With Twining, Plying, Braiding, Or Textile Fabric Formation Patents (Class 264/103)
  • Publication number: 20130196562
    Abstract: A copolyimide nano-fiber non-woven fabric, a process for producing the same and the use thereof. The process comprises the following steps: tetracid dianhydride monomer and diamine monomer are polycondensated in the reaction medium of a high polar solvent under mechanical agitation to form a solution of a copolyamic acid; the copolyamic acid solution is electrostatically spinned under a high voltage electric field to give a non-woven fabric of a nano-fiber of the copolyamic acid; and then the non-woven fabric is imidized. The copolyimide nano-fiber non-woven fabric has features of a strong tear resistance, a high porosity, high/low-temperature resistances and excellent mechanical properties, etc., and can be used in battery membrane and capacitor membrane.
    Type: Application
    Filed: September 30, 2010
    Publication date: August 1, 2013
    Applicant: JIANGXI ADVANCE NANOFIBER S&T CO., LTD
    Inventors: Haoqing Hou, Chuyun Cheng, Shuiliang Chen, Xiaoping Zhou, Xiaoyi Lv, Ping He, Xiaoming Kuang, Jinsheng Ren
  • Publication number: 20130189461
    Abstract: The invention relates to a tape comprising from (i) about 75 wt % to about 99.9 wt % of a thermoplastic polyester, (ii) from about 0.1 wt % to about 25 wt % of a linear low-density polyethylene and (iii) from 0 wt % to about 5 wt % of other components, said tape having a thickness from 5 ?m to 300 ?m and a width from 0.5 mm to 7 mm. This tape shows no twinning and sticking to other tapes after slitting, has very good mechanical properties. When the tape is wound, bobbins having a regular shape can be obtained.
    Type: Application
    Filed: September 27, 2011
    Publication date: July 25, 2013
    Applicants: STARLINGER & CO. GESELLSCHAFT M.B.H., SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Zahir Bashir, Herbert Furst, Franz Schneider, Robert Kraus, Christian Leeb
  • Patent number: 8491825
    Abstract: The present invention provides to a method of producing fiber from tourmaline anion fiber; of which, polypropylene or polyethylene chip, TPE and submicrometer tourmaline particle are prepared and then rolled into submicrometer tourmaline agglomerate through granulation by double screw; then, take submicrometer tourmaline agglomerate and polypropylene or polyethylene chip, of which the content of tourmaline agglomerate accounts for 1˜10% of gross weight, and TPE for 1˜40% of gross weight; tourmaline agglomerate and polypropylene or polyethylene are melted into composite fiber or filter material via spinning, such that the fiber or filter material can yield anion and present outstanding gas permeability and mechanical property.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 23, 2013
    Assignee: Noveko Trading 2008 LLC
    Inventors: Ming-Fung Lin, Hung-Jen Chen, Chia-Jen Chen, Yung-Chien Chen, Chao-Mulan Chen
  • Publication number: 20130183495
    Abstract: The disclosure features a fabric comprising polymer fibers and an antimicrobial system. The antimicrobial system comprises a sequestering agent and an agent binding the sequestering agent on surfaces of at least some of the polymer fibers. In some implementations, at least some of the sequestering agent remains on polymer fiber-surfaces after 50 cycles of laundering.
    Type: Application
    Filed: November 21, 2012
    Publication date: July 18, 2013
    Applicant: MMI-IPCO, LLC
    Inventor: MMI-IPCO, LLC
  • Publication number: 20130171421
    Abstract: A fibrous structure including filaments wherein the filaments comprise one or more filament-forming materials and one or more active agents that are releasable from the filament when exposed to conditions of intended use, the fibrous structure further having at least two regions with different properties, in particular wherein each region has different average densities. Methods of treating fabrics with a fibrous structure are also provided herein.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 4, 2013
    Applicant: THE PROCTER & GAMBLE COMPANY
    Inventor: The Procter & Gamble Company
  • Publication number: 20130161855
    Abstract: One embodiment relates to a method for producing cable. The method includes applying an insulative coating to each of a plurality of conductors to form a plurality of insulated conductors. The method further includes taking up the plurality of insulated conductors in a twisting system to twist the plurality of insulated conductors together and apply a first portion of a desired twist to the plurality of insulated conductors. The method further includes paying off the plurality of insulated conductors from the twisting system to further twist the plurality of insulated conductors together and apply a second portion of a desired twist to the plurality of insulated conductors to form a twisted plurality of insulated conductors.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventor: Glenn Edward Crouse
  • Patent number: 8469686
    Abstract: The invention relates to an apparatus for treating a multifilament thread in a melt-spinning process, wherein a treatment channel is formed between a housing plate and an impact plate. The housing plate has a nozzle bore which opens into the treatment channel and is connected to a compressed-air connection. Together with the housing plate, the impact plate forms an inlet opening and an outlet opening at both ends of the treatment channel. In order to check the swirling effects which are produced on the thread by the eddying within the treatment channel, according to the invention the impact plate has a thread guiding element in the part piece of the treatment channel between the nozzle bore and the inlet opening, which thread guiding element is configured so as to protrude into the treatment channel in order to deflect the thread.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: June 25, 2013
    Assignee: Oerlikon Textile Components GmbH
    Inventors: Mathias Stündl, Thomas Brandenstein
  • Patent number: 8470236
    Abstract: A non-woven web, comprising one or more polymeric fibers, wherein the number-average fiber diameter distribution of said one or more polymeric fibers conforms to a Johnson unbounded distribution. Non-woven webs comprising such polymeric fibers are rendered with mean-flow pore size and porosity desirable for specific filtration applications such as hepafiltration.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: June 25, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Patrick Henry Young
  • Patent number: 8470218
    Abstract: The invention relates to a process and a device for manufacturing a composite strand formed by combining continuous glass filaments with continuous high-shrinkage organic thermoplastic filaments.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 25, 2013
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Dominique Loubinoux, Bruno Gas
  • Patent number: 8460790
    Abstract: The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10?7 to 2×10?4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10?7 to 2×10?4 dtex.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 11, 2013
    Assignee: TORAY Industries, Inc.
    Inventors: Takashi Ochi, Akira Kishiro, Shuichi Nonaka
  • Publication number: 20130140729
    Abstract: The invention relates to a method and a device for producing a crimped composite thread, wherein the inventive method consists in extruding, cooling and in drawing several yarns in the form of a plurality of strand filaments and in jointly crimping them in order to obtain a crimped composite thread. The aim of said invention is to make it possible to pre-treat the threads in a manner adaptable to each treatment step. The aim is attained by that at least one multi-treaded yarn is whirl-tangled many times during several operations prior to crimping. For this purpose, a whirl-tangling device provided with a plurality of whirl-tangling units following each other in a direction of the yarn displacement is used.
    Type: Application
    Filed: February 1, 2013
    Publication date: June 6, 2013
    Applicant: OERLIKON TEXTILE GMBH & CO. KG
    Inventor: Mathias Stundl
  • Patent number: 8454867
    Abstract: A method for the manufacture of carbon-carbon composite brake discs comprises (a) heat treating a carbon-carbon composite preform in the shape of a brake disc at 1600-2540° C., (b) directly following heat treating, subjecting the heat-treated preform to Chemical Vapor Deposition/Chemical Vapor Infiltration processing, (c) infiltrating the preform with an isotropic low to medium char-yield pitch derived from coal tar, employing Vacuum Pitch Infiltration processing or Resin Transfer Molding Processing, (d) stabilizing and carbonizing the pitch-infiltrated preform (e) machining the surfaces of the resulting carbonized preform, and (f) repeating steps (c) through (e) at least two additional times to raise the density of the carbon-carbon composite preform to at least approximately 1.75 g/cc.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 4, 2013
    Assignee: Honeywell International Inc.
    Inventors: Mark L. La Forest, Neil Murdie, Allen H. Simpson
  • Publication number: 20130130029
    Abstract: An ultrahigh molecular weight polyolefin yarn of the present invention has been drawn and has a melting point that is determined as a maximum peak temperature measured by a differential scanning calorimeter (DSC) at a temperature rise rate of 20° C./min, and the melting point is higher than a melting point of the yarn before drawing. In a production method of the present invention, a drawing bath (3) that includes a hollow yarn path (14) and a jacket portion (13) in which a heated liquid circulates is placed in a drawing zone, and the yarn is heated and drawn while passing through the yarn path (14) in a non-contact manner. A drawing device of the present invention includes a feeder (1) for feeding a yarn, a drawing bath (3) for heating and drawing the yarn, and a winder (5) for winding up the drawn yarn. The drawing bath (3) includes a hollow yarn path (14) and a jacket portion (13) in which a heated liquid circulates.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 23, 2013
    Applicant: GOSEN CO., LTD.
    Inventors: Masayuki Hirose, Atsunori Yasunaga, Shoji Uesugi
  • Publication number: 20130122772
    Abstract: A nonwoven fabric is provided having a plurality of semi-crystalline filaments that are thermally bonded to each other and are formed of the same polymer and exhibit substantially the same melting temperature. The fabric is produced by melt spinning an amorphous crystallizable polymer to form two components having different levels of crystallinity. During spinning, a first component of the polymer is exposed to conditions that result in stress-induced crystallization such that the first polymer component is in a semi-crystalline state and serves as the matrix or strength component of the fabric. The second polymer component is not subjected to stress induced crystallization and thus remains in a substantially amorphous state which bonds well at relatively low temperatures. In a bonding step, the fabric is heated to soften and fuse the binder component. Under these conditions, the binder component undergoes thermal crystallization so that in the final product, both polymer components are semi-crystalline.
    Type: Application
    Filed: January 11, 2013
    Publication date: May 16, 2013
    Applicant: FIBERWEB, INC.
    Inventor: Fiberweb, Inc.
  • Publication number: 20130122293
    Abstract: Variable-diameter lanyards and systems and methods for manufacturing the same are disclosed. Variable-diameter lanyards can include a variable diameter core with a woven exterior. Tensile members may be included in the variable-diameter core for structural support and added strength.
    Type: Application
    Filed: September 28, 2012
    Publication date: May 16, 2013
    Applicant: APPLE INC.
    Inventor: Apple Inc.
  • Patent number: 8440119
    Abstract: A fabric for thermal management including the cooling of an object, such as a person's skin. The fabric is formed of a plurality of materials including at least one liquid transport enhancing material and at least one evaporative transport impeding material. When the fabric is in use, the transport enhancing material is located near an object to be cooled, while the evaporation impeding material is spaced away from the object. The fabric is peached so that there is an entanglement of the two materials. Peaching is performed on both sides of the fabric, but initially on the side with the transport enhancing material such that a portion of the evaporation impeding material is pulled into the fabric core. A method of making the fabric is also described.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: May 14, 2013
    Assignee: Tempnology LLC
    Inventors: Dennis D. Ackroyd, Francis Lai
  • Publication number: 20130108825
    Abstract: A structure may include a plurality of first fiber bundles, a plurality of second fiber bundles, and a plurality of connecting threads. The first fiber bundles may extend substantially parallel to each other. The second fiber bundles may extend substantially parallel to each other and substantially perpendicular to the first fiber bundles. The connecting threads may engage the first fiber bundles and the second fiber bundles such that at least one of the connecting threads is continuously wrapped around each of the first fiber bundles in a helical pattern. The at least one of the connecting threads may extend across a width of each of the second fiber bundles, and may thereby secure the second fiber bundles to each of the first fiber bundles. The first and second fiber bundles may be embedded in a construction material and adapted to reinforce the construction material.
    Type: Application
    Filed: December 19, 2012
    Publication date: May 2, 2013
    Applicant: FORTRESS STABILIZATION SYSTEMS
    Inventor: FORTRESS STABILIZATION SYSTEMS
  • Publication number: 20130106014
    Abstract: A process for producing a sheet-shaped prepreg includes: a fiber bundle introduction step in which tape-shaped reinforcing fiber bundles are disposed in a multilayer arrangement in the thickness direction and introduced into a die to which a molten thermoplastic resin has been supplied; a fiber bundle thickness reduction step in which each of the tape-shaped reinforcing fiber bundles is widened by means of spreading to reduce the thickness; a resin impregnation step in which the tape-shaped reinforcing fiber bundles are impregnated with the molten resin in the die; and a lamination step in which the plurality of resin-impregnated tape-shaped reinforcing fiber bundles are laminated in the die.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 2, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Soichi Ishibashi, Kazuaki Funada, Shinya Takeuchi, Tamotsu Suzuki, Rinako Eto, Masayoshi Morihara, Takeru Sasaki, Eisuke Wadahara, Yasumoto Noguchi
  • Publication number: 20130099408
    Abstract: The present invention provides nonwoven webs comprising multicomponent fibers that enable the nonwoven web to possess high extensibility. The multicomponent fibers will comprise a first component comprising a polypropylene composition having a melt flow rate of from about 100 to about 2000 grams per 10 minutes and a second component comprising a polymer composition having a melt flow rate lower than the melt flow rate of the first component. The first component comprises at least about 10% of a surface of the multicomponent fiber.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 25, 2013
    Applicant: THE PROCTER & GAMBLE COMPANY
    Inventor: The Procter & Gamble Company
  • Publication number: 20130101429
    Abstract: A turbomachine blade is made of composite material. The blade includes a first portion constituting at least an airfoil exhibiting two faces each connecting a leading edge to a trailing edge, the first portion forming a single part with at least one second portion present only on one of the faces of the airfoil. The second portion constitutes a portion of at least one of the following elements: a flowpath delimiting outer portion of an inner platform, an inner portion of an inner platform, a flowpath delimiting inner portion of an outer platform, and an outer portion of an outer platform. Portions of fiber reinforcements corresponding to the first and the second portions of the blade are at least partially mutually imbricated. Yarns of the first portion of the fiber reinforcement penetrate into the second portion of the fiber reinforcement.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 25, 2013
    Applicants: HERAKLES, SNECMA
    Inventors: Clément Roussille, Julien Mateo, Antoine Jean-Philippe Beaujard, Elric Georges André Fremont
  • Patent number: 8420004
    Abstract: The present invention provides a meltblown wetlaid method for producing non-woven fabrics from natural cellulose using pulp as raw material and N-methylmorpholine N-oxide (NMMO) as solvent for dissolving into dope. The dope is then extruded out of a spinneret to form filament bundle by meltblown method. Subsequently, by means of ejecting mist aerosol of water, the filament bundle is coagulated with regeneration. Via post treatments of water rinsing, hydro-entangled needle punching, drying, winding-up and the like have been orderly applied, then final product of nonwoven fabrics with continuous filament are produced from natural cellulose.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: April 16, 2013
    Assignee: Acelon Chemical and Fiber Corporation
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Patent number: 8420005
    Abstract: The present invention provides a meltblown wetlaid method for producing non-woven fabrics with anti-mildew, anti-bacteria and deodorizing capabilities from natural cellulose. The method comprises selecting wood pulp as raw material and using N-methylmorpholine N-oxide (NMMO) as dissolving solvent and 1,3-phenylene-bis 2-oxazoline (BOX) as stabilizer to form mixed cellulose mucilage as well as using modified and nano-miniaturized natural chitosan as additive for blending and dissolution to form cellulose dope. By meltblown method, the dope is extruded out of spinnerets to form filament bundle, then by ejecting mist aerosol of water, the filament bundle is coagulated with regeneration. After post treatments of water rinsing, hydro-entangled needle punching, drying, winding-up and the like having been orderly applied, then final product for nonwoven fabric of continuous filament with anti-mildew, anti-bacteria and deodorizing capabilities is produced.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 16, 2013
    Assignee: Acelon Chemical and Fiber Corporation
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Patent number: 8408219
    Abstract: Dental floss products are provided which include a unitary tape of ultra-high molar mass polyethylene having an intrinsic viscosity of at least 5 dl/g, as measured in decalin at 135° C., the tape having a thickness of about 0.02-0.1 mm and a width of about 0.25-6 mm, and a tensile strength of at least 1.8 GPa. The dental floss products have very high mechanical, especially tensile strength, and show high resistance to tearing and has a low coefficient of friction. The tape can be inserted between teeth tightly together without breaking. A further advantage of the dental tape products is that most of the initial strength during flossing is retained, even if the tape separates into filaments. Processes for making a unitary tape suitable for use in a dental floss product are also provided.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: April 2, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Carina S. Snijder, Christiaan H. P. Dirks, Leonard J. A. Nielaba
  • Publication number: 20130071582
    Abstract: An annular reinforcement structure is provided having a first reinforcement band and a second reinforcement band in a spaced-apart, concentric relationship, and a cast-in-place core material positioned between the first and second reinforcement bands and bonded thereto.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Inventors: Michael Edward DOTSON, James Endicott, Patrick A. Petri, Kirkland W. Vogt
  • Publication number: 20130039968
    Abstract: The invention provides a novel method of generating fabrics with outstanding antitoxic properties. The antitoxic properties are imparted to the fabric by introducing an active agent such as an antimicrobial or antiviral agent to the fabric. The active agent may be introduced into the fabric at multiple stages of the manufacturing process. For nonwoven fabrics, the active agent can be introduced during web formation and/or during post-processing steps. The fabrics produced in accordance with the present invention have widespread utility. For instance, they can be used as wound dressings, gowns, drapes, air filters, protective clothing and wipes.
    Type: Application
    Filed: February 22, 2011
    Publication date: February 14, 2013
    Applicant: TRIOMED INNOVATIONS CORP.
    Inventors: Pierre Jean Messier, David Ohayon
  • Patent number: 8372323
    Abstract: A process for preparing a PANOX fiber comprising: obtaining an acrylonitrile copolymer, wherein the copolymer contains at least about 2% by weight itaconic acid comonomer; forming a spin dope from the copolymer; wet spinning the spin dope to obtain gelled filaments; contacting the gelled filaments with ammonia activator in an aqueous imbibation bath; bundling the gelled filaments to obtain a fiber; removing solvent from the fiber; drawing the fiber; densifying the fiber by heating the fiber up to about 400 degrees C. for a time of about 15 minutes in a rapid densification zone; and withdrawing a PANOX fiber from the densification zone.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: February 12, 2013
    Assignee: International Fibers, Ltd.
    Inventor: W. Kenneth Wilkinson
  • Patent number: 8372017
    Abstract: A trackable guidewire is presented. The guidewire includes a plurality of wires arranged in a predetermined pattern to form a body of the guidewire, where the plurality of wires is configured to simultaneously provide electrical conductivity of signals and mechanical strength. A guidewire assembly is also presented, where the guidewire assembly includes a guidewire, where the guidewire includes a plurality of wires arranged in a predetermined pattern to form a body of the guidewire, and the plurality of wires is configured to simultaneously provide electrical conductivity of signals and mechanical strength, and one or more sensing devices, where the one or more sensing devices are operatively coupled to the guidewire. Methods of making the guidewire and the guidewire assembly are also contemplated in conjunction with the present technique.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 12, 2013
    Assignee: General Electric Company
    Inventors: Jonathan David Schiff, Samuel Joseph Akins
  • Patent number: 8366977
    Abstract: Provided is a process for manufacturing a polyamide yarn exhibiting good dyeability, while utilizing polyamide waste. The recycled polyamide yarn with a high waste polymer content is used for making quality articles by a low cost method, which is further friendly to the preservation of the environment.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: February 5, 2013
    Assignee: Nilit Ltd.
    Inventors: Alon Weiser, Boris Streltses, Uri Afek, Alexander Yermolaev
  • Patent number: 8367194
    Abstract: It is an object of the present invention to provide round fiber-reinforced plastic strand, a manufacturing method thereof, and a fiber-reinforced sheet which eliminate limitation in forming speed and limit on number of products capable of being manufactured at a time, do not require use of a release agent, eliminate the necessity of operations such as roughing after forming, and thus permit a considerable reduction of the manufacturing cost and a remarkable increase in the product quality.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: February 5, 2013
    Assignee: Nippon Steel Composite Co., Ltd.
    Inventors: Toshikazu Takeda, Masaki Shimada, Hidehiko Hino, Masaki Arazoe
  • Patent number: 8366988
    Abstract: The present invention provides a “spunbond wetlaid method for producing non-woven fabrics from natural cellulose” using pulp as raw material and N-methylmorpholine N-oxide (NMMO) as solvent for dissolving into dope. Then, the dope is extruded out of a spinneret to form filament bundle by spunbond method. The dope is extruded out of a spinneret bank of grouped spinnerets to form filament bundle for further stretching process under quench condition. The filament bundle is coagulated with regeneration in a coagulating solution. The coagulated filament bundle is rapidly stretched under high pressure by an air draw-off machine. The stretched filament bundle is collected and stacked on a collecting net as web nonwoven. After post treatments of water rinsing, hydro-entangled needle punching, drying, winding-up and the like have been orderly applied then final product of nonwoven fabrics with continuous filament are produced from natural cellulose.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: February 5, 2013
    Assignee: Acelon Chemical and Fiber Corporation
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Publication number: 20130023177
    Abstract: The present invention provides bicomponent fibers, a method of producing bicomponent fibers, nonwoven materials comprising one or more such bicomponent fibers, and a method for making such nonwoven materials. The bicomponent fibers according to the present invention comprise (a) a first component comprising a polymeric material selected from the group consisting of polypropylene, polyester, and polyamide; and (b) a second component comprising a polyethylene composition comprising less than or equal to 100 percent by weight of the units derived from ethylene; and less than 20 percent by weight of units derived from one or more ?-olefin comonomers; wherein the polyethylene composition has a density in the range of from 0.945 to 0. 965 g/cm3, a molecular weight distribution (Mw/Mn) in the range of from 1.70 to 3.5, a melt index (I2) in the range of from 0.2 to 150 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of from less than 2.5, vinyl unsaturation in the range of from less than 0.
    Type: Application
    Filed: February 2, 2011
    Publication date: January 24, 2013
    Applicant: Dow Blobal Technologies LLC
    Inventors: Gert J. Claasen, Angels Domenech, Thor Gudmundsson
  • Publication number: 20130023176
    Abstract: A non-woven fabric composite containing coir fibers and a method for producing such composites. The non-woven fabric composite is comprised of coir fibers, which are large diameter, lignin-rich fibers, with a high viscous flow temperature and a high degradation temperature combined with fibers made of a thermoplastic polymer with a lower viscous flow temperature such as polypropylene (“PP”), polyethylene (“PE”), polylactic acid (“PLA”), and polyester (“PET”) or mixtures thereof. A hot-pressed non-woven fabric composite material prepared from the non-woven fabric composite.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 24, 2013
    Applicant: BAYLOR UNIVERSITY
    Inventor: BAYLOR UNIVERSITY
  • Publication number: 20130015602
    Abstract: A process for the production of an aircraft panel made of double-curved composite material, with the panel being obtained from a three-dimensional preform that includes fibers that are distributed in a defined arrangement, includes manufacturing a flat fiber preform (22), and deforming the flat preform (22) in such a way as to produce the three-dimensional preform, with the fibers following suitable trajectories at the flat preform in such a way as to obtain the defined arrangement of the fibers after deformation.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 17, 2013
    Applicant: AIRBUS OPERATIONS SAS
    Inventors: Philippe BERNADET, Laurent GIUSEPPIN
  • Publication number: 20130014329
    Abstract: The present invention concerns yarns comprising copolymer derived from the copolymerization of para-phenylenediamine, 5(6)-amino-2-(p-aminophenyl)benzimidazole; and terephthaloyl dichloride wherein the ratio of moles of 5(6)-amino-2-(p-aminophenyl)benzimidazole to the moles of para-phenylenediamine is 30/70 to 85/15. The yarns have a sulfur content greater than 0.1%; and have an effective polymer cation to sulfur content molar ratio of at least 0.3. Additional aspects of the invention concern methods of producing such yarns.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 17, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: WARREN FRANCIS KNOFF, Christopher William Newton
  • Publication number: 20130009333
    Abstract: A nonwoven web comprising bicomponent fibers. The fibers have continuous phases each of a first polyarylene sulfide (PAS) component and a polymer component. The polymer component may also be a second polyarylene sulfide. The first polyarylene sulfide component contains a tin or a zinc additive or both, and the first polyarylene sulfide component of any given fiber is at least partially exposed to the external surface of that fiber.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 10, 2013
    Inventors: Lakshmi Krishnamurthy, Zuohong Yin, Joachim C Ritter, Joel M Pollino, Michael T Pottiger, John C Howe, David Matthews Laura, JR., Harry Vaughn Samuelson, Robert John Duff, Zheng-Zheng Huang
  • Patent number: 8349232
    Abstract: The invention provides methods for the preparation of nonwoven spunbonded fabrics and various materials prepared using such spunbonded fabrics. The method generally comprises extruding multicomponent fibers having an islands in the sea configuration such that upon removal of the sea component, the island components remain as micro- and nanofibers. The method further comprises mechanically entangling the multicomponent fibers to provide a nonwoven spunbonded fabric exhibiting superior strength and durability without the need for thermal bonding.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: January 8, 2013
    Assignee: North Carolina State University
    Inventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
  • Patent number: 8349119
    Abstract: A base plate (31) and an ultraviolet curing type waveguide material (32) are interposed between a pair of films (41, 42), a portion between the pair of films is decompressed or an external pressure is applied to the films, thereby laminating the ultraviolet curing type waveguide material on the base plate, and at the same time, ultraviolet rays are irradiated on the ultraviolet curing type waveguide material through the films to cure the waveguide material.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: January 8, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kenji Yanagisawa
  • Publication number: 20130005208
    Abstract: An electrically conductive structure includes a plurality of carbon fiber layers and at least one electrically conductive filament three-dimensionally woven among the carbon fiber layers. The plurality of carbon fiber layers and the at least one electrically conductive filament are operable to conduct electrical current throughout the structure.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Kevin Matthew Retz, Alan Keith Prichard
  • Patent number: 8333918
    Abstract: The present invention provides a method of making a nonwoven web, the method including the steps of providing plurality of fibers and subjecting the fibers to a pneumatic attenuation force which imparts a velocity to the fibers, reducing the velocity of the fibers in a diffusion chamber which is formed substantially between opposed diverging sidewalls, subjecting the fibers to an applied electrostatic charge, and thereafter collecting the fibers into a web on a moving forming surface. The invention also provides an apparatus for forming nonwoven webs, the apparatus comprising a source of fibers, a fiber attenuation chamber, a diffusion chamber formed substantially between opposed diverging sidewalls, the diffusion chamber located below the fiber attenuation chamber, and a forming surface for collecting the fibers as a nonwoven web.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: December 18, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Eric Edward Lennon, Thomas William Brock, Bryan David Haynes, Douglas Jay Hulslander
  • Patent number: 8313617
    Abstract: The present disclosure is directed toward a papermaking belt having a patterned framework having a continuous network region and a plurality of discrete deflection conduits isolated from one another by the continuous network region. The continuous network region has a pattern formed therein by a plurality of tessellating unit cells. Each cell has a center and at least two continuous land areas extending in at least two directions from the center. At least one of the continuous land areas at least bifurcates to form a continuous land area portion having a first width before bifurcation and at least two continuous land area portions having a second width after bifurcation where the at least two continuous land area portions are disposed at an angle ranging from about 1 degree to about 180 degrees relative to each other.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: November 20, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Osman Polat, Douglas Jay Barkey
  • Publication number: 20120280412
    Abstract: A method for producing carbon-containing fibers, in particular carbon fibers and/or the precursor fibers thereof, contains the following steps: a) providing one or more starting material fibers; b) bringing the one or more starting material fibers in contact with at least one treatment fluid, wherein a treatment fluid has at least one silicon compound and has a content of 0-25 wt. % water, in relation to the total weight of the treatment fluid; c) treating the one or more starting material fibers with the treatment fluid during a treatment time having a duration of at least three minutes at a treatment temperature ranging from 126 C to 450 C.
    Type: Application
    Filed: June 4, 2012
    Publication date: November 8, 2012
    Applicant: SGL CARBON SE
    Inventor: SANDRA SITTER
  • Patent number: 8303888
    Abstract: A process is disclosed of forming cellulose fibers. The process includes extruding an aqueous solution of cellulose and a solvent through a first member to form filaments. The first member has multiple rows of first and second openings with a nozzle positioned in each of the first openings. At least one of the nozzles in one row is staggered from at least one of the nozzles in an adjacent row. At least a portion of each of the filaments is shrouded in a pressurized gas emitted through each of the first openings. Each of the filaments is contacted with a liquid to remove some of the solvent and transform each of the filaments into a continuous solid fiber. The continuous solid fibers are then collected on a moving surface to form a non-woven cellulose web.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 6, 2012
    Assignee: Reifenhauser GmbH & Co. KG
    Inventors: Douglas B. Brown, Jeffrey D. Stark, Carmen A. Granato, Sr., Duane K. Zacharias
  • Publication number: 20120273409
    Abstract: A hollow fiber membrane is formed by embedding a braid having a spiral open weave of monofilaments only, to avoid a “whiskering” problem common in prior art multifilament braid-supported tubular membranes. The open weave is characterized by contiguous, circumferential, rhomboid-shaped areas of polymer film separated by monofilaments. When the braid is supported on a plasticized PVA cable it can be infiltrated with membrane polymer which, when coagulated embeds the braid positioning it around the lumen. The spiral weave, free of any circumferentially constricting monofilament, when embedded in film, allows the membrane to be biaxially distensible. In other words, the membrane has “give” not only in the axial or longitudinal direction but also in the radial direction. “Give” in the radial direction permits soiled membranes to be backwashed under higher pressure than in a comparable braid which is not radially distensible.
    Type: Application
    Filed: December 28, 2011
    Publication date: November 1, 2012
    Inventors: Chang Min SEO, Gyeong Mo LEE, Kwon Il KIM
  • Publication number: 20120275879
    Abstract: A fastening device for securing panels together. Threads are formed along an outer circumference of a shank of the fastening device. The shank is coaxially connected to a head configured to be engaged by and to transfer torque loads from a tool to the shank. The shank comprises concentric cylindrical braid layers that each includes braided reinforcing fibers infiltrated with a resin matrix and adhesive layers may be disposed between them.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: Lockheed Martin Corporation
    Inventor: Daniel H. Hecht
  • Patent number: 8299148
    Abstract: An object of the present invention is to provide a fiber made of polylactic acid and having excellent strength, heat resistance and heat shrinkage resistance and a manufacturing method thereof. The present invention relates to the fiber is made of a composition which includes (i) poly(L-lactic acid) having a weight average molecular weight of 50,000 to 300,000 (component A), (ii) poly(D-lactic acid) having a weight average molecular weight of 50,000 to 300,000 (component B) and (iii) 0.01 to 5 parts by weight of a phosphate metal salt (component C) based on 100 parts by weight of the total of the components A and B and has a strength of 2.5 to 10 cN/dTex and a manufacturing method thereof.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: October 30, 2012
    Assignees: Teijin Limited, Musashino Chemical Laboratory, Ltd.
    Inventors: Midori Ikegame, Takaaki Matsuda, Shin To
  • Publication number: 20120269999
    Abstract: A method for producing continuous-fiber-reinforced molded parts from thermoplastic plastics. The method includes several steps. In a first step, preparing cut-to-size, substantially flat, unidirectionally fiber-reinforced mats are prepared with a thermoplastic matrix which at least partially surrounds the fibers. In a second step, the mats are transferred to a workpiece carrier which predetermines the rough contour of the molded part. In a third step, the mats are deposited and progressively built up on the workpiece carrier to form a three-dimensional preform such that the fiber orientation of the mats is adapted to the forces applied during the subsequent use of the molded part and to the load paths resulting therefrom within the molded part. In a fourth step, the mats are secured in place relative to each other during or after completion of the build-up of the perform. In a fifth step, the preform is heated up to or above the melting temperature of the thermoplastic matrix of the perform.
    Type: Application
    Filed: December 21, 2010
    Publication date: October 25, 2012
    Applicant: REHAU AG & Co.
    Inventors: Franz-Georg Kind, Peter Michel
  • Publication number: 20120270111
    Abstract: Polyolefin woven and nonwoven fibers, filaments and fabrics made therefrom which comprise a melt blend which comprises (a) a polyolefin; and (b) at least one compound of the formula (I) R1-(hydrophilic oligomer) ??(I) wherein R1 is a straight or branched chain alkyl of 22 to 40 carbon atoms and the hydrophilic oligomer is a homo- or co-oligomer consisting of monomer units derived from monomers selected from the group consisting of ethylene oxide, propylene oxide, ethylene glycol, propylene glycol, epichlorhydrin, acrylic acid, methacrylic acid, ethylene imine, caprolactone, vinyl alcohol and vinyl acetate; and wherein the hydrophilic oligomer consists of between 2 and 10 monomer units, exhibit excellent durable wettability. The fabrics are useful in disposable diapers, training pants, feminine napkins, tampons, incontinence care products, wet and dry wipes, wound dressings, surgical capes, filter medial, battery separators and the like.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 25, 2012
    Applicant: TECHMER PM, LLC
    Inventors: Sheng-Shing Li, Andrew J. Leggio, George H. Menzie, David Devore, John J. McNamara, TaHau Yu, Douglas W. Horsey
  • Publication number: 20120261854
    Abstract: A method of manufacturing a bundle of roving yarns is described. The method is characterised in assembling a number of roving yarns of longitudinal unidirectional fibres and an additional component in a bundle. For example, at least one resin distribution means or a thermoplastic material may be placed as the additional component in the bundle.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Inventor: Erik Grove-Nielsen
  • Publication number: 20120261062
    Abstract: A method of producing a divided conduit comprising forming a strip-shaped substrate having a first longitudinal edge and a second longitudinal edge. The strip-shaped substrate is a strip-shaped textile or a strip-shaped film. Then extruding a molten thermoplastic into the form of a conduit and placing the one strip-shaped substrate within the extruded conduit during or directly after conduit formation. The first longitudinal edge and the second longitudinal edge of the strip-shaped substrate adhere to or embed into the inner surface of the conduit.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 18, 2012
    Inventors: John M. Hepfinger, Bernhard Zeiler
  • Patent number: 8282877
    Abstract: The present invention relates to a process for the production of a hydroentangled product comprising cellulose fibers, which includes the steps of (a) extruding a solution comprising cellulose dissolved in an aqueous tertiary amine-oxide through a spinneret into an air gap, thereby forming filaments (b) drawing said filaments by means of a gaseous stream (c) collecting and precipitating said filaments in order to form a web (d) bonding said web by means of a hydroentanglement process (e) contacting said filaments in the air gap with a medium which at least partially coagulates the filaments. Furthermore, the invention relates to products obtainable by said products, and uses thereof.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: October 9, 2012
    Assignee: Lenzing Aktiengesellschaft
    Inventors: Pat White, Haio Harms, Malcolm Hayhurst