Polyacrylonitrile Containing Extrudant Patents (Class 264/182)
  • Patent number: 9976234
    Abstract: The present invention provides a method for manufacturing para-aramid fibers, which includes: spinning a polymeric solution containing aramid polymer in an organic solvent through a spinneret into an inert gas to partially remove the organic solvent contained in the spun fiber; contacting the spun fiber with conditioning solution, so as to maintain residual water in fiber in a range of 10 to 15%; and subjecting the treated fiber to drawing, washing and heating in a dry-spinning manner. The present invention may greatly reduce energy consumption and costs for recovery of the solvent, as compared to a conventional manufacturing method of aramid fiber in a wet-spinning manner. Further, the present invention may solve conventional problems such as corrosion of apparatus, deterioration of working environments, or the like, since a concentrated sulfuric acid solvent is not used in a spinning process.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 22, 2018
    Assignee: KOLON INDUSTRIES, INC.
    Inventors: Tae Hak Park, Bum Hoon Lee, Jae Young Lee, Young Cheol Park, Kyeong Hwan Rho
  • Patent number: 9701814
    Abstract: The present disclosure relates to a tablet comprising at least one property modifying agent adapted to modify at least one property of a melt processable polymer and at least one processing aid having softening temperature lower than or equal to the melt processing temperature of the melt processable polymer.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: July 11, 2017
    Assignee: Reliance Industries Limited
    Inventors: Prasad Suresh Upasani, Anil Krishna Kelkar, Veedu Sreekumar Thaliyil, Uday Shankar Agarwal
  • Patent number: 9631298
    Abstract: The invention relates to a method for the production of a precursor for the production of carbon—and activated carbon fibers according to the wet—or air-gap spinning method, in which a solution of lignin and a fiber-forming polymer in a suitable solvent is extruded through the holes of a spinning nozzle into a coagulation bath, the formed thread is stretched and subsequently treated, dried at an elevated temperature and then wound up. The lignin-containing thread is an economical starting material for the production of carbon—and activated carbon fibers.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 25, 2017
    Assignee: Stora Enso OYJ
    Inventors: Andre Lehmann, Horst Ebeling, Hans-Peter Fink
  • Patent number: 9574136
    Abstract: We disclose novel metallic nanoparticles coated with a thin protective carbon shell, and three-dimensional nano-metallic sponges; methods of preparation of the nanoparticles; and uses for these novel materials, including wood preservation, strengthening of polymer and fiber/polymer building materials, and catalysis.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: February 21, 2017
    Assignee: Board of Supervisors of Louisiana State University And Agricultural and Mechanical College
    Inventor: Kun Lian
  • Patent number: 9499636
    Abstract: A process for dissolving modified cellulose includes contacting modified cellulose solution with at least one multivalent cation to form a plurality of modified cellulose particles.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: November 22, 2016
    Assignee: Covidien LP
    Inventors: Phillip Blaskovich, Valentino Tramontano, Rachit Ohri, Daniel S. Costa, Joshua Kennedy, Sajida Farooqi
  • Patent number: 9476147
    Abstract: Processes for producing carbon fiber, the filament thereof and pre-oxidized fiber are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fiber obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fiber produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fiber is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fiber is manufactured by using polymer thickening agent.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: October 25, 2016
    Assignee: DONGHUA UNIVERSITY
    Inventors: Muhuo Yu, Huaiping Rong, Keqing Han, Yiwei Zhang, Yincai Tian, Qinli Dong, Hui Zhang
  • Patent number: 9366963
    Abstract: A resist composition comprising a polymer comprising recurring units (a) of formula (1) and having a Mw of 1,000-500,000 as base resin is provided. R1 is H or methyl, X is a single bond or —C(?O)—O—R5—, R2 is a single bond or C1-C4 alkylene, R3 is C2-C8 alkylene, R4 is an acid labile group, R5 is a single bond or C1-C4 alkylene, and 0<a?1.0. The composition is of dual-tone type in that an intermediate dose region of resist film is dissolved in a developer, but unexposed and over-exposed regions of resist film are insoluble.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: June 14, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Masayoshi Sagehashi
  • Publication number: 20150037241
    Abstract: The invention relates to a method for the production of a precursor for the production of carbon- and activated carbon fibres according to the wet- or air-gap spinning method, in which a solution of lignin and a fibre-forming polymer in a suitable solvent is extruded through the holes of a spinning nozzle into a coagulation bath, the formed thread is stretched and subsequently treated, dried at an elevated temperature and then wound up. The lignin-containing thread is an economical starting material for the production of carbon- and activated carbon fibres.
    Type: Application
    Filed: May 16, 2012
    Publication date: February 5, 2015
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: André Lehmann, Horst Ebeling, Hans-Peter Fink
  • Patent number: 8845938
    Abstract: A method of manufacturing a polyacrylonitrile fiber includes a spinning process in which a spinning dope including polyacrylonitrile is spun; a first drawing process; a drying process; and a second hot drawing process in this order.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 30, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Tomoko Ichikawa, Takashi Ochi, Akira Kishiro, Yasutaka Kato, Takashi Shibata, Masafumi Ise
  • Publication number: 20140242867
    Abstract: Lignin compositions, products produced from them or containing them, methods to produce them, spinning methods, methods to convert lignin to a conversion product and conversion products produced by the methods are described.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 28, 2014
    Inventors: Robert Jansen, Aharon Eyal, Noa Lapidot, Bassem Hallac, Ziv-Vladimir Belman, Shmuel Kenig
  • Patent number: 8801985
    Abstract: A production method for a carbon fiber precursor fiber bundle and a production apparatus of the carbon fiber precursor fiber bundle. A carbon fiber precursor fiber bundle that has a degree of intermingle of 1 m?1 or less between small tows, consists of substantially straight fibers without imparted crimp, a tow of which straight fibers has a moisture content of less than 10% by mass when housed in a container, and has a widthwise dividing capability to maintain a form of a single aggregate of tows when housed in a container, taken out from the container and guided into a firing step, and to divide into a plurality of small tows in the firing step by the tension generated in the firing step.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Katsuhiko Ikeda, Atsushi Kawamura
  • Publication number: 20130281650
    Abstract: A process for preparing a PANOX fiber comprising: obtaining an acrylonitrile copolymer, wherein the copolymer contains at least about 2% by weight itaconic acid comonomer; forming a spin dope from the copolymer; wet spinning the spin dope to obtain gelled filaments; contacting the gelled filaments with ammonia activator in an aqueous imbibation bath; bundling the gelled filaments to obtain a fiber; removing solvent from the fiber; drawing the fiber; densifying the fiber by heating the fiber up to about 400 degrees C. for a time of about 15 minutes in a rapid densification zone; and withdrawing a PANOX fiber from the densification zone.
    Type: Application
    Filed: February 7, 2013
    Publication date: October 24, 2013
    Inventor: W. Kenneth Wilkinson
  • Patent number: 8536080
    Abstract: A metal carbide ceramic fiber having improved mechanical properties and characteristics and improved processes and chemical routes for manufacturing metal carbide ceramic fiber. Metal carbide ceramic fibers may be formed via reaction bonding of a metal-based material (e.g. boron) with the inherent carbon of a carrier medium. One embodiment includes a method of making a metal carbide ceramic fiber using VSSP to produce high yield boron carbide fiber. Embodiments of the improved method allow high volume production of high density boron carbide fiber. The chemical routes may include a direct production of boron carbide fiber from boron carbide powder (B4C) and precursor (e.g. rayon fiber) having a carbon component to form a B4C/rayon fiber that may be processed at high temperature to form boron carbide fiber, and that may be subsequently undergo a hot isostatic pressing to improve fiber purity. Another route may include a carbothermal method comprising combining boron powder (B) with a precursor (e.g.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 17, 2013
    Assignee: Advanced Cetametrics, Inc.
    Inventors: Farhad Mohammadi, Richard B. Cass
  • Patent number: 8372323
    Abstract: A process for preparing a PANOX fiber comprising: obtaining an acrylonitrile copolymer, wherein the copolymer contains at least about 2% by weight itaconic acid comonomer; forming a spin dope from the copolymer; wet spinning the spin dope to obtain gelled filaments; contacting the gelled filaments with ammonia activator in an aqueous imbibation bath; bundling the gelled filaments to obtain a fiber; removing solvent from the fiber; drawing the fiber; densifying the fiber by heating the fiber up to about 400 degrees C. for a time of about 15 minutes in a rapid densification zone; and withdrawing a PANOX fiber from the densification zone.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: February 12, 2013
    Assignee: International Fibers, Ltd.
    Inventor: W. Kenneth Wilkinson
  • Patent number: 8337730
    Abstract: The present invention relates to a continuous, multicellular, hollow carbon fiber wherein the fiber structure includes a substantially hollow fiber and multiple internal walls defining multiple integral internal hollow fibers such that the fiber structure comprises a honeycomb-like cross section.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: December 25, 2012
    Assignees: The Boeing Company, Hill, Inc.
    Inventors: Thomas K. Tsotsis, Jeff Haggard
  • Publication number: 20120202398
    Abstract: The present invention concerns a biodegradable fibre comprising composite filaments of cellulose and cellulose acetate, and a process for making such a fibre comprising providing a solution dope comprising a blend of cellulose and cellulose acetate in an ionic liquid or in N-methylmorphilone-N-oxide (NMMO), and spinning casting the blend into a protic solvent to generate fibres. The invention also concerns materials made from such a fibre, and garments or soft furnishings made from such a material.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 9, 2012
    Applicant: INNOVIA FILMS LIMITED
    Inventors: Colin Marshall, Jamie Moffat
  • Publication number: 20120088104
    Abstract: Provided is a carbon fiber bundle for obtaining a fiber-reinforced plastic having high mechanical characteristics. An acrylonitrile swollen fiber for a carbon fiber having openings of 10 nm or more in width in the circumference direction of the swollen fiber at a ratio in the range of 0.3 openings/?m2 or more and 2 openings/?m2 or less on the surface of the swollen fiber, and the swollen fiber is not treated with a finishing oil agent. A precursor fiber obtained by treating the swollen fiber with a silicone-based finishing oil agent has a silicon content of 1700 ppm or more and 5000 ppm or less, and the silicon content is 50 ppm or more and 300 ppm or less after the finishing oil agent is washed away with methyl ethyl ketone by using a Soxhlet extraction apparatus for 8 hours. The fiber is preferably an acrylonitrile copolymer containing acrylonitrile in an amount of 96.0 mass % or more and 99.7 mass % or less and an unsaturated hydrocarbon having at least one carboxyl group or ester group in an amount of 0.
    Type: Application
    Filed: June 10, 2010
    Publication date: April 12, 2012
    Applicant: MITSUBISHI RAYON CO., LTD.
    Inventors: Hiroshi Hashimoto, Naoki Sugiura, Yasuyuki Fujii, Hiroko Matsumura, Takahiro Okuya, Isao Ooki, Masahiro Hata, Kouki Wakabayashi, Akiyoshi Kogame, Kazunori Sumiya, Akito Hatayama
  • Publication number: 20120066866
    Abstract: A production method for a carbon fiber precursor fiber bundle and a production apparatus of the carbon fiber precursor fiber bundle. A carbon fiber precursor fiber bundle that has a degree of intermingle of 1 m-1 or less between small tows, consists of substantially straight fibers without imparted crimp, a tow of which straight fibers has a moisture content of less than 10% by mass when housed in a container, and has a widthwise dividing capability to maintain a form of a single aggregate of tows when housed in a container, taken out from the container and guided into a firing step, and to divide into a plurality of small tows in the firing step by the tension generated in the firing step.
    Type: Application
    Filed: April 7, 2011
    Publication date: March 22, 2012
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Katsuhiko IKEDA, Atsushi KAWAMURA
  • Patent number: 8012390
    Abstract: A bale of elastomer composite is formed of elastomer and filler, the bale having a void volume of at least 3%. In another aspect, a container is provided, at least a portion of the container being occupied by elastomer composite pieces of elastomer and filler, wherein the occupied portion of the container has a void volume of at least 3%.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: September 6, 2011
    Assignee: Cabot Corporation
    Inventors: Ting Wang, Glendon A. McConnell, Meng-Jiao Wang
  • Patent number: 7976945
    Abstract: In a flame resistant fiber assembly obtainable by fiber forming a flame resistant polymer, a flame resistant fiber of a higher performance is obtained by improving fiber forming ability. A carbon fiber of a high performance is obtained by carbonizing the flame resistant fiber. At obtaining a flame resistant fiber by subjecting a solution containing a flame resistant polymer modified by an amine-based compound to a wet spinning or a semi-dry spinning in a coagulation bath in such a way that a degree of swelling of a coagulated yarn at the outlet of the coagulation bath is 100 to 1000 wt % and then, in a bath, subjecting to a drawing and/or water washing and to a drying under tension, the flame resistant fiber is produced by controlling temperature of the drawing bath/water washing bath, drying temperature or tension in such a way that the obtained fiber would not crystallize. A carbon fiber is produced by carbonizing the flame resistant fiber.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: July 12, 2011
    Assignee: Toray Industires, Inc.
    Inventors: Daisuke Kawakami, Tetsunori Higuchi, Katsumi Yamasaki, Tomihiro Ishida, Koichi Yamaoka
  • Publication number: 20110129959
    Abstract: A method and apparatus for forming a crystalline semiconductor layer on a substrate are provided. A semiconductor layer is formed by vapor deposition. A pulsed laser melt/recrystallization process is performed to convert the semiconductor layer to a crystalline layer. Laser, or other electromagnetic radiation, pulses are formed into a pulse train and uniformly distributed over a treatment zone, and successive neighboring treatment zones are exposed to the pulse train to progressively convert the deposited material to crystalline material.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Stephen Moffatt
  • Patent number: 7922964
    Abstract: The invention relates to a method for producing ceramic hollow fibers from nanoscale particles and to hollow fibers produced in such a manner. The inventive method is characterized in that the ceramic material has a solids content of >25% by volume, preferably >30% by volume and is processed by means of extrusion and spinning. The hollow fiber is sintered according to conventional sintering methods. A hollow fiber produced in this manner is used for metal, polymer and ceramic matrix reinforcements, for artificial organs, for microsystems technology components, for fiber optical waveguides, for ceramic membranes, for solid electrolyte in fuel cells (SOFC), for tissue engineering and for producing extremely light ceramic parts, such as heat shields or brake systems, that are subjected to temperature stresses. The inventive ceramic batch can also be processed by means of silk screening whereby resulting in the production of filigree structures over the ceramic silk screening.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: April 12, 2011
    Assignee: ItN Nanovation AG
    Inventor: Ralph Nonninger
  • Publication number: 20110059314
    Abstract: A process for preparing a PANOX fiber comprising: obtaining an acrylonitrile copolymer, wherein the copolymer contains at least about 2% by weight itaconic acid comonomer; forming a spin dope from the copolymer; wet spinning the spin dope to obtain gelled filaments; contacting the gelled filaments with ammonia activator in an aqueous imbibation bath; bundling the gelled filaments to obtain a fiber; removing solvent from the fiber; drawing the fiber; densifying the fiber by heating the fiber up to about 400 degrees C. for a time of about 15 minutes in a rapid densification zone; and withdrawing a PANOX fiber from the densification zone.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventor: W. Kenneth Wilkinson
  • Patent number: 7655716
    Abstract: A flame-resistant polymer excelling in moldability capable of providing a flame-resistant molded item of novel configuration; a relevant flame-resistant polymer solution; a process for easily producing them; a carbon molding from the flame-resistant polymer; and a process for easily producing the same. There is provided a flame-resistant polymer modified with an amine compound. Further, there is provided a flame-resistant polymer solution in which the polymer is dissolved in a polar organic solvent. Still further, there is provided a flame-resistant molding whose part or entirety is constituted of the flame-resistant polymer modified with an amine compound. Moreover, there is provided a carbon molding whose part or entirety is constituted of a carbon component resulting from carbonization of the flame-resistant polymer modified with an amine compound. Still further, there is provided a process for producing them.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: February 2, 2010
    Assignee: Toray Industries, Inc.
    Inventors: Tetsunori Higuchi, Katsumi Yamasaki, Koichi Yamaoka, Tomihiro Ishida
  • Patent number: 7527841
    Abstract: Described is a method for dissolving PPTA or copolymers thereof in sulfuric acid using a twin screw extruder having transporting, mixing, and kneading elements with an entering zone, an intermediate zone, a mixing zone, a negative transport zone, a degassing zone, and a pressure build-up zone.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 5, 2009
    Assignee: Teijin Aramid B.V.
    Inventor: Bernardus Maria Koenders
  • Publication number: 20090061196
    Abstract: The invention concerns a fiber obtainable by spinning a copolymer from the polymerization solution, derived from a plurality of amine monomers, the plurality including 3,3?diaminodiphenyl sulfone amine monomer and at least one amine monomer having an aromatic group that is a para-oriented benzene ring, and at least one acid monomer; and yarns, fabrics and garments comprising this fiber, and methods of making the same. This fiber has use in heat-resistant protective apparel fabrics and garments.
    Type: Application
    Filed: August 22, 2008
    Publication date: March 5, 2009
    Inventor: Vlodek Gabara
  • Patent number: 7273501
    Abstract: A highly white and highly moisture absorptive and desorptive fibrous structure where a moisture absorptive and desorptive synthetic fiber having a saturated index of moisture absorption of 10% by weight or more at 20° C. and 65% RH is blended, characterised in that, degree of whiteness of said fibrous structure in terms of indication method described in JIS Z 8729 is that L* is 90 or more, a* is within a range of ±2 and b* is within a range of ±10 and durability of whiteness degree against washing after washing for ten times is class 3-4 or higher.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: September 25, 2007
    Assignee: Japan Exlan Company, Limited
    Inventors: Shigeru Nakashima, Jo Mizobe
  • Patent number: 6821599
    Abstract: Porous acrylic fibers produced by a method comprising subjecting a spinning dope containing 0.3 to 20 parts by weight of poly(vinyl acetate) relative to 100 parts of an acrylic copolymer to a wet spinning to give fibers, crimping and cutting the fibers, subjecting the resultant fibers to a treatment by hot water at 90 to 100° C. for 30 to 120 minutes or by saturated steam at 90 to 130° C. for 10 to 90 minutes to thereby form porous fibers; and a pile fabric having pile portions which comprise the porous fibers in an amount of 3 wt % or more, and, in the pile fabric, respective single fibers are visible being separate and emphasized, and thus the pile fabric has an appearance being highly decorative and excellent in design characteristics.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: November 23, 2004
    Assignee: Kaneka Corporation
    Inventors: Minoru Kuroda, Shoichi Murata, Satoru Harada
  • Publication number: 20040155377
    Abstract: There is disclosed an acrylic fiber (a) consisting of an acrylonitrile polymer comprising an acrylonitrile unit in at least 80 wt % and less than 95 wt %, (b) having a monofilament dry strength of 2.5 to 4.0 cN/dtex, (c) having a monofilament dry elongation of 35 to 50 %, and (d) forming a crack with a length of 20 &mgr;m or more in its tension rupture lateral surface along the filament axis direction when rupturing the monofilament in a tension test. The fiber has even orientation in its surface and inside; is significantly improved in dry strength, dry elongation and dyeability; and exhibits wool-like hand feeling. It is, therefore, quite suitable as a synthetic fiber for various applications such as a garment material, e.g., a sweater and a home furnishing material such as a pile.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 12, 2004
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Yukio Kasabo, Katsuhiko Ikeda, Yasuyuki Fujii, Yoshihiko Mishina, Ryo Ochi
  • Patent number: 6770364
    Abstract: The present invention provides synthetic hair comprising fiber of 30 to 100 decitex, comprising an acrylic copolymer obtained by copolymerizing acrylonitrile, vinylidene chloride and a vinyl monomer containing a sulfonic acid group and a process for preparing the synthetic hair. The synthetic hair of the present invention has favorable surface gloss and excellent knot strength and hair breaking in the sewing machine steps when preparing the weft and in implanting hair to skin when preparing wigs and toupees is improved.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: August 3, 2004
    Assignee: Kaneka Corporation
    Inventors: Shoichi Murata, Nobuyuki Nishi, Kenichiro Cho, Masaaki Yokoe, Akio Konishi
  • Patent number: 6740722
    Abstract: An acrylic fiber having cotton-like properties with modified, internal void structure and optical characteristics, the acrylic fiber comprising a BYK Gardner Luster (BYL) reflectance measurement of less than about 44.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: May 25, 2004
    Assignee: Solutia Inc.
    Inventors: Gary J. Capone, Danny W. Carter, C. Wayne Emerson
  • Patent number: 6641915
    Abstract: There is disclosed an acrylonitrile fiber bundle for a carbon fiber precursor with a total denier of 30,000 or more consisting of an acrylonitrile polymer comprising 95 wt % or more of an acrylonitrile unit, wherein the surface of filaments composing of the fiber bundle has 2 to 15 corrugation with a height of 0.5 to 1.0 &mgr;m which are substantially continuous in a longitudinal direction and an iodine adsorption per a fiber weight of the fiber bundle is 0.5 to 1.5 wt %. The fiber bundle shows a large total size, a small drying load owing to its good denseness and a good convergence so that it is suitably used as precursors for carbon fibers.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 4, 2003
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yukio Kasabo, Katsuhiko Ikeda
  • Patent number: 6630558
    Abstract: The present invention is directed to ion-sensitive, hard water dispersible polymers. The present invention is also directed to a method of making ion-sensitive, hard water dispersible polymers and their applicability as binder compositions. The present invention is further directed to fiber-containing fabrics and webs comprising ion-sensitive, hard water dispersible binder compositions and their applicability in water dispersible personal care products.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: October 7, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Yihua Chang, Pavneet S. Mumick, Frederick J. Lang
  • Publication number: 20030057593
    Abstract: An acrylic fiber having cotton-like properties with modified, internal void structure and optical characteristics, the acrylic fiber comprising a BYK Gardner Luster (BYL) reflectance measurement of less than about 44.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Inventors: Gary J. Capone, Danny W. Carter, C. Wayne Emerson
  • Patent number: 6524508
    Abstract: The present invention is directed to chitosan-containing acrylic fibers having a total chitosan content of 0.05 to 2% by weight and an extractable chitosan content of not less than 0.03% by weight to less than the total chitosan content. The antimicrobial activity of the chitosan-containing acrylic fibers of the present invention can persist for a long period of time and is not deteriorated even when subjected to posttreatments, such as dyeing and bleaching of fibers, and treatments in usual service environments of fiber products, such as washing and ironing.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: February 25, 2003
    Assignees: Mitsubishi Rayon Co., Ltd., Solutia Inc.
    Inventors: Hiroaki Ohnishi, Yoshihiro Nishihara, Hiroshi Hosokawa, Seizo Oishi, Masako Iwamoto, Yasuyuki Fujii, Hajime Itoh, Naoto Ohsuga, Gary J. Capone, Charles W. Emerson
  • Publication number: 20030020190
    Abstract: A process and apparatus for the production of polyacrylontrile (PAN) polymer fibers from a polyacrylonitrile polymer, wherein a polyacrylonitrile polymer that comprises 90 weight percent or more polyacrylonitrile, optionally mixed with from about 30 to about 50 weight percent, based on the weight of the polymer, of a fugitive plasticizer, is heated, provided to an extruder in liquid form, extruded to form polyacrylonitrile fibers, and the fibers, immediately after the extrusion, are cooled, preferably in an air-cooled manifold, to a temperature of from about 110 to about 135° C.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 30, 2003
    Applicant: John P. Fouser L.L.C.
    Inventor: John P. Fouser
  • Patent number: 6482344
    Abstract: A method for providing improved absorbency against pressure characteristics to non-surface crosslinked superabsorbent polymer fibers.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: November 19, 2002
    Assignee: Stockhausen GmbH & Co. KG
    Inventors: Bernfried A. Messner, Whei-Neen Hsu, Mark C. Joy
  • Publication number: 20020122937
    Abstract: A hollow shrinkable fiber is manufactured by wet spinning a copolymer of acrylonitrile and a halogen-containing vinyl monomer, and then carrying out steam treatment, followed by drying treatment, and then heat treatment, thus forming a marrow-like or network-like hollow portion comprising a large number of voids in a core part of the fiber cross section. The void ratio of the fiber cross section is 10 to 50%, and the dry heat shrinkage percentage of the fiber is at least 15%. The fiber has a hollow form similar to that of natural fur, is excellent in terms of bulkiness, a lightweight feeling and warmth retention, and can be used as down hairs in pile products.
    Type: Application
    Filed: November 16, 2001
    Publication date: September 5, 2002
    Inventors: Shin Sudo, Satoru Harada
  • Patent number: 6054214
    Abstract: A process for preparing high strength carbon fiber from PAN-fiber wherein the time of the oxidation step is reduced from 30-90 minutes to about 8-15 minutes and product prepared therefrom.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: April 25, 2000
    Inventor: Kenneth Wilkinson
  • Patent number: 5989683
    Abstract: A wireless polymeric twist tie that includes a wing portion and at least one rib portion. The polymeric twist tie is formed from a non-metallic polymeric composition that includes an alloy of polycarbonate and acrylonitrile butadiene styrene or an alloy of polycarbonate and polybutylene terephthalate.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: November 23, 1999
    Assignee: Bedford Industries, Inc.
    Inventors: Thomas E. Haddock, Michael P. Feltman
  • Patent number: 5853879
    Abstract: High moisture-absorbing and releasing fibers exhibiting excellent moisture-absorbing properties and moisture-releasing properties, capable of withstanding repeated use, having both flame resistance and antibacterial properties, and further having excellent whiteness and workability, as well as processes for their production, are provided. These fibers are made from acrylic fibers and have been particularly adjusted to have an increase in nitrogen content by hydrazine crosslinking, amounts of salt type carboxyl groups and amido groups, tensile strength, limited oxygen index (LOI), sterilization rate, amount of heat evolved by moisture absorption, and whiteness. The production of these fibers are achieved by hydrazine crosslinking treatment, acid treatment, alkali treatment, and conversion of carboxyl groups into those of the salt type. The above fibers can be used for various purposes and can find an enlarged range of applications.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: December 29, 1998
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Hiroyuki Takamiya, Yohko Yamamoto, Masao Ieno
  • Patent number: 5840828
    Abstract: A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3,4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340.degree. C. to 360.degree. C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: November 24, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry L. St. Clair, Catharine C. Fay, Dennis C. Working
  • Patent number: 5804108
    Abstract: A process for preparing high strength carbon fiber from PAN-fiber wherein the time of the oxidation step is reduced from 30-90 minutes to about 8-15 minutes and product prepared therefrom.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: September 8, 1998
    Inventor: Kenneth Wilkinson
  • Patent number: 5766757
    Abstract: Disclosed herein is a fiber capable of basic gas absorption and easy regeneration. Disclosed also herein is a process for producing said fiber. The basic gas absorptive fiber is an acrylic fiber characterized by a specific amount of nitrogen which is increased by crosslinking with hydrazine, a specific amount of carboxyl groups and amido groups resulting from modification of nitrile groups, and a specific value of tensile strength. It is prepared from acrylic fiber by crosslinking with hydrazine and subsequent hydrolysis and conversion of hydroxyl groups into carboxylic acid. It has good processability and can be used repeatedly.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: June 16, 1998
    Assignee: Japan Exlan Company Limited
    Inventors: Koji Tanaka, Hideyuki Tsurumi, Yoko Yamamoto
  • Patent number: 5746959
    Abstract: Acrylic fiber with persistent antifungal properties can be prepared by extruding a dope which comprises an acrylic polymer in solution and an antifungal agent through a die into a coagulating bath. The antifungal agent is preferably a neutral organic compound of low solubility in water, for example tolnaftate. The antifungal agent is preferably dispersed in the fiber in the form of fine particles.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: May 5, 1998
    Assignee: Courtaulds Fibres (Holdings) Limited
    Inventors: Roland Cox, Jonathan Michael Taylor, Julie Ann Thomson
  • Patent number: 5674438
    Abstract: This invention relates to a process for forming metal or non-metal carbide fiber from the corresponding metal or non-metal.
    Type: Grant
    Filed: July 12, 1989
    Date of Patent: October 7, 1997
    Assignee: AlliedSignal Inc.
    Inventors: Kundan M. Patel, Frank Mares, Joseph E. Mackey, Richard S. Hatami
  • Patent number: 5616292
    Abstract: A process for preparing PAN fibers under precipitation polymerization conditions in an aqueous solvent system.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: April 1, 1997
    Inventor: Kenneth Wilkinson
  • Patent number: 5521275
    Abstract: The efficiency of a redistribution catalyst during polycarbonate redistribution is improved by employing an extruder screw design that provides a melt seal between the extruder throat and the vacuum port. A melt seal exists when the free volume within the extruder is sufficiently filled with molten resin so as to prevent the passage of gases between sections of the extruder.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: May 28, 1996
    Assignee: General Electric Company
    Inventors: Patrick J. McCloskey, David M. Dardaris, Eric T. Gohr, Pin-pin Wu
  • Patent number: 5496510
    Abstract: A process for making acrylic fibers in which control of polymer composition and spin bath composition provide improved product properties.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: March 5, 1996
    Inventor: Gary J. Capone
  • Patent number: 5364581
    Abstract: A process for the rapid precipitation polymerization of acrylonitrile and a minor amount of a vinyl carboxylic acid comonomer in an environment of less than 10 ppm metal-ions to produce an acrylonitrile copolymer which, when pyrolyzed in an oxidizing atmosphere, produces a high quality carbon fiber.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: November 15, 1994
    Inventor: Kenneth Wilkinson