With Twining, Plying, Braiding, Or Textile Fabric Formation Patents (Class 264/103)
  • Patent number: 8277706
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 2, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Patent number: 8268207
    Abstract: A method of manufacturing pitch-based carbon-carbon composite useful as a brake disc, includes (a) providing annular carbon fiber brake disc preform; (b) heat-treating the carbon fiber preform; (c) infiltrating the carbon fiber preform with pitch feedstock by VPI or RTM processing; (d) carbonizing the pitch-infiltrated carbon fiber preform; (e) repeating steps (c) and (d) to achieve a density in the carbon fiber preform of approximately 1.5 g/cc to below 1.7 g/cc; and (f) densifying the preform by CVI/CVD processing to a density higher than 1.7 g/cc. Employing lower cost VPI and/or RTM processing in early pitch densification cycles and using more expensive CVI/CVD processing only in the last densification cycle provides C-C composites in which the pitch-based components resist pullout, resulting in a longer wearing composite.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: September 18, 2012
    Assignee: Honeywell International Inc.
    Inventors: Mark L. La Forest, Neil Murdie, Allen H. Simpson
  • Patent number: 8262958
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: September 11, 2012
    Assignee: Eastman Chemical Company
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Publication number: 20120219464
    Abstract: There is provided an inorganic fiber formed article in which the thickness and the surface density can be easily controlled and which has excellent workability and handleability and prevents the deterioration of the work environment when the inorganic fiber formed article is processed for applications, e.g., a heat insulator or a mat. The inorganic fiber formed article includes a mat-like aggregate of inorganic fibers, the inorganic fiber formed article being subjected to needling treatment. The needling density of a surface of the mat exceeds 50 punches/cm2. One or more of requirements (1) to (3) described below is satisfied. (1) The ratio of the number NA of fiber bundles to the number NB of fiber bundles, i.e., NA/NB, is 0.5 or less, the fiber bundles extending in the thickness direction and being observed in regions with a predetermined width W of section A in the longitudinal direction and section B in the transverse direction.
    Type: Application
    Filed: November 4, 2010
    Publication date: August 30, 2012
    Applicant: MITSUBISHI PLASTICS. INC.
    Inventors: Toshiaki Sasaki, Tomoyuki Kobayashi, Hisashi Aoyagi
  • Publication number: 20120215148
    Abstract: The invention relates to functional spunbonded fabrics incorporating fibers made from non-fusible polymers containing one or more functional additives. The fibers are interwoven and interlocked to form a firm fleece composite, have different lengths, and have aspect ratios above 1,000. The fibers have a mean diameter of 0.1 to 500 micrometres and diameter variations within a fiber and/or among each other of at least 30%. The fibers contain more than 40 wt % of finely distributed functional additives in solid and/or liquid form. The spunbonded fabric is produced from a spinning solution containing the non-fusible polymer dissolved in a direct solvent and at least one functional additive. The spinning solution is extruded out of a spinneret, and the resulting strands are drawn in the longitudinal direction to form filaments or fibers, stabilized and laid down to form a fleece fabric. Exemplary spunbonded fabrics include clothing, technical textiles and filters.
    Type: Application
    Filed: September 13, 2011
    Publication date: August 23, 2012
    Inventors: Yvonne Ewert, Frank-Günter Niemz, Marcus Krieg, Bernd Riedel
  • Patent number: 8246874
    Abstract: A method for making a carbon nanotube-based device includes the steps of: providing a carbon nanotube yarn; preforming the carbon nanotube yarn into a predetermined shape; and heating the preformed carbon nanotube yarn so as to enable the carbon nanotube yarn to memorize the predetermined shape.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 21, 2012
    Assignees: Tsinghua University, Hon Hai Precisions Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8246898
    Abstract: A method and associated apparatus for melt extruding a nonwoven web includes providing a plurality of fibers from an extrusion device. The fibers are conveyed through a diverging profile portion of a fiber drawing unit (FDU) that causes the fibers to spread and expand in the machine direction within the FDU. The fibers are then conveyed through a diverging diffusion chamber spaced from the outlet of the FDU to reduce the velocity of the fibers and further spread the fibers in the machine direction. The fibers may be subjected to an applied electrostatic charge in either the diffusion chamber or the FDU. From the outlet of the diffusion chamber, the fibers are laid onto a forming surface as a nonwoven web.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 21, 2012
    Inventors: John H. Conrad, Eric E. Lennon, Douglas J. Hulslander, Joerg Hendrix, Detlef Frey
  • Publication number: 20120205901
    Abstract: Disclosed herein is the preparation of woven fabrics suitable for use in manufacturing vehicle airbags. Such fabrics are woven from a plurality of polymeric, e.g., polyamide, warp and weft tapes which have preferably been slitted, preferably in the machine direction, from a thermoplastic polymer film, and preferably from such a film which has been drawn at least in the machine direction. The resulting fabrics exhibit both the relatively low basis weight, stiffness and small packing volume typical of nylon films, and the relatively high tear strength and high damage tolerance of yarn-based woven airbag fabrics.
    Type: Application
    Filed: July 31, 2009
    Publication date: August 16, 2012
    Applicant: INVISTA NORTH AMERICA S.A.R.L.
    Inventor: Scott Westoby
  • Publication number: 20120190258
    Abstract: A non-woven fabric (1) modified by activated carbon is needled onto an elastic or inelastic textile sheet material (2), preferably a woven fabric or a knitted fabric. By this method, the strength of the textile sheet material (2) can be imparted to a non-woven fabric (1) that is otherwise not tear-resistant, wherein the adsorption properties of the activated carbon necessary for protective textiles are completely retained. The elastic or inelastic textile sheet material (2) is stretched or retained stretched while the non-woven fabric is needled on and is relaxed after the non-woven fabric has been needled on. The effect thereby achieved is that the non-woven fabric (1) does not tear if the textile good or the molded part is stretched again, because the non-woven fabric is then stretched from a compressed initial state.
    Type: Application
    Filed: August 12, 2010
    Publication date: July 26, 2012
    Applicant: Helfenberger Immobilien LLC & Co Textiforschungs - ung Entwicklungs KG
    Inventor: Josef Glaser
  • Publication number: 20120187593
    Abstract: A pleatable nonwoven material is provided, including thicker form-giving fibers and thinner fibers determining the filter effect, wherein the thinner fibers are incorporated largely homogeneously in the thicker fibers running in the direction along the surface of the nonwoven material and a distribution density gradient of the thinner fibers is established perpendicular to the surface of the nonwoven material such that the highest concentration of thinner fibers is in the region of the center or on one of the two outsides, wherein the thicker and thinner fibers are bonded together by solidification from the melted condition and are made from the same material.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 26, 2012
    Inventors: Anke JUNG, Andreas SEEBERGER
  • Publication number: 20120184666
    Abstract: Slit film tapes comprising (i) 1 to 50 wt % of a propylene elastomer based upon the total weight of the blend comprising 70 wt % to 95 wt % propylene and about 5 wt % to about 30 wt % alpha-olefin comonomer based upon total weight of the propylene elastomer. The propylene elastomer has a melt flow rate of 1 to 35 dg/min, a peak melting point of less than 115° C., and an mm triad tacticity of at least 70%; (ii) about 50 to about 99 wt % of a polypropylene based upon total weight of the blend comprising about 90 to about 100 mol % propylene wherein the polypropylene has a melt flow rate of 2 to 35 dg/min and a peak melting point of at least 130° C.; and (iii) 0.1 to 50 wt % of filler based upon the total weight of the blend.
    Type: Application
    Filed: October 13, 2009
    Publication date: July 19, 2012
    Inventors: Hari P. Gusain, Willy J.J. Leysen
  • Publication number: 20120181720
    Abstract: A versatile binder comprising at least one or more sulfopolyesters is provided. These sulfopolyester binders can enhance the dry tensile strength, wet tensile strength, tear force, and burst strength of the nonwoven articles in which they are incorporated. Additionally, the water permeability of these binders can be modified as desired by blending different types of sulfopolyesters to produce the binder. Therefore, the binder can be used in a wide array of nonwoven end products and can be modified accordingly based on the desired properties sought in the nonwoven products.
    Type: Application
    Filed: October 14, 2011
    Publication date: July 19, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz, Mark Dwight Clark, Chris Delbert Anderson, Marvin Lynn Mitchell, Paula Hines Mitchell, Amber Layne Wolfe
  • Publication number: 20120174274
    Abstract: An apparatus comprising a multi-layered armor. The multi-layered armor includes a stack of layers, each layer including a mesh of fibers of first polymer molecules, surfaces of the fibers being functionalized by at least one of hydroxyl, ketone, and amine groups. The multilayered armor also includes second polymer molecules being hydrogen bonded to the fiber surfaces, some of the second polymer molecules having hydroxyl, ketone, amine or carboxylic acid groups. The multilayered armor further includes a composition of third polymer molecules molded over the stack.
    Type: Application
    Filed: October 1, 2007
    Publication date: July 12, 2012
    Applicant: Lucent Technologies Inc.
    Inventor: Ashok J. Maliakal
  • Publication number: 20120171919
    Abstract: A coform nonwoven web that contains a matrix of meltblown fibers and an absorbent material is provided. The meltblown fibers are formed from a thermoplastic composition that contains at least one propylene/?-olefin copolymer of a certain monomer content, density, melt flow rate, etc. The selection of a specific type of propylene/?-olefin copolymer provides the resulting composition with improved thermal properties for forming a coform web. For example, the thermoplastic composition crystallizes at a relatively slow rate, thereby allowing the fibers to remain slightly tacky during formation. This tackiness may provide a variety of benefits, such as enhancing the ability of the meltblown fibers to adhere to the absorbent material during formation of the coform web. In certain embodiments, the coform web may also be imparted with texture using a three-dimensional forming surface.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 5, 2012
    Applicants: Junko SUGINAKA, Kiyoshi MORI
    Inventors: David M. Jackson, Michael A. Schmidt
  • Patent number: 8211340
    Abstract: The present invention relates to a process for the production of a yarn consisting of a squared-analogous cross-section polyamide filament for uncoated airbag fabrics, characterized in that the process comprises the steps of: heating and melting a raw material of polyamide, extruding the molten polyamide through a squared-analogous spinning nozzle to form a spun filament, cooling and solidifying the spun filament, followed by drawing the filament, to obtain a squared-analogous cross-section drawn yarn; to uncoated fabrics for the manufacture of airbags prepared by the said process, characterized in that the fabrics are prepared from a yarn consisting of a squared-analogous cross-section polyamide filament and exhibit low air permeability, enhanced flame resistance and aging performance against the environment; and to a use of the uncoated fabrics for the manufacture of airbags with a low air permeability prepared therefrom.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: July 3, 2012
    Assignee: Shinkong Synthetic Fibers Corporation
    Inventors: Swu-Chen Shen, Yi-Jen Tu
  • Publication number: 20120164449
    Abstract: Fibers and fabrics with improved anti-microbial activity in after laundering, and a method of producing the same, are described. One embodiment includes a method for generating a synthetic fiber, the method comprising creating a mixture, the mixture comprising a polymer, an anti-microbial agent, and a dispersion liquid, and extruding the mixture to form a synthetic fiber.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Inventor: Stephen Woodrow Foss
  • Publication number: 20120164908
    Abstract: A mixed fiber spunbonded nonwoven fabric which comprises 90 to 10% by weight of a long fiber of thermoplastic resin (A) that has been hydrophilization-treated and 10 to 90% by weight of a long fiber of thermoplastic elastomer (B) and which has a strength ratio [the ratio of a strength at 20% of an elongation at a maximum strength (elongation at a maximum point) to the maximum strength] in at least one direction of not more than 40% and a bulk density of 0.10 to 0.40 g/cm3. The fabric can exhibit excellent initial hydrophilicity, long-lasting hydrophilicity, liquid dispersibility, liquid transpiration property, moisture permeability, breathability, softness, resistance to fluff, stretchability and touch, and low stickiness, and is suitable for sheets constituting absorbent articles such as sanitary napkins, panty liners, incontinence pads, and disposable diapers. A production method is also provided.
    Type: Application
    Filed: July 22, 2010
    Publication date: June 28, 2012
    Applicant: MITSUI CHEMICALS INC.
    Inventor: Naosuke Kunimoto
  • Publication number: 20120164902
    Abstract: The invention relates to a compressed sheet comprising at least one woven or non-woven fabric, said fabric comprising polymeric fibers, characterized in that the sheet has a bending modulus of at least 15 GPa when measured according to ASTM D790-07 in at least two directions and wherein one of said directions is the orientation direction of a first majority of the fibers contained by said fabric. The invention also relates to a method of manufacturing such compressed sheets and to articles comprising thereof.
    Type: Application
    Filed: April 22, 2010
    Publication date: June 28, 2012
    Inventors: Dietrich Wienke, Martinus Johannes Nicolaas Jacobs, Roelof Marissen, Johannes Gabriël Drieman, van Eelco Oosterbosch
  • Patent number: 8206640
    Abstract: A process and apparatus for collecting continuous fibers or filaments as a uniform batt comprises a filament emitter in the form of a spinning die, a venturi, a diffuser, and a fiber collection bed. The filaments move downward after being created by the emitter, and exhaust ports create in the diffuser an airflow having a direction against the flow of the filaments so that the filaments are decelerated before contacting the fiber collection bed.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: June 26, 2012
    Assignee: The University of Tennessee Research Foundation
    Inventors: Ahmad D. Vakili, Daniel F. Rossillon
  • Publication number: 20120156485
    Abstract: A hollow fiber membrane is made by covering a tubular supporting structure with a membrane dope and converting the membrane dope into a solid porous membrane wall. Optionally, a textile reinforcing structure in the form of a circular knit may be added around the supporting structure before it is covered in dope. The reinforcing structure thereby becomes embedded in the membrane wall. The supporting structure may be soluble in a non-solvent of the membrane wall, for example water, and may be removed from the membrane. Alternatively, the supporting structure may be porous. A porous supporting structure may be made by a non-woven textile process, a sintering process within an extrusion machine, or by extruding a polymer mixed with a second component. The second component may be a soluble solid or liquid, a super-critical gas, or a second polymer that does not react with the first polymer.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Inventors: Attila Palinkas, Marcell Marschall, Robert Szabo
  • Publication number: 20120146253
    Abstract: Disclosed is a method for producing long-fiber-reinforced thermoplastic resin pellets, comprising, pultruding a plurality of reinforced fiber bundles in a molten thermoplastic resin while twisting the plurality reinforced fiber bundles to form a strand in which the reinforced fibers are coated with the thermoplastic resin, and cutting the strand to a predetermined length to form pellets, wherein the strand is pultruded under the conditions that the melt viscosity of the thermoplastic resin is adjusted such that the melt flow rate is 500 to 1500 g/10 min, and the twisting angle ? of the reinforced fiber bundles with respect to the pultruding direction of the strand is set as follows: 0°<?<50°.
    Type: Application
    Filed: September 17, 2010
    Publication date: June 14, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventor: Takayasu Fujiura
  • Publication number: 20120149272
    Abstract: In order to produce air-laid non-woven fabrics with an adjustable strength ratio of the production direction and 90° to the production direction, two non-woven laying machines are set at an angle to the production direction.
    Type: Application
    Filed: August 17, 2011
    Publication date: June 14, 2012
    Inventor: Hubert Hergeth
  • Publication number: 20120148841
    Abstract: The present invention is directed to a high surface area fiber and method for making the same. The fiber includes a co-extruded internal fiber and an external sheath that is washed with a solvent to remove the dissolvable external sheath, the resulting fiber having a longitudinal axis and a cross-section, the cross-section having a middle region and projections extending from the middle region.
    Type: Application
    Filed: January 27, 2012
    Publication date: June 14, 2012
    Applicants: ALLASSO INDUSTRIES, NORTH CAROLINA STATE UNIVERSITY
    Inventors: Behnam Pourdeyhimi, Walter Chappas
  • Patent number: 8187520
    Abstract: The present invention provides a nonwoven fabric for filters which is excellent in dust collection efficiency and exhibits low pressure drop and excellent mechanical characteristics and rigidity, and a method of producing the nonwoven fabric. A nonwoven fabric for filters of the present invention is a nonwoven fabric for filters which is a long fiber nonwoven fabric, consisting of thermoplastic continuous filaments and formed by partially thermocompression bonding the thermoplastic continuous filaments, wherein the nonwoven fabric has a QF value (Pa?1) of 0.02 to 0.08 and stiffness of 2 to 80 mN.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: May 29, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Nobuyuki Takano, Masashi Ito, Makoto Nishimura
  • Patent number: 8182725
    Abstract: PLA stereocomplex fibers are made by separately melting a high-D PLA starting resin and a high-L starting resin, mixing the melts and spinning the molten mixture. Subsequent heat treatment introduces high-melting “stereocomplex” crystallinity into the fibers. The process can form fibers having a high content of “stereocomplex” crystallites that have a high melting temperature. As a result, the fibers have excellent thermal resistance. The process is also easily adaptable to commercial melt spinning operations.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 22, 2012
    Assignee: NatureWorks LLC
    Inventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad
  • Publication number: 20120123079
    Abstract: The invention relates to polyimide membranes and to a phase inversion method for the production thereof. The polyimide membranes can be used to separate different gas mixtures.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 17, 2012
    Applicant: Evonik Fibres GmbH
    Inventors: Markus Ungerank, Goetz Baumgarten
  • Publication number: 20120121843
    Abstract: The invention relates to the use of polyphosphonates, copoly(phosphonate ester)s, copoly(phosphonate carbonate)s, and their respective oligomers, as flame retardant additives for polyester fibers to impart fire resistance while maintaining or improving processing characteristics for melt spinning fibers.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 17, 2012
    Applicant: FRX POLYMERS, INC.
    Inventors: Marc-Andre LEBEL, Lawino Kagumba, Pin Go
  • Patent number: 8178015
    Abstract: A process and a device involves melt-spinning and cooling synthetic filaments. Therein, a plurality of filaments is extruded from a polymer melt and, after the extrusion, is guided into a cooling shaft for cooling. Within the cooling shaft cool air is blown, via a blower wall, into the cooling shaft, where, for cooling, the filaments are guided along the blower wall and at a distance from it. In order to obtain cooling adapted to the particular filament titer, the blowing onto the filaments can be set by selecting one of several operating positions, where to change the operating position of the blower wall it is moved in the direction towards the filaments or in the direction away from the filaments.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: May 15, 2012
    Assignee: Oerlikon Textile GmbH & Co. KG
    Inventors: Wiley Scott Harris, Fumin Lu, Henning Rave, Holger Schöttler
  • Publication number: 20120114940
    Abstract: According to the present invention, there are provided a polyester ultrafine fiber excellent in durability and having an antistatic property, and a method for producing the same. Further, there are provided an antistatic polyester ultrafine fiber capable of being imparted with various functions such as ultraviolet blocking effect, cation dyeability, flame retardancy, spun-like bulkiness, soft touch and resilience of the surface, reboundability, dryness, naturalness, and spunize appearance, wool-like touch feel, wrinkle recoverability, and water absorbing/quick drying property, by introduction of a third component into the antistatic polyester ultrafine fiber, combination with other fibers, change in cross sectional shape, and the like, and a method for producing the same.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 10, 2012
    Applicant: TEIJIN FIBERS LIMITED
    Inventors: Hirofumi Kamada, Suguru Nakajima
  • Publication number: 20120099982
    Abstract: A turbine nozzle element including an inner annular platform sector, an outer annular platform sector, and at least one vane extending between the platform sectors and connected to both of them. The nozzle element includes a single piece of composite material including fiber reinforcement densified by a matrix that is at least partially ceramic, and the fiber reinforcement includes a fiber structure that is woven by three-dimensional or multi-layer weaving, and that presents continuity throughout the volume of the nozzle element and throughout the periphery of the vane.
    Type: Application
    Filed: June 9, 2010
    Publication date: April 26, 2012
    Applicants: SNECMA PROPULSION SOLIDE, SNECMA
    Inventors: Dominique Coupe, Guillaume Jean-Claude, Robert Renon
  • Patent number: 8163227
    Abstract: A nanofiber spinning method and device for producing a high strength and uniform yarn made of nanofibers. The device includes: a nanofiber producing unit (2) which produces nanofibers (11) by extruding polymer solution, prepared by dissolving polymeric substances in a solvent, through small holes (7) and charging the polymer solution, and by allowing the polymer solution to be stretched by an electrostatic explosion, and which allows the nanofibers to travel in a single direction; a collecting electrode unit (3) to which an electric potential different from that of the charged polymer solution is applied, and which attracts the produced nanofibers (11) while simultaneously rotating and twisting the nanofibers, and gathers them for forming a yarn (20) made of the nanofibers (11); and a collecting unit (5) which collects the yarn (20) passed through the center of the collecting electrode unit (3).
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Patent number: 8163213
    Abstract: A method of reducing crimp in woven sailcloth comprising applying heat to warp yarn or fill yarn prior to the yarns being woven into fabric and a method of making a sail comprising assembling panels of sailcloth comprising warp yarns and fill yarns, wherein at least one panel of sailcloth is prepared by applying heat to the warp yarn or the fill yarn prior to the yarns being weaved into fabric.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 24, 2012
    Assignee: Challenge Sailcloth Inc.
    Inventor: Terry Lee Cronburg
  • Publication number: 20120091613
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 19, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Publication number: 20120091614
    Abstract: A hydroengorged spunmelt nonwoven formed of thermoplastic continuous fibers and a pattern of fusion bonds. The nonwoven has either a percentage bond area of less than 10 percent, or a percentage bond area of at least 10% wherein the pattern of fusion bonds is anisotropic.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 19, 2012
    Applicant: FIRST QUALITY NONWOVENS, INC.
    Inventors: Mordechai TURI, Michael KAUSCHKE
  • Patent number: 8147745
    Abstract: To provide a process whereby an ultrafine fiber of a fluorinated ion exchange resin can be produced easily at low cost, and a method whereby a catalyst layer having a high gas diffusion property can be produced easily at low cost.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: April 3, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Ichiro Terada, Seigo Kotera, Katsuya Fujii, Hiroyuki Watabe, Hiroshi Uyama, Chie Matsubara
  • Publication number: 20120074609
    Abstract: A method of manufacturing a non-woven web includes the step of collecting stretched filaments that form the non-woven web on a fabric in an apparatus for the formation of non-woven webs. The fabric comprises machine direction (MD) yarns and cross-machine direction (CMD) yarns, wherein the MD and CMD yarns are interwoven in a repeating pattern in which at least some of the CMD yarns are interwoven with the MD yarns in pairs that follow the same weaving sequence. Such a fabric can provide potential advantages such as reduced air leakage, reduced air disturbances, and improved web hold-down effect.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 29, 2012
    Inventors: Hans Peter Breuer, Harald Reiterer
  • Patent number: 8137809
    Abstract: The invention relates to a gel spun, ultrahigh molecular weight polyethylene (UHMWPE) multifilament yarn characterized in that said yarn comprises individual monofilaments having a coefficient of variation of their linear density, hereafter CVintra, of less than 30%, wherein the CVintra of a monofilament was determined from linear density values corresponding to a number of 20 representative lengths randomly extracted by cutting from said monofilament and using Formula 1 wherein ?i is the linear density of any one of the representative lengths extracted from the monofilament under investigation and Formula 1A is the averaged linear density over the n=20 measured linear densities of said n=20 representative lengths. The invention also relates to a gel spun UHMWPE multifilament yarn characterized in that the yarn has a coefficient of variation in linear density between the monofilaments comprising said yarn, hereafter CVinter, of less than 50%.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: March 20, 2012
    Assignee: DSM IP Assets B.V.
    Inventors: Roelof Marissen, Harm van der Werff, Joseph Arnold Paul Maria Simmelink, Evert Florentinus Florimondus De Danschutter
  • Publication number: 20120064341
    Abstract: Composite structures of carbon nanotubes (CNTs) and metal carbides include a helical nanotube/carbide composite fiber, and a film. The composite fiber was prepared by pulling/twisting carbon nanotubes from an array of nanotubes to form an as-spun fiber and soaking it a metal precursor solution, and then heating it under a reducing atmosphere with a carbon source. The composite fiber had a higher tensile strength, a higher conductivity, and a higher tensile modulus than the as-spun fiber. A composite structure in the form of parallel ribbons of aligned carbon nanotubes embedded in a film of NbC showed an enhanced conductivity along the CNT axial direction, and improved superconducting properties. The enhanced upper critical field of NbC/CNT suggested that the inclusion of CNTs in the NbC matrix reduced the coherence length of the NbC. Nanomechanical testing also demonstrated the potential for enhanced fracture toughness of NbC/CNT composites.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 15, 2012
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Guifu Zou, Yingying Zhang, Anthony Keiran Burrell, Thomas Mark McCleskey, Quanxi Jia
  • Patent number: 8133827
    Abstract: The invention concerns a fiber, obtainable by spinning a copolymer from the polymerization solution, derived from 4,4?diaminodiphenyl sulfone amine monomer and a plurality of acid monomers, wherein the plurality of acid monomers has 55 to 85 mole percent of the monomer containing a para-oriented aromatic group and 15 to 45 mole percent of the monomer containing a meta-oriented aromatic group; and yarns, fabrics and garments comprising this fiber, and methods of making the same. This fiber has use in heat-resistant protective apparel fabrics and garments.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 13, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Vlodek Gabara
  • Publication number: 20120046394
    Abstract: Novel structural materials composed of industrial hemp fiber with recycled high density polyethylene (HDPE) as well as methods for the production of the same are disclosed. The material's mechanical strength outperforms that of conventional lumber and could compete with glass fiber reinforced composites, particularly in tensile strength. In addition, this material offers many other significant advantages including insect free, high moisture resistance, no harmful chemical treatments, and no rapid corrosion in water environments.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Applicant: The University of North Carolina at Charlotte
    Inventors: Na Lu, Ralph Robert Johnson
  • Publication number: 20120043683
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 13, 2010
    Publication date: February 23, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Publication number: 20120025410
    Abstract: An apparatus for fabricating three-dimensional nonwoven fabric structure is disclosed, which includes an adjustable frame, a three-dimensional mold, a rotary shaft connecting the three-dimensional mold and the adjustable frame, and a meltblown device. The three-dimensional mold is rotated relative to the adjustable frame. The meltblown device has plural nozzles for spinning a plurality of fibers, wherein the three-dimensional mold is rotated in front of the nozzles to select the fibers, and a three-dimensional nonwoven fabric structure is formed on the three-dimensional mold.
    Type: Application
    Filed: March 7, 2011
    Publication date: February 2, 2012
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Kung-Chin Chang, Chao-Chun Peng, Ming-Chih Kuo, Cheng-Kun Chu
  • Publication number: 20120018423
    Abstract: A method is provided for reproducibly producing a carbon band twisted about its longitudinal axis. According to the method carbon fibers are fed into a processing device and are formed into a band-shaped preform having a centerline and an edge on both sides thereof. A shorter average fiber length is fed by the processing device when forming the centerline area than when forming the edges. The preform is subsequently further processed into the carbon band.
    Type: Application
    Filed: February 10, 2010
    Publication date: January 26, 2012
    Applicant: HERAEUS NOBLELIGHT GMBH
    Inventor: Sven Linow
  • Patent number: 8101035
    Abstract: A mandrel and method of making a mandrel for use as a substrate in the manufacture of woven or braided articles. The mandrel may have an inner core of foam; at least a first layer of carbon fiber-reinforced resin, and an outer layer of glass fiber-reinforced resin. The foam core may be a high density, closed cell polyurethane foam that is formed of a desired size and shape. The fibers in the first layer and outer layer may be, for example, chopped fibers, continuous longitudinally aligned fibers, circumferentially wound fibers, obliquely aligned fibers, or the fibers may have a woven or braided pattern. Multiple mandrels may be joined together to form complex mandrel shapes such as curves, ovals, and circles.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: January 24, 2012
    Assignee: A&P Technology, Inc.
    Inventor: Steven Stenard
  • Patent number: 8101104
    Abstract: According to an aspect of the present invention, a stent is provided, which contains at least one filament that has a longitudinal axis and comprises a bioabsorbable polymeric material. Polymer molecules within the bioabsorbable polymeric material are provided with a helical orientation which is aligned with respect to the longitudinal axis of the filament. The stent is at least partially bioabsorbed by a patient upon implantation or insertion of the stent into the patient.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 24, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: F. Anthony Headley, Jr., Kurt Geltz
  • Publication number: 20110318986
    Abstract: The invention provides methods for the preparation of nonwoven spunbonded fabrics and various materials prepared using such spunbonded fabrics. The method generally comprises extruding multicomponent fibers having an islands in the sea configuration such that upon removal of the sea component, the island components remain as micro- and nanofibers. The method further comprises mechanically entangling the multicomponent fibers to provide a nonwoven spunbonded fabric exhibiting superior strength and durability without the need for thermal bonding.
    Type: Application
    Filed: March 28, 2007
    Publication date: December 29, 2011
    Inventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
  • Publication number: 20110316183
    Abstract: A system that receives nanomaterials, forms nanofibrous materials therefrom, and collects these nanofibrous materials for subsequent applications. The system include a housing coupled to a synthesis chamber within which nanotubes are produced. A spindle may extend from within the housing, across the inlet, and into the chamber for collecting nanotubes and twisting them into a yarn. A body portion may be positioned at an intake end of the spindle. The body portion may include a pathway for imparting a twisting force onto the flow of nanotubes and guide them into the spindle for collection and twisting into the nanofibrous yarn. Methods and apparatuses for forming nanofibrous are also disclosed.
    Type: Application
    Filed: July 26, 2011
    Publication date: December 29, 2011
    Applicant: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Joseph J. Brown, Jared K. Chaffee, Bruce Resnicoff, Peter Antoinette
  • Publication number: 20110311368
    Abstract: A method of fabricating a turbomachine blade out of a composite material including fiber reinforcement densified by a matrix, the method including making a one-piece fiber blank by three-dimensional weaving; shaping the fiber blank to obtain a one-piece fiber preform having a first portion forming a blade airfoil and root preform and at least one second portion forming a preform for an inner or outer blade platform; and densifying the preform with a matrix to obtain a composite material blade having fiber reinforcement constituted by the preform and densified by the matrix, fowling a single part with incorporated inner and/or outer platform.
    Type: Application
    Filed: November 26, 2009
    Publication date: December 22, 2011
    Applicants: SNECMA, SNECMA PROPULSION SOLIDE
    Inventors: Dominique Coupe, Clément Roussille, Jonathan Goering, Julien Mateo, Nicolas Eberling-Fux, Guillaume Renon
  • Publication number: 20110309542
    Abstract: The invention relates to a method and an apparatus for producing a turf yam for artificial turf. According to the invention, several monofilaments or ribbons are produced from one respective polymer material in two parallel extrusion processes, the turf yarn being formed by combining several monofilaments or ribbons obtained in the first extrusion process with several monofilaments or ribbons obtained in the second extrusion process. In order to improve especially the elasticity of an artificial turf carpet made from said turf yarn, the monofilaments or ribbons obtained in one of the extrusion processes are crimped before being combined, the crimped monofilaments or ribbons and the flat monofilaments or ribbons being produced in parallel next to each other and being joined in a winding station by means of a tie thread.
    Type: Application
    Filed: March 1, 2010
    Publication date: December 22, 2011
    Applicant: OERLIKON TEXTILE GMBH & CO. KG
    Inventors: Klaus Hufschmidt, Jens Weinhold, Frank Heymann
  • Patent number: 8075820
    Abstract: The invention pertains to a method for improving filament cohesiveness of chopped aramid fiber including the steps of impregnating a film-forming binding agent into the fiber, drying the fiber, optionally applying a finish to the fiber, and chopping the fiber to pieces of 1 to 16 mm length, characterized in that the fiber prior to applying the binding agent is subjected to a twisting process to obtain a fiber having a twisting level of 10 to 150 tpm and that the chopping of the fiber is performed in a rotary chopper.
    Type: Grant
    Filed: July 1, 2006
    Date of Patent: December 13, 2011
    Assignee: Teijin Aramid B.V.
    Inventors: Stephanus Willemsen, Hendrik Berend Olde