Abstract: A light emitting device is provided. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, a first dielectric layer over a part of an upper surface of the light emitting structure, and a pad electrode over the first dielectric layer.
Abstract: A light-emitting diode including: a structure in a semiconductor material of first conductivity type, wherein the structure has a first face of which a first region is in contact with a pad of semiconductor material having a second conductivity type opposite the first conductivity type, and the diode further includes a first electric contact on the pad, a second electric contact-on the first face or on a second face of the structure, and a gate in electrically conductive material arranged on a second region of the first face and separated from the first face by an electrically insulating layer.
Type:
Grant
Filed:
July 15, 2009
Date of Patent:
July 31, 2012
Assignee:
Commissariat a l'Energie Atomique
Inventors:
Ivan-Christophe Robin, Pierre Ferret, Johan Rothman
Abstract: While suppressing the frequency of a signal line driver circuit, a blur of a moving image of a light-emitting device using a light-emitting transistor can be prevented, without reducing a frame frequency. A switching element is provided in a path of a current which flows between a source and a drain of a light-emitting transistor, and the light-emitting transistor is made not to emit light by turning off the switching element, whereby pseudo-impulse driving is performed. Switching of the switching element can be controlled by a scan line driver circuit. In a specific structural example, the light-emitting device includes, in a pixel, a light-emitting transistor, a first switching element which controls supply of a potential of a video signal to a gate of the light-emitting transistor, and a second switching element which controls a current which flows between a source and a drain of the light-emitting transistor.
Type:
Grant
Filed:
January 23, 2009
Date of Patent:
September 20, 2011
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: A high power light emitting device assembly with electro-static-discharge (ESD) protection ability and the method of manufacturing the same, the assembly comprising: at least two sub-mounts, respectively being electrically connected to an anode electrode and a cathode electrode, each being made of a metal of high electric conductivity and high thermal conductivity; a light emitting device, arranged on the sub-mounts; and an ESD protection die, sandwiched and glued between the sub-mounts, for enabling the high-power operating light emitting device to have good heat dissipating path while preventing the same to be damaged by transient power overload of static surge.
Type:
Grant
Filed:
October 18, 2006
Date of Patent:
March 23, 2010
Assignee:
Industrial Technology Research Institute
Abstract: A semiconductor laser device that has the effect of phonon-assisted light amplification and a method for manufacturing the same are proposed. A conductive layer is formed on a semiconductor silicon substrate. A current flow is used to accomplish electro-luminescence of silicon. A silicon dioxide nanometer particle layer is sandwiched between the conductive layer and the semiconductor silicon substrate to form a MOS junction for carrier confinement. The phonon-assisted light emission mechanism can thus be strengthened to enhance the electro-luminescence efficiency of silicon so as to accomplish the lasing effect.
Abstract: A flip chip light-emitting diode package comprising a Schottky diode group, a light-emitting diode and a plurality of bumps is provided. The Schottky diode group comprises a plurality of Schottky diodes electrically coupled in series or in parallel. The bumps are disposed between one of the Schottky diodes and the light-emitting diode so that the Schottky diode group and the light-emitting diode are connected reverse and in parallel. The light-emitting diode is disposed on one of the Schottky diodes and connected together by a flip-chip bonding process. The flip chip light-emitting diode package prevents damaging from electrostatic discharge and promotes light extraction efficiency. In addition, the submount of the Schottky diode is fabricated by using silicon material. Since silicon is an excellent material for heat dissipating, light extraction efficiency and reliability of the package is increased.