enlarging usable solar cell surfaces. The solar cells comprise a substrate, a back contact layer, an absorber layer, a buffer layer, and a transparent front contact layer. Each solar cell is subdivided by three trenches A, B, C to create a plurality of adjacent cell segments. Trenches A and B extend down to the back contact layer, trench C extends down to the substrate. Trench C is filled with electrically insulating paste and trench B is filled with electrically conducting paste. The electrically conducting paste also covers trench C. The adjacent cell segments are electrically connected. Trench A is then created and filled with electrically insulating paste.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: July 15, 2014
    Assignee: Solarion AG Photovoltaik
    Inventors: Karsten Otte, Alexander Braun, Steffen Ragnow, Andreas Rahm, Christian Scheit
  • Patent number: 8778787
    Abstract: Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: July 15, 2014
    Assignee: SunPower Corporation
    Inventor: Jane Manning
  • Patent number: 8772068
    Abstract: A method of forming contacts on a surface emitter of a silicon solar cell is provided. In the method an n-type diffusion of a surface is performed to form a doped emitter surface layer that has a sheet resistance of 10-40 ?/?. The emitter surface layer is then etched back to increase the sheet resistance of the emitter surface layer. Finally the surface is selectively plated. A method of fabrication of a silicon solar cell includes performing a front surface emitter diffusion of n-type dopant and then performing a dielectric deposition on the front surface by PECVD. The dielectric deposition comprises: a. growth of a thin silicon oxide; b. PECVD deposition of silicon nitride to achieve a silicon nitride. The silicon is then annealed to drive hydrogen from the silicon nitride layer into the silicon to passivate the silicon.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 8, 2014
    Assignee: Newsouth Innovations PTY Limited
    Inventors: Stuart Ross Wenham, Budi Santoso Tjahjono, Nicole Bianca Kuepper, Alison Joan Lennon
  • Patent number: 8753915
    Abstract: The invention relates to the production of solar panels which comprise solar cells connected to one another. In this case, various layers are stacked onto one another, such as a film layer, bonding agent, insulating film, solar cells and a support layer. Combining all these layers to form the final panel is carried out on a carrier which stabilizes and supports the stack while it is conveyed past the various treatment stations. The turning over of the stack can also be carried out in a reliable manner by means of such a carrier without shifts between the various components with respect to one another occurring.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 17, 2014
    Assignee: Eurotron B.V.
    Inventors: Jan Bakker, Abraham Jan Verschoor, Simon Den Hartigh
  • Patent number: 8729543
    Abstract: Methods and devices are provided for forming multi-nary semiconductor. In one embodiment, a method is provided comprising of depositing a precursor material onto a substrate, wherein the precursor material may include or may be used with an additive to minimize concentration of group IIIA material such as Ga in the back portion of the final semiconductor layer. The additive may be a non-copper Group IB additive in elemental or alloy form. Some embodiments may use both selenium and sulfur, forming a senary or higher semiconductor alloy.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 20, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: David B. Jackrel, Katherine Dickey, Kristin Pollock, Jacob Woodruff, Peter Stone, Gregory Brown
  • Patent number: 8691694
    Abstract: In order to better and more efficiently assemble back contact solar cells into modules, the cell to cell soldering and other soldered connections are replaced by electro and/or electroless plating. Back contact solar cells, diodes and external leads can be first laminated to the module front glass for support and stability. Conductive materials are deposited selectively to create a plating seed pattern for the entire module circuit. Subsequent plating steps create an integrated cell and module metallization. This avoids stringing and tabbing and the associated soldering steps. This process is easier for mass manufacturing and is advantageous for handling fragile silicon solar cells. Additionally, since highly corrosion resistant metals can be plated, the moisture barrier requirements of the back side materials can be greatly relaxed. This can simplify and reduce the cost of the back side of the module.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 8, 2014
    Inventor: Henry Hieslmair
  • Patent number: 8609516
    Abstract: An atmospheric pressure chemical vapor deposition method for producing an N-type semiconductive metal sulfide thin film on a heated substrate includes converting an indium-containing precursor to at least one of a liquid phase and a gaseous phase. The indium-containing precursor is mixed with an inert carrier gas stream and hydrogen sulfide in a mixing zone so as to form a mixed precursor. A substrate is heated to a temperature in a range of 100° C. to 275° C. and the mixed precursor is directed onto the substrate. The hydrogen sulfide is supplied at a rate so as to obtain an absolute concentration of hydrogen sulfide in the mixing zone of no more than 1% by volume. The In-concentration of the indium containing precursor is selected so as to produce a compact indium sulfide film.
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
    Inventors: Nicholas Allsop, Christian-Herbert Fischer, Sophie Gledhill, Martha Christina Lux-Steiner
  • Patent number: 8592249
    Abstract: A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 26, 2013
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick
  • Patent number: 8581312
    Abstract: A thin film transistor array panel includes: a substrate including a display area and a drive region in which a driving chip for transmitting a driving signal to the pixels is located; a gate line in the display area; a storage electrode line; a gate driving pad coupled to the driving chip; a gate insulating layer; a first semiconductor layer on the gate insulating layer and overlapped with a gate electrode protruding from the gate line; a second semiconductor layer formed on the gate insulating layer and overlapped with a sustain electrode protruding from the storage electrode line; a data line crossing the gate line in an insulated manner and a drain electrode separated from the data line; and a pixel electrode coupled to the drain electrode, and the drain electrode comprises a drain bar facing the source electrode, and a drain extender overlapped with the second semiconductor layer.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 12, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Young Kim, Sung-In Ro, Cheoll-Hee Jeon
  • Patent number: 8569098
    Abstract: A method for manufacturing a photoelectric conversion device including a first-conductivity-type crystalline semiconductor region, an intrinsic crystalline semiconductor region, and a second-conductivity-type semiconductor region that are stacked over an electrode is provided for a new anti-reflection structure. An interface between the electrode and the first-conductivity-type crystalline semiconductor region is flat. The intrinsic crystalline semiconductor region includes a crystalline semiconductor region, and a plurality of whiskers that are provided over the crystalline semiconductor region and include a crystalline semiconductor. The first-conductivity-type crystalline semiconductor region and the intrinsic crystalline semiconductor region are formed by a low pressure chemical vapor deposition method at a temperature higher than 550° C. and lower than 650° C.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: October 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8563347
    Abstract: A method for producing a thin-film solar cell with a cell level integrated bypass diode includes forming at least first, second and third series-connected cells on a support, each cell being a laminated structure comprising a junction layer including semiconducting material of a first and second type, a front electrode formed of a transparent conductive oxide resistant to an etchant disposed in electrical contact with the semiconducting material of the first type, and a back electrode in electrical contact with the semiconducting material of the second type. A portion of both the back electrode and the junction layer are separated from a selected parent solar cell. Using the separated portion of the back electrode the semiconducting material of the second type of the separated portion of the junction layer is connected to the semiconducting material of the first type of any one chosen solar cell in the array.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: October 22, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Meijun Lu, Lap-Tak Andrew Cheng
  • Patent number: 8519435
    Abstract: A photovoltaic cell is fabricated onto a polyimide film using an unbalanced RF magnetron sputtering process. The sputtering process includes the addition of 0.05% to 0.5% oxygen to an inert gas stream. Portions of the photovoltaic cell are exposed to an elevated temperature CdCl2 treatment which is at or below the glass transition temperature of the polyimide film.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 27, 2013
    Assignee: The University of Toledo
    Inventors: Anthony Vasko, Kristopher Wieland, James Walker, Alvin Compaan
  • Patent number: 8513104
    Abstract: A method of forming a floating junction on a substrate is disclosed. The method includes providing the substrate doped with boron atoms, the substrate comprising a front surface and a rear surface. The method also includes depositing a set of masking particles on the rear surface in a set of patterns; and heating the substrate in a baking ambient to a first temperature and for a first time period in order to create a particle masking layer. The method further includes exposing the substrate to a phosphorous deposition ambient at a second temperature and for a second time period, wherein a front surface PSG layer, a front surface phosphorous diffusion, a rear surface PSG layer, and a rear surface phosphorous diffusion are formed, and wherein a first phosphorous dopant surface concentration in the substrate proximate to the set of patterns is less than a second dopant surface concentration in the substrate not proximate to the set of patterns.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 20, 2013
    Assignee: Innovalight, Inc.
    Inventors: Malcolm Abbott, Maxim Kelman, Eric Rosenfeld, Elena Rogojina, Giuseppe Scardera
  • Patent number: 8470632
    Abstract: The present invention relates to a process for producing a doped silicon layer on a substrate, comprising the steps of (a) providing a liquid silane formulation and a substrate, (b) applying the liquid silane formulation to the substrate, (c) introducing electromagnetic and/or thermal energy to obtain an at least partly polymorphic silicon layer, (d) providing a liquid formulation which comprises at least one aluminum-containing metal complex, (e) applying this formulation to the silicon layer obtained after step (c) and then (f) heating the coating obtained after step (e) by introducing electromagnetic and/or thermal energy, which decomposes the formulation obtained after step (d) at least to metal and hydrogen, and then (g) cooling the coating obtained after step (f) to obtain an Al-doped or Al- and metal-doped silicon layer, to doped silicon layers obtainable by the process and to the use thereof for production of light-sensitive elements and electronic components.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: June 25, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Bernhard Stuetzel, Wolfgang Fahrner
  • Patent number: 8460964
    Abstract: A method for producing a thin-film solar cell with a cell level integrated bypass diode includes forming at least three series-connected solar cells, each cell being a laminated structure including semiconducting material of first and second types, a front electrode in contact with the material of the first type, and a back electrode in contact with the material of the second type. The bypass diode is formed by total separation from a selected parent cell. The material of the first type of the diode is connected to the material of the second type of any one chosen solar cell in the array. The material of the second type of the diode is connected with the material of the first type of the one chosen solar cell in the array so that the diode is connected in parallel and in opposition to the one chosen solar cell.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 11, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Meijun Lu, Lap-Tak Andrew Cheng
  • Patent number: 8455753
    Abstract: It is an object of the present invention to minimize an electrode in a solar cell to minimize the solar cell. The present invention provides a method for manufacturing a solar cell comprising the steps of forming a first electrode layer over a substrate, forming a photoelectric conversion layer over the first electrode layer, forming an organic layer over the photoelectric conversion layer, forming an opening reaching the first electrode layer in the photoelectric conversion layer, and forming a second electrode layer by filling the opening with a conductive paste, wherein the organic layer modifies the surface of the photoelectric conversion layer and a contact angle between the conductive paste and the photoelectric conversion becomes greater. According to the present invention, wettability of a photoelectric conversion layer can be decreased by forming an organic layer on a surface of the photoelectric conversion layer. Thereby an electrode layer and an insulating isolation layer can be thinned.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Tomoyuki Aoki, Toshiyuki Isa, Gen Fujii
  • Patent number: 8440492
    Abstract: An assembly technique for assembling solar cell arrays is provided. During the fabrication of a solar cell, openings through the semiconductor layer are etched through to a top surface of the backmetal layer. The solar cells include an exposed top surface of the backmetal layer. A plurality of solar cells are assembled into a solar cell array where adjacent cells are interconnected in an electrically serial or parallel fashion solely from the top surface of the solar cells.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 14, 2013
    Assignee: MicroLink Devices, Inc.
    Inventors: Raymond Chan, Christopher Youtsey
  • Patent number: 8426237
    Abstract: An assembly technique for assembling solar cell arrays is provided. During the fabrication of a solar cell, openings through the semiconductor layer are etched through to a top surface of the backmetal layer. The solar cells include an exposed top surface of the backmetal layer. A plurality of solar cells are assembled into a solar cell array where adjacent cells are interconnected in an electrically serial or parallel fashion solely from the top surface of the solar cells.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 23, 2013
    Assignee: MicroLink Devices, Inc.
    Inventors: Raymond Chan, Christopher Youtsey
  • Patent number: 8426236
    Abstract: A grid stack structure of a solar cell, which includes a silicon substrate, wherein a front side of the silicon is doped with phosphorus to form a n-emitter and a back side of the silicon is screen printed with aluminum (Al) metallization; a dielectric layer, which acts as an antireflection coating (ARC), applied on the silicon; a mask layer applied on the front side to define a grid opening of the dielectric layer, wherein an etching method is applied to open an unmasked grid area; a light-induced plated nickel or cobalt layer applied to the front side with electrical contact to the back side Al metallization; a silicide layer formed by rapid thermal annealing of the plated nickel (Ni) or cobalt (Co); an optional barrier layer electrodeposited on the silicide; a copper (Cu) layer electrodeposited on the silicide/barrier film layer; and a thin protective layer is chemically applied or electrodeposited on top of the Cu layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Harold J. Hovel, Xiaoyan Shao
  • Patent number: 8394650
    Abstract: A laminated module or panel of solar cells and a laminating method for making same comprise a top layer of melt flowable optically transparent molecularly flexible thermoplastic and a rear sheet of melt flowable insulating molecularly flexible thermoplastic both melt flowing at a temperature between about 80° C. and 250° C. and having a low glass transition temperature. Solar cells are encapsulated by melt flowing the top layer and rear sheet, and electrical connections are provided between front and back contacts thereof. Light passing through the transparent top layer impinges upon the solar cells and the laminated module exhibits sufficient flexural modulus without cross-linking chemical curing. Electrical connections may be provided by melt flowable electrically conductive molecularly flexible thermoplastic adhesive or by metal strips or by both.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 12, 2013
    Assignee: Amerasia International Technology, Inc.
    Inventor: Kevin Kwong-Tai Chung
  • Patent number: 8361831
    Abstract: In the zinc oxide film forming apparatus (1), the deposit containing zinc oxide is formed on the conductive layer of the resin substrate (9) by electrodeposition in the deposition part (2), and the resin substrate (9) is carried to the applying part (4). Subsequently, the film forming material which is in liquid or paste form and contains particles of zinc oxide and solvent is applied onto the conductive layer, and then the solvent is removed from the film forming material on the conductive layer by volatilization. It is therefore possible to easily and efficiently form the porous zinc oxide film which has superior adhesion to the conductive layer of the resin substrate (9).
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 29, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Takeshi Yane
  • Patent number: 8361827
    Abstract: An assembly technique for assembling solar cell arrays is provided. During the fabrication of a solar cell, openings through the semiconductor layer are etched through to a top surface of the backmetal layer. The solar cells include an exposed top surface of the backmetal layer. A plurality of solar cells are assembled into a solar cell array where adjacent cells are interconnected in an electrically serial or parallel fashion solely from the top surface of the solar cells.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: January 29, 2013
    Assignee: MicroLink Devices, Inc.
    Inventors: Raymond Chan, Christopher Youtsey
  • Patent number: 8329495
    Abstract: A method of forming a PV module includes forming conductors on a top surface of a PV coated substrate; forming insulators on the top surface of the PV coated substrate; and cutting the PV coated substrate to form a plurality of individual PV cells. The PV coated substrate is cut so that each of the PV cells has some of the conductors and an insulator on its top surface. Multiple PV cells are then joined to form a PV module by attaching an edge of a first one of the PV cells under an edge of a second one of the PV cells so that at least a portion of the conductors on the first PV cell electrically contacts a bottom surface of the second PV cell.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 11, 2012
    Assignee: Preco, Inc.
    Inventor: Chris Walker
  • Patent number: 8329503
    Abstract: A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 11, 2012
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Murat Okandan, Paul J. Resnick, Jose Luis Cruz-Campa
  • Patent number: 8318528
    Abstract: Implementations and techniques for solar arrays of transparent nanoantennas are generally disclosed.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: November 27, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Ezekiel Kruglick
  • Patent number: 8304303
    Abstract: Semiconductor devices (102) and drain extended PMOS transistors (CT1a) are provided, as well as fabrication methods (202) therefor, in which a p-type separation region (130) is formed between an n-buried layer (108) and the transistor backgate (126) to increase breakdown voltage performance without increasing epitaxial thickness.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 8283187
    Abstract: One aspect of the present invention provides a device that includes a substrate; a first semiconducting layer; a transparent conductive layer; a transparent window layer. The transparent window layer includes cadmium sulfide and oxygen. The device has a fill factor of greater than about 0.65. Another aspect of the present invention provides a method of making the device.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 9, 2012
    Assignee: General Electric Company
    Inventors: Dalong Zhong, Gautam Parthasarathy, Richard Arthur Nardi, Jr.
  • Patent number: 8222129
    Abstract: A method for manufacturing a solar cell according to an exemplary embodiment includes: forming a first doping film on a substrate; patterning the first doping film so as to form a first doping film pattern and so as to expose a portion of the substrate; forming a diffusion prevention film on the first doping film pattern so as to cover the exposed portion of the substrate; etching the diffusion prevention film so as to form spacers on lateral surfaces of the first doping film pattern; forming a second doping film on the first doping film pattern so as to cover the spacer and exposed substrate; forming a first doping region on the substrate surface by diffusing an impurity from the first doping film pattern into the substrate; and forming a second doping region on the substrate surface by diffusing an impurity from the second doping film pattern into the substrate.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 17, 2012
    Assignees: Samsung Electronics Co., Ltd., Samsung SDI Co., Ltd.
    Inventors: Young Su Kim, Doo-Youl Lee