With Twining, Plying, Braiding, Or Textile Fabric Formation Patents (Class 264/103)
  • Publication number: 20140326659
    Abstract: A preparation method of an enhanced-type polyacrylonitrile hollow fiber membrane comprises steps of: (1) knitting a polyacrylonitrile fiber hollow braided tube by a two-dimensional weaving technology; wherein the polyacrylonitrile fiber hollow braided tube is utilized as a reinforcement of a hollow fiber membrane; (2) preparing polyacrylonitrile casting solution, wherein, polyacrylonitrile resin is 3%-25%; solvent is 50%-95%; and additive is 2%-30%; a sum of the mass percent of all composition mentioned above is 100%; (3) infiltrating the polyacrylonitrile fiber hollow braided tube by weak polar organic liquid, wherein, a time of the polyacrylonitrile fiber hollow braided tube infiltrated is is-60s; the weak polar organic liquid is ethanol, glycerol, isopropanol, or polyethylene glycol (PEG)-600; (4) processing the polyacrylonitrile fiber hollow braided tube and the polyacrylonitrile casting solution with a coextrusion by an annular spinneret; fully solidifying the polyacrylonitrile fiber hollow braided tube
    Type: Application
    Filed: January 24, 2013
    Publication date: November 6, 2014
    Inventors: Changfa Xiao, Rui Wang, Meitian Liu, Shulin An
  • Publication number: 20140312572
    Abstract: A cylindrical gasket 27 includes a reinforcing member 70 made from a compressed belt-shaped metal wire net 5, a heat-resistant material 71 filled in meshes of the belt-shaped metal wire net 5 of the reinforcing member 70, and pores which are dispersedly distributed in the reinforcing member 70 and the heat-resistant material 71. An inner peripheral surface 23, an outer peripheral surface 24, and annular end faces 25 and 26 of the cylindrical gasket 27 are each formed by a smooth surface in which the heat-resistant material 71 and the reinforcing member 70 are present in mixed form. In the cylindrical gasket 27, the volume contents of the reinforcing member 70, the heat-resistant material 71, and the pores are 32 to 60%, 5 to 58%, and 10 to 35%, respectively.
    Type: Application
    Filed: November 20, 2012
    Publication date: October 23, 2014
    Inventors: Shin-ichi Shionoya, Koichi Ishida
  • Publication number: 20140305090
    Abstract: Provided are a mixed-fiber nonwoven fabric suitable for air filters and a filter medium using the mixed-fiber nonwoven fabric. The nonwoven fabric includes at least two types of fibers having different melting points, which fibers are low melting point fibers made of a polyolefin resin component A, and high melting point fibers made of a high melting point resin component B having a higher melting point than that of the polyolefin resin component A. The number average fiber diameter of the high melting point fibers is larger than that of the low melting point fibers. At least one high melting point fiber having a fiber diameter of 20 ?m to 100 ?m is present per 1.00 mm of the length of the cross section of the nonwoven fabric. The number average fiber diameter of all fibers constituting the nonwoven fabric falls within the range of 0.3 ?m to 10 ?m.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 16, 2014
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Akito Kuroda, Yuji Iyama, Yoshikazu Yakake
  • Patent number: 8858857
    Abstract: A method of fabricating a composite vessel encompassing rapid manufacturing that is applicable to composite hydrogen and other gas storage tanks, both for high-pressure cylinders, as well as low-pressure conformal tanks. The process of fabrication includes using a liner, of metal or plastic materials, over which a braided or developed preform is wrapped. The dry fiber wrapped liner is placed in a mold and resin injected into the cavity formed between the liner and the mold outer walls. The liner is flooded with heated and/or cooled pressurized fluid thus enabling complete and independent process control from within the liner for both the resin injection and the cure phases. Fiber placement control is determined through combined biaxial and triaxial braid/preform design, and by wrapping at controlled tension onto the supporting liner. Fiber tension control is further enhanced by the methodology of mold loading whereby tensioning forces are enacted during actual load and close.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: October 14, 2014
    Inventors: Geoffrey Michael Wood, Pamela M. Schneider, Steven C. Stenard
  • Publication number: 20140300024
    Abstract: Provided is a nonwoven fabric for press molding and a molded product. With use of the nonwoven fabric, a fiberboard can be molded in a shorter time and even by 3D press molding a molded product with an excellent appearance quality can be obtained. The nonwoven fabric for press molding is formed of polylactic acid fibers and natural fibers, the polylactic acid fibers having a crystallization temperature on cooling of 120° C. or higher, the nonwoven fabric having a tensile strength of 20 N/cm2 or higher, and the nonwoven fabric having a tensile stress of 80 N/cm2 or less at 30% tensile elongation in a 200° C. atmosphere. The molded product is obtainable with use of the nonwoven fabric.
    Type: Application
    Filed: November 7, 2012
    Publication date: October 9, 2014
    Inventors: Hiroki Takeda, Tomomichi Fujiyama, Hiroshi Kajiyama
  • Patent number: 8852291
    Abstract: A gel liner made by starting initially with a one-piece knitted tubular sock-shaped fabric having a closed distal end section of gel impermeable knitted fabric, an open proximal end section of gel impermeable knitted fabric and at least one intermediate section being a gel permeable loosely knitted fabric. Molding the liner to have a gel cushion layer on its interior surface with the gel passing through and embedding the at least one intermediate fabric section therein to form at least one annular seal. The intermediate fabric section selected of meltable fibers and knit construction that may or may not be melted by the gel during the molding process whereby the at least one annular seal is not inhibited in compression and/or elongation by the presence or absence of fabric when the liner is worn thereby reducing or eliminating any discomfort of the liner during ambulation caused by the annular seal.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: October 7, 2014
    Assignee: ALPS South, LLC
    Inventors: Aldo A. Laghi, Kevin McLoone, Neil Tagner
  • Publication number: 20140291883
    Abstract: The present invention provides a processing method of non-woven intrinsically with enhanced deodorant feature from bamboo. The process uses mixture of wasted coffee residue and bamboo pulp as raw material. The process uses N-methylmorpholine N-oxide (NMMO) as primary solvent and 1,3-phenylene-bis 2-oxazoline (BOX) as additive stabilizer. A cellulose solution is firstly formed by the wasted coffee residue, bamboo pulp, NMMO and BOX aforesaid. Secondly, via grinding, blending, dissolving and thermal dehydrating, the cellulose solution is converted into spinning dope. Thirdly, via meltblown method, the dope is extruded out of spinnerets in a die assembly by a metering gear pump to form thread bundle. Finally, the thread bundle is orderly treated by coagulation with regeneration via ejecting mist aerosol of water, rinsing, bleaching, re-rinsing, drying, winding-up and the like to create continuous filaments, then final product for nonwoven with deodorant feature is produced by the filaments from bamboo cellulose.
    Type: Application
    Filed: June 6, 2013
    Publication date: October 2, 2014
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Publication number: 20140291882
    Abstract: The present invention provides a processing method of natural cellulose fiber intrinsically with enhanced antiseptic, deodorant and negative-ion features from bamboo. The process uses mixture of wasted coffee residue and bamboo pulp as raw material. The process uses N-methylmorpholine N-oxide (NMMO) as primary solvent and 1, 3-phenylene-bis 2-oxazoline (BOX) as additive stabilizer. A cellulose solution is firstly formed by the wasted coffee residue, bamboo pulp, NMMO and BOX aforesaid. Secondly, via grinding, blending, dissolving and thermal dehydrating, the cellulose solution is converted into spinning dope. Thirdly, spin the dope obtained previously by dry-jet wet spinning method and coagulate and regenerate in a coagulation bath to form into threads. Finally, rinse, desiccate and lubricate the regenerated threads obtained previously as well as wind it up to produce reeled natural bamboo cellulose fiber with enhanced antiseptic, deodorant and negative-ion features.
    Type: Application
    Filed: May 17, 2013
    Publication date: October 2, 2014
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Publication number: 20140277575
    Abstract: An implantable structure, method for making the structure and method for using the structure, where the structure includes a combination of non-absorbable and absorbable components, and the implantable structure has a randomly uniform array of materials. The resulting implantable structure provides improved tissue ingrowth and flexibility after implantation and after absorption of the absorbable materials.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: ETHICON, INC.
    Inventors: Susanne Landgrebe, Daniel Smith, Oliver Dick
  • Publication number: 20140272270
    Abstract: A structure for use in a compressible resilient pad. The structure contains both axially elastomeric strands and relatively inelastic strands co-extruded in various patterns. The structure has a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Robert A. Hansen
  • Patent number: 8834762
    Abstract: A pleatable nonwoven material is provided, including thicker form-giving fibers and thinner fibers determining the filter effect, wherein the thinner fibers are incorporated largely homogeneously in the thicker fibers running in the direction along the surface of the nonwoven material and a distribution density gradient of the thinner fibers is established perpendicular to the surface of the nonwoven material such that the highest concentration of thinner fibers is in the region of the center or on one of the two outsides, wherein the thicker and thinner fibers are bonded together by solidification from the melted condition and are made from the same material.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: September 16, 2014
    Assignee: Irema-Filter GmbH
    Inventors: Anke Jung, Andreas Seeberger
  • Patent number: 8834148
    Abstract: The invention relates to a method and an apparatus for producing a turf yarn for artificial turf. According to the invention, several monofilaments or ribbons are produced from one respective polymer material in two parallel extrusion processes, the turf yarn being formed by combining several monofilaments or ribbons obtained in the first extrusion process with several monofilaments or ribbons obtained in the second extrusion process. In order to improve especially the elasticity of an artificial turf carpet made from said turf yarn, the monofilaments or ribbons obtained in one of the extrusion processes are crimped before being combined, the crimped monofilaments or ribbons and the flat monofilaments or ribbons being produced in parallel next to each other and being joined in a winding station by means of a tie thread.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 16, 2014
    Assignee: Oerlikon Textile GmbH & Co. KG
    Inventors: Klaus Hufschmidt, Jens Weinhold, Frank Heymann
  • Patent number: 8808609
    Abstract: The present invention has an object of providing the carbon fiber (or the nonwoven fabric configured of the aforementioned carbon fiber) of which the surface area, the graphitization degree, and the fiber diameter are large, high, and small, respectively, and yet of which dispersion is small. The method of producing the carbon fiber nonwoven fabric includes a dispersion liquid preparing step of preparing a dispersion liquid containing resin and pitch, an electrospinning step of producing the nonwoven fabric that is comprised of carbon fiber precursors with electrospinning from the aforementioned dispersion liquid, and a modifying step of modifying the carbon fiber precursors of the nonwoven fabric obtained in the aforementioned electrospinning step into the carbon fiber.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignees: TEC One Co., Ltd., Shinshu University
    Inventors: Takahiro Kitano, Fujio Okino
  • Patent number: 8808594
    Abstract: A method is disclosed for producing a coform fibrous materials comprising the steps of supplying a first fiber forming stream comprising a first phase comprising a polymer melt and a second phase comprising a pressurized gas to a two-phase flow nozzle, supplying a separate second stream containing at least one secondary material to the two-phase flow nozzle, combining the first fiber forming stream and the second stream to form a composite fiber forming stream and fibrillating the composite fiber forming stream into a coform fibrous web. Superabsorbent and filtration coform fibrous materials for filtration and produced using the method are also disclosed.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: August 19, 2014
    Assignee: Verdex Technologies, Inc.
    Inventors: Larry Marshall, Michael Bryner, Gary Huvard
  • Patent number: 8801985
    Abstract: A production method for a carbon fiber precursor fiber bundle and a production apparatus of the carbon fiber precursor fiber bundle. A carbon fiber precursor fiber bundle that has a degree of intermingle of 1 m?1 or less between small tows, consists of substantially straight fibers without imparted crimp, a tow of which straight fibers has a moisture content of less than 10% by mass when housed in a container, and has a widthwise dividing capability to maintain a form of a single aggregate of tows when housed in a container, taken out from the container and guided into a firing step, and to divide into a plurality of small tows in the firing step by the tension generated in the firing step.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Katsuhiko Ikeda, Atsushi Kawamura
  • Patent number: 8801992
    Abstract: A process for manufacturing a structural part made of an organic matrix composite including: production of a fibrous structure, forming a preform by braiding rovings of a fibrous material on a mandrel that includes a reinforcement in its axial extension, impregnation of the preform with an organic resin; and curing of this resin, the reinforcement, forming the cover, having a bore with an axis perpendicular to the axis for housing a connecting member. Barbs, some of which are projecting, are incorporated into the reinforcement over at least part of the surface of which lying on either side of the bore, the braiding being carried out around the barbs so that the rovings at least partly criss-cross around the barbs.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: August 12, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventors: Patrick Dunleavy, Richard Masson
  • Publication number: 20140220328
    Abstract: Netting (1101) comprising an array of polymeric strands (1102,1104), wherein the polymeric strands are periodically joined together at bond regions throughout the array, and wherein at least a plurality (i.e., at least two) of the polymeric strands have a core (1114) of a first polymeric material and a sheath (1103) of a second, different polymeric material. Nettings described herein have a variety of uses, including wound care, tapes, filtration, absorbent articles, pest control articles, geotextile applications, water/vapor management in clothing, reinforcement for nonwoven articles, self bulking articles, floor coverings, grip supports, athletic articles, and pattern coated adhesives.
    Type: Application
    Filed: August 14, 2012
    Publication date: August 7, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ronald W. Ausen, Thomas P. Hanschen, William J. Kopecky
  • Publication number: 20140217648
    Abstract: An article comprising a yarn comprising an elastomeric propylene-based polymer composition; said polymer composition comprising at least one elastomeric propylene-based polymer, wherein said yarn has a draft greater than 200%; wherein said article is a fabric or a garment.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: INVISTA NORTH AMERICA S.A R.L.
    Inventors: Robert O. WALDBAUER, JR., Young D. NGUYEN, Hong LIU, James Michael LAMBERT
  • Patent number: 8795561
    Abstract: A process for forming a nanofiber non-woven includes mixing a first and second thermoplastic polymer and a plurality of particles, then subjecting the mixture to elongational forces when the first and second polymers are in a softened condition forming nanofibers of the first polymer. Next, the mixture is brought to a condition where the temperature is below the softening temperature of the first polymer forming a first intermediate. The first intermediate is consolidated forming the second intermediate where at least 70% of the nanofibers are fused to other nanofibers. Next, at least a portion of the second polymer is removed and at least 50% of the particles are positioned adjacent a surface of the nanofibers.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 5, 2014
    Assignee: Milliken & Company
    Inventors: Walter A. Scrivens, Hao Zhou
  • Publication number: 20140210141
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen
  • Publication number: 20140210120
    Abstract: In a process for producing regenerated cellulose fibers, in which particles of a flame-retardant solid are incorporated into the fiber, the particles are placed into a mold, the dimension of which in a major axis of the particle is greater than in the two orthogonal minor axes of the particle, and the major axes of the particles in the fiber are aligned in a preferential direction parallel to the spinning direction thereof
    Type: Application
    Filed: May 14, 2012
    Publication date: July 31, 2014
    Applicant: Glanzstoff Bohemia S.R.O.
    Inventors: Bernhard Mueller, Martin Gebert-Germ
  • Patent number: 8790556
    Abstract: A spinneret having tri-arc holes may be used to produce tri-arc filaments. In some instances, tri-arc holes have a Y-shape with three prongs and each prong having an arc at the end of the prong that tapers from the end of the arc to a connection point of an adjacent arc, and tri-arc filaments have a generally-Y shape cross-section with bulbous or arcing tips. Further, tri-arc filaments may be useful in a plurality of applications including, but not limited to, filters, filters comprising particulate additives, and smoking device filters.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 29, 2014
    Assignee: Celanese Acetate LLC
    Inventors: Christopher M. Bundren, Lawton E. Kizer, Denis G. Fallon, Lixin Xue
  • Patent number: 8758657
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 24, 2014
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Publication number: 20140170402
    Abstract: A method to prepare nonwoven webs which have good MD and CD strength, and are water disposable is provided. The method includes hydroentangling an airlaid web of no less than 50% by weight of natural cellulose fibers having a fiber length of no more than 3.5 mm and no more than 50% by weight staple fibers having a fiber length of no less than 8.0 mm. The airlaid web is not laid on a precursor web and no adhesive, binder or thermal bonding fibers are utilized. The airlayering and hydroentangling are conducted in a continuous operation. Products may be obtained according to the method of this invention that meet municipal guidelines for flushability.
    Type: Application
    Filed: July 16, 2013
    Publication date: June 19, 2014
    Applicant: Jacob Holm & Sons AG
    Inventors: Richard KNOWLSON, Eric MARIANI, Katherine Dyrmose PETERSEN
  • Publication number: 20140170920
    Abstract: Flexible electronically functional fabrics are described that allow for the placement of electronic functionality in flexible substrates such as traditional fabrics. The fabrics can be made using flexible electronically functional fibers or a combination of electronically functional fibers and textile fibers. Electronic devices can be incorporated into the fabric to give it full computing capabilities.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Sasikanth Manipatruni, Shawna M. Liff, Brian S. Doyle, Vivek K. Singh
  • Patent number: 8753671
    Abstract: The present invention relates to a method for preparing by wet spinning a continuous filament based on hyaluronic acid in free acid form, notably soluble in water. The preparation method according to the invention comprises the following steps: a) preparing a spinnable aqueous solution of hyaluronic acid or of a hyaluronic acid salt, preferably a sodium hyaluronate solution; b) extruding said solution to an extrusion die; c) forming the filament by passing the extruded solution into a bath of acetic acid, concentrated to more than 80%, drawing and drying. The invention also relates to a filament based on hyaluronic acid in free acid form, said filament having swelling properties in water and physiological liquids and moreover being solubilizable in water under certain conditions.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: June 17, 2014
    Assignees: Universite Claude Bernard Lyon I, Centre National de la Recherche Scientifique
    Inventors: Alain Domard, Laurent David, Florence Dupasquier
  • Patent number: 8753741
    Abstract: A fine denier poly(trimethylene arylate) spun drawn fiber is characterized by high denier uniformity. A process for preparing uniform fine denier yarns at spinning speeds of 4000 to 6000 m/min is further disclosed. The poly(trimethylene arylate) fiber hereof comprises 0.1 to 3% by weight of polystyrene dispersed therewithin. Fabrics prepared therefrom are also disclosed.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 17, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: W. Douglas Bates
  • Publication number: 20140158285
    Abstract: Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.
    Type: Application
    Filed: November 30, 2013
    Publication date: June 12, 2014
    Inventor: Michael Ian BROCKWELL
  • Publication number: 20140141676
    Abstract: An article comprising hollow ceramic microspheres and multi-component fibers is disclosed. The multi-component fibers are adhered together, and the hollow ceramic microspheres are adhered to external surfaces of the multi-component fibers. A method of making the article and use of the article for insulation are also disclosed.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 22, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael D. Crandall, Ignatius A. Kadoma, Andrew J. Peterson, Yong K. Wu
  • Patent number: 8721943
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 13, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen
  • Publication number: 20140123613
    Abstract: Nonwoven filter media with an alpha value greater than about 13 generally includes a plurality of large diameter fibers, a plurality of ultrafine diameter fibers, and a binder. The large diameter fibers have an average diameter of greater than about 6 microns and make up more than about 60% by weight of the fiber web. The ultrafine diameter fibers have an average diameter of less than about 1 micron. Also disclosed is a method of manufacturing a filter media.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 8, 2014
    Applicant: LYDALL, INC.
    Inventors: Herve Le Port, Guillaume Moreau
  • Publication number: 20140121622
    Abstract: Disclosed herein is a cellulosic textile filament made from microfibrillar cellulose fibers and a thickening agent as well as the precursor dope for forming such filaments, nonwoven webs made from such cellulosic textile filaments and the process for forming such filaments and nonwoven webs including such filaments. One of the advantages of these filaments is the eco-sensitive way in which they are made as they utilize a water-based dope that does not require any chemical solvents unlike other processes such as those used to make Lyocell fibers. In addition, the process does not involve any washing or extraction steps and it employs a cellulosic fiber source that is broadly based and renewable.
    Type: Application
    Filed: October 2, 2013
    Publication date: May 1, 2014
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: David M. Jackson, Christopher O. Luettgen
  • Patent number: 8709372
    Abstract: A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 29, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Yuntian T. Zhu, Paul Arendt, Xiefei Zhang, Qingwen Li, Lei Fu, Lianxi Zheng
  • Publication number: 20140096783
    Abstract: A method and associated system are provided for forming a biodegradable filter material for a filter element of a smoking article, wherein the method involves combining cellulose acetate fibers with regenerated cellulose fibers, drawing the combined cellulose acetate fibers and regenerated cellulose fibers to form drawn combined fibers, and crimping the drawn combined fibers to form a mixed fiber tow. An associated filter material for the filter element of a smoking article is also provided.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Applicant: R.J. Reynolds Tobacco Company
    Inventors: Andries D. Sebastian, Evon Llewellyn Crooks, Jason Kobisky, Cortney R. Jackson
  • Patent number: 8685297
    Abstract: With a method for the manufacture of fiber-composite components, more particularly of fan blades for aircraft engines, dry fiber mats are superimposed in a lay-up mold, correctly positioned and fixed with locating pins and subsequently sewn in the mold. Metallic indicators are provided on at least one mat. The preformed entity of fiber mats is whipped at its edges with thermoplastic material and subsequently smoothed by application of heat. Remaining fiber residues are cut off. The blank thus available is infiltrated with synthetic resin in an infiltration mold or a sheathing remaining on the component. The fiber mats are checked for correct positioning by non-destructive inspection procedures. The fiber-composite component thus formed conforms to high quality requirements.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: April 1, 2014
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Karl Schreiber
  • Patent number: 8685311
    Abstract: A melt spinning apparatus includes an apparatus body and a nozzle for extruding melted resin, a primary hot air passage formed around the nozzle, and a secondary hot air passage formed in a zone outside of the primary hot air passage, which are formed in the apparatus body. The primary hot air passage discharges primary hot air onto fibers of the melted resin extruded from the nozzle. The secondary hot air passage discharges secondary hot air to maintain the temperature of the primary hot air. The discharge angle of the secondary hot air from the secondary hot air passage is set in a range of 0° to 50° with respect to the direction of the melted resin extruded from the nozzle. The secondary hot air forms an air curtain that blocks the atmospheric air.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 1, 2014
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventors: Hiroshi Koyama, Kenta Fujii
  • Patent number: 8685312
    Abstract: A melt spinning apparatus includes an apparatus body, a nozzle configured to extrude melted resin in the apparatus body, and a barrel having an air discharge passage arranged around this nozzle to discharge hot air. The discharge passage includes a sloped passage and a parallel passage that extends along the nozzle. At an intersection of imaginary lines extending along the centerlines of the sloped passage, an imaginary merging section is defined. An open end of the nozzle is positioned on the downstream side of the imaginary merging section of the hot air blown diagonally forward toward a periphery of the nozzle. To manufacture a sheet of a nonwoven fabric, the melted resin is discharged from the nozzle and then the hot air swirling diagonally forward is blown toward the periphery of the nozzle. This causes the melted resin to be formed into spiral fibers. Those fibers are blown onto the belt of a conveyor belt apparatus to manufacture a nonwoven fabric sheet.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 1, 2014
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventor: Hiroshi Koyama
  • Publication number: 20140077408
    Abstract: A method and a device for producing a crimped multifilament thread are described. A multiplicity of filaments are extruded by means of a spinning machine, cooled and subsequently treated by a drawing device and a crimping device to form a crimped thread. Before the thread is wound up to form a bobbin, a multiplicity of intertwining knots is produced on the crimped thread by a treatment device. In order to obtain defined patterns of the intertwining knots within the thread, a pulse sequence of compressed air pulses at a predefined frequency is directed at the thread. The treatment device has a controllable blowing means.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 20, 2014
    Inventors: Mathias Stündl, Marco Kaulitzki, Claus Matthies, Friedrich Lennemann, Christian Hubert, Ludger Legge, Jan Westphal
  • Publication number: 20140070443
    Abstract: Described herein are spunlaid fibers including at least one polymeric resin and at least one filler having an average particle size of less than or equal to about 5 microns and/or having a top cut of less than about 15 microns. The at least one filler may be present in an amount of less than about 40% by weight, relative to the total weight of the spunlaid fibers. Also described herein is a method for producing spunlaid fibers including adding calcium carbonate to at least one polymeric resin and extruding the resulting mixture. Further described herein are nonwoven fabrics including such spunlaid fibers, and methods for producing them.
    Type: Application
    Filed: August 14, 2013
    Publication date: March 13, 2014
    Applicant: Imerys Pigments, Inc.
    Inventors: Larry H. McAmish, David A. Skelhorn
  • Publication number: 20140072767
    Abstract: The present invention relates to a process of forming a soft bulky nonwoven web from a batt using thermobonding and to a soft bulky nonwoven web with a bond impression pattern and shape. The process comprises several steps including feeding a batt to a nip between first and second surface of first and second roller, where at least the first of the surfaces comprises spaced apart bonding protrusions surrounded by recessed areas. The bonding protrusions and the bond impression shape in the web exhibit a ratio of the greatest measurable width to the greatest measurable length of at least 1:2.5 and the perimeters thereof comprise a convex portion. The bonding protrusions are symmetric and/or have a certain angle to the machine direction.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 13, 2014
    Applicant: PEGAS NONWOVENS S.R.O.
    Inventors: Frantisek Klaska, Jiri Kummer, Zdenek Mecl, Pavlina Kasparkova, Han Xu, Olaf Erik Alexander Isele, Antonius Lambertus Johannes de Beer
  • Patent number: 8668854
    Abstract: The disclosure relates to an apparatus and method for producing nanofibers and non-woven nanofibrous materials from polymer melts, liquids and particles using a two-phase flow nozzle. The process comprises supplying a first phase comprising a polymer melt and a second phase comprising a pressurized gas stream to a two-phase flow nozzle; injecting the polymer melt and the pressurized gas stream into a mixing chamber within the two-phase flow nozzle wherein the mixing chamber combines the polymer flow and pressurized gas into a two-phase flow; distributing the two-phase flow uniformly to a converging channel terminating into an channel exit wherein the converging channel accelerates the two-phase flow creating a polymeric film along the surface of the converging channel and fibrillating the polymeric film at the channel exit of the converging channel in the form of a plurality of nanofibers.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: March 11, 2014
    Assignee: Verdex Technologies, Inc.
    Inventors: Larry Marshall, Michael Bryner
  • Publication number: 20140060307
    Abstract: Processes for making high-performance polyethylene multi-filament yarns include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Patent number: 8663517
    Abstract: Polyolefin woven and nonwoven fibers, filaments and fabrics made therefrom which comprise a melt blend which comprises (a) a polyolefin; and (b) at least one compound of the formula (I) R1-(hydrophilic oligomer)??(I) wherein R1 is a straight or branched chain alkyl of 22 to 40 carbon atoms and the hydrophilic oligomer is a homo- or co-oligomer consisting of monomer units derived from monomers selected from the group consisting of ethylene oxide, propylene oxide, ethylene glycol, propylene glycol, epichlorhydrin, acrylic acid, methacrylic acid, ethylene imine, caprolactone, vinyl alcohol and vinyl acetate; and wherein the hydrophilic oligomer consists of between 2 and 10 monomer units, exhibit excellent durable wettability. The fabrics are useful in disposable diapers, training pants, feminine napkins, tampons, incontinence care products, wet and dry wipes, wound dressings, surgical capes, filter medial, battery separators and the like.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Techmer PM, LLC
    Inventors: Sheng-Shing Li, Andrew J. Leggio, George H. Menzie, David Devore, John J. McNamara, TaHau Yu, Douglas W. Horsey
  • Publication number: 20140042661
    Abstract: A method of forming a battery separator to be sandwiched between a positive and a negative electrode of a battery is discussed. A polyethylene resin surface is formed on a surface of a nonwoven fabric, which is made of polypropylene resin as a main component material and structured with bonded pieces of the polypropylene resin. The polyethylene resin surface is then subjected to a hydrophilization treatment, such as a radical reaction treatment or a sulfonation treatment. As a result, a secondary battery separator having a high mechanical strength along with a high hydrophilic nature, and a secondary battery using that secondary battery separator are provided.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: Nippon Kodoshi Corporation
    Inventors: Takashi Sakuma, Masahiko Ueta, Kohei Nishizaka, Masatoshi Sashika, Yasuhisa Yamasaki
  • Publication number: 20140042706
    Abstract: A continuous filament non-woven web is disclosed, wherein filaments of the web include an expandable thermoplastic material. Mattings fabricated from the continuous filament non-woven web are also disclosed. The web or matting can be used in sealing applications as it can be cut into desired dimensions and inserted into a cavity. The web or matting allows for introduction and drainage of further fluids in and from the cavity. The extendable thermoplastic material can be activated and foamed to fill a part of or the entire cavity. The sealing can prevent air, water or noise from intruding into the cavity and a space behind that cavity.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Thomas Sam PILLARS, Patricia Heidtman, Frank Hoefflin, Eric R. Medaris, John I. Hanley, IV
  • Publication number: 20140035183
    Abstract: A method for production of a body implant (1), having the steps: generating a braiding (10) from a first fiber material (12); executing a first heat treatment on the braiding (10); removing part of the fibers of the first fiber material (12), and replacing by a second fiber material (14) or reinsertion of the first fiber material (12) after the execution of a further processing step on the removal part of the fibers of the first fiber material (12).
    Type: Application
    Filed: August 16, 2013
    Publication date: February 6, 2014
    Inventors: Frank Scherrible, Florent Budillon
  • Publication number: 20140037906
    Abstract: Nonwoven calendered materials for various applications such as household use and personal and hygienic care are provided. In particular, the present invention can be applied to the manufacture of wipes and cleaning cloths. Methods for making and using nonwoven calendered fabrics are also provided.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Inventors: Gianluca Polosa, Roberto Pedoja
  • Publication number: 20140038119
    Abstract: A reinforced refractory container having a cast refractory container which includes a sidewall defining an interior volume, the sidewall having inner and outer surfaces, the container cast from a castable refractory composition, and a wound, continuous fiber tensile reinforcement structure integrated with the container sidewall. A method of fabricating the reinforced refractory container is also provided.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Inventors: Dana M. Goski, Douglas K. Goza, Anthony S. DiSaia, Duncan Lawrie
  • Patent number: 8641960
    Abstract: The present invention relates to a solution blow spinning method for the production of nonwoven webs of micro and nanofibers.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: February 4, 2014
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Eliton S. Medeiros, Gregory M. Glenn, Artur P. Klamczynski, William J. Orts, Luiz H. C. Mattoso
  • Publication number: 20140030948
    Abstract: Provided in one embodiment is a method for producing a composition, comprising: heating a first material comprising an amorphous alloy to a first temperature; and contacting the first material with a second material comprising at least one fiber to form a composition comprising the first material and the second material; wherein the first temperature is higher than or equal to a glass transition temperature (Tg) of the amorphous alloy.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 30, 2014
    Applicant: LIQUIDMETAL COATINGS LLC
    Inventors: Choongnyun P. KIM, John KANG