With Temperature Gradient Across Cross-section Of Workplace Or Heat Treatment After All Shaping Patents (Class 264/210.5)
-
Patent number: 11154197Abstract: An inflatable membrane for use with a three-dimensional (3D) scanning system configured to measure signal intensity of a first and a second wavelength of light may include a matrix material, a pigment for opacity, and a fluorescent material that is transparent to the first and the second wavelengths of light. The first and second wavelengths of light may be ranges of wavelengths. The matrix material may include a silicone, and the pigment for opacity may include a carbon black. The 3D scanning system may be configured to scan anatomical cavities, such as the human ear canal.Type: GrantFiled: March 14, 2014Date of Patent: October 26, 2021Assignee: LANTOS TECHNOLOGIES, INC.Inventors: Alison M. Forsyth, Manas Menon, Stan Najmr, Federico Frigerio, Ben Frantzdale, Michael Rishton
-
Patent number: 10968565Abstract: A method of manufacturing artificial turf includes the steps of: creating a polymer mixture including at least one polymer and a nucleating agent for crystallizing the at least one polymer, extruding the polymer mixture into a monofilament; quenching the monofilament; reheating the monofilament; stretching the reheated monofilament to form the monofilament into an artificial turf fiber, wherein during the stretching the nucleating agent boosts the creation of crystalline portions of the polymer within the monofilament; incorporating the artificial turf fiber into an artificial turf backing, thereby mechanically fixing the monofilaments of the arranged artificial turf fibers in the artificial turf backing.Type: GrantFiled: April 16, 2015Date of Patent: April 6, 2021Assignee: POLYTEX SPORTBELÄGE PRODUKTIONS GMBHInventors: Stephan Sick, Dirk Sander, Bernd Jansen, James Tritt, Dirk Schmitz
-
Patent number: 9797071Abstract: Disclosed is a polyester yarn that can be used in a fabric for an airbag. In particular, a polyester yarn having a diethylene glycol content of 1.1 to 2.5 wt % and initial modulus of 100 g/d or less, a production method thereof, and a fabric for an airbag produced therefrom are disclosed. The polyester yarn has excellent moisture and heat resistance and light resistance, and maintained excellent mechanical properties after long-term aging under high temperature and high humidity conditions. Therefore, when applied to a fabric for an airbag, the polyester yarn provides excellent packing property, shape stability, and gas barrier effect, and the impact applied to a passenger is minimized, thereby safely protecting the passenger at the same time.Type: GrantFiled: December 14, 2011Date of Patent: October 24, 2017Assignee: KOLON INDUSTRIES, INC.Inventors: Young-Jo Kim, Sang-Mok Lee, Young-Soo Lee, Gi-Woong Kim
-
Patent number: 9334586Abstract: Processes for producing carbon fiber, the filament thereof and pre-oxidized fiber are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fiber obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fiber produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fiber is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fiber is manufactured by using polymer thickening agent.Type: GrantFiled: October 20, 2014Date of Patent: May 10, 2016Assignee: DONGHUA UNIVERSITYInventors: Muhuo Yu, Huaiping Rong, Keqing Han, Zhaohua Wang, Yiwei Zhang, Yincai Tian, Qinli Dong
-
Patent number: 9290403Abstract: Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.Type: GrantFiled: February 25, 2013Date of Patent: March 22, 2016Assignee: CORNING INCORPORATEDInventors: James Gary Anderson, Steven Roy Burdette, Vladislav Yuryevich Golyatin, Jon Anthony Passmore, George Clinton Shay
-
Patent number: 8911649Abstract: The present disclosure provides polyimide fibers with kidney-shaped cross-section and their preparation methods thereof, falling within the technical field of polyimide fiber. Polyimide fibers with kidney-shaped cross-sections are prepared by a continuous, integrated approach, starting from a polyamic acid solution prepared by reacting an aromatic dianhydride with an aromatic diamine. PAA nascent fibers with kidney-shaped cross-sections are obtained by adopting a spinneret having circular orifices under wet spinning process. The kidney-shaped cross-sections are obtained by varying the processing condition, including spinning speed, coagulation bath composition, coagulation temperature, and depth of coagulation bath. After washing and drying, polyamic acid nascent fibers are converted to polyimide fibers with kidney-shaped cross-sections under thermal curing. The integrated preparation methods are suitable for mass industrial production.Type: GrantFiled: March 23, 2012Date of Patent: December 16, 2014Assignee: Beijing University of TechnologyInventors: Dezhen Wu, Enlin Han, Lun Li, Hongqing Niu, Gongping Shang, Shengli Qi, Xiaodong Wang
-
Patent number: 8906278Abstract: Processes for producing carbon fiber, the filament thereof and pre-oxidized fiber are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fiber obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fiber produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fiber is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fiber is manufactured by using polymer thickening agent.Type: GrantFiled: January 11, 2010Date of Patent: December 9, 2014Assignee: Donghua UniversityInventors: Muhuo Yu, Huaiping Rong, Keqing Han, Zhaohua Wang, Yiwei Zhang, Yincai Tian, Qinli Dong, Xi Zhao, Hui Zhang
-
Patent number: 8784710Abstract: A method of making an expanded polytetrafluoroethylene (ePTFE) membrane including the steps of: providing an unsintered or partially sintered ePTFE membrane; matting the unsintered or partially sintered ePTFE membrane; and immediately thereafter, sintering the matted ePTFE membrane. A method for making ePTFE tubes includes the steps of: providing an unsintered or partially sintered ePTFE membrane; wrapping the ePTFE membrane around a mandrel or form tool to form an ePTFE tube; matting the ePTFE tube; immediately thereafter, sintering the matted ePTFE tube; and removing the sintered ePTFE tube from the mandrel or form tool.Type: GrantFiled: March 18, 2010Date of Patent: July 22, 2014Assignee: Phillips Scientific Inc.Inventors: Douglas R. Hansen, James V. Phillips
-
Patent number: 8778247Abstract: The invention relates to a polymer film made of a polyamide composition comprising at least 80 weight percentage (wt. %) of a semi-crystalline semi-aromatic polyamide with a melting temperature (Tm) of at least 270° C., wherein the wt. % is relative to the total weight of the polymer composition, wherein the polymer film has an average coefficient of thermal expansion in plane in the temperature range of 20° C.-Tg, measured in plane with the method according to ASTM D969-08, of at most 40 ppm/K. The said film can be made from a polyamide moulding composition comprising said polyamide by film casting followed by biaxial stretching. The film has properties suitable for carrier films in flexible printed circuit boards.Type: GrantFiled: January 15, 2010Date of Patent: July 15, 2014Assignee: DSM IP Assets B.V.Inventors: Alexander Antonius Marie Stroeks, Guido Richard Struijk
-
Patent number: 8592028Abstract: The invention relates to A bi-axially stretched breathable film comprising a polymeric mixture, said polymeric mixture comprising based on the total weight of the polymeric mixture/—at least 50% of at least one polyether block copolymer; and —from 0.5 to less than 50% of at least one polyester. The invention also relates to a method to manufacture said film, and uses of said film. The invention also relates to a method for producing a bi-axially stretched breathable film comprising at least one polyether block copolymer.Type: GrantFiled: August 25, 2006Date of Patent: November 26, 2013Assignee: DuPont Teijin Films U.S. Limited PartnershipInventors: Lucien Schosseler, Alexis Grosrenaud, Duncan Henry MacKerron, Valery Rebizant
-
Publication number: 20130210308Abstract: Fibers that are formed from a thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density are provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. Fibers are thereafter formed and then stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”).Type: ApplicationFiled: February 10, 2012Publication date: August 15, 2013Applicant: KIMBERLY-CLARK WORLDWIDE, INC.Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Thomas A. Eby
-
Patent number: 8440125Abstract: Disclosed is a method for producing polyethylene films which have high resistance to deformation or elongation under loading in tension. The method comprises orienting in the machine direction (MD) a high density polyethylene film at a draw-down ratio effective to give the film an MD tensile strength at yield greater than or equal to 50,000 psi, wherein the HDPE has a density greater than 0.940 g/cm3.Type: GrantFiled: June 28, 2004Date of Patent: May 14, 2013Assignee: Equistar Chemicals, LPInventor: D. Ryan Breese
-
Patent number: 8435432Abstract: Retardation expressibility of a transparent polymer film can be easily controlled by heat treatment of the film at a temperature T (unit, ° C.) satisfying a condition of the following formula (1): Tc?T<Tm0??Formula (1) wherein Tc represents the crystallization temperature (unit, ° C.) of the film before the heat treatment; and Tm0 represents the melting point (unit, ° C.) of the film before the heat treatment.Type: GrantFiled: February 21, 2007Date of Patent: May 7, 2013Assignee: FUJIFILM CorporationInventor: Yasuyuki Sasada
-
Patent number: 8431063Abstract: A heat treatment method is provided for a panel. The panel includes a plastic housing composition, in which semiconductor chips are embedded by their rear sides and edge sides, and the top sides of the semiconductor chips form a coplanar area with the plastic housing composition. The panel is fixed by its underside on a holder, and a temperature gradient (?T) is then generated between top side and the underside of the panel. The temperature gradient (?T) is then maintained for at least one delimited or selected time period. The panel is then cooled to room temperature (TR).Type: GrantFiled: October 16, 2006Date of Patent: April 30, 2013Assignee: Intel Mobile Communications GmbHInventors: Gottfried Beer, Markus Brunnbauer, Edward Fuergut
-
Patent number: 8394306Abstract: A method for producing a thermoplastic resin micro-porous film wherein a thermoplastic resin and a solvent (A) are melted and kneaded together to prepare a solution, the solution is extruded and cooled to prepare a formed product in a gel state, and the residual solvent (A) is removed from the formed product, characterized in that in the step of removing the solvent (A) use is made of a non-aqueous solvent (B) which is compatible with the solvent (A) and not compatible with the thermoplastic resin, and has a boiling point of 100° or higher and a flashing point of 0° or higher. The use of the non-aqueous solvent (B) provides a production method which allows the removal of a solvent with good efficiency and also with the reduction of a fear of environmental pollution and catching fire.Type: GrantFiled: June 28, 2001Date of Patent: March 12, 2013Assignee: Toray Battery Separator Film Co., Ltd.Inventors: Mitsuhiro Nishida, Kohtaro Kimishima, Sadakatsu Suzuki
-
Patent number: 8388879Abstract: The present invention provides a method of preparing a flame retardant polyester fiber that makes it possible to prepare a flame retardant polyester fiber having excellent shape stability while preventing a lumping phenomenon and reducing powder generation and discoloration during the preparing process of the flame retardant polyester fiber, and a flame retardant polyester fiber prepared therefrom.Type: GrantFiled: December 21, 2007Date of Patent: March 5, 2013Assignee: Kolon Industries, Inc.Inventors: Yun-Jo Kim, Young-Soo Lee, Si-Min Kim
-
Patent number: 8377353Abstract: Conjugate fibers are prepared in which at least one segment is a mixture of a high-D PLA resin and a high-L PLA resin. These segments have crystallites having a crystalline melting temperature of at least 200° C. At least one other segment is a high-D PLA resin or a high-L PLA resin. The conjugate fibers may be, for example, bicomponent, multi-component, islands-in-the-sea or sheath-and-core types. Specialty fibers of various types can be made through further downstream processing of these conjugate fibers.Type: GrantFiled: September 26, 2008Date of Patent: February 19, 2013Assignee: NatureWorks LLCInventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad, Christopher M. Ryan
-
Patent number: 8337188Abstract: An apparatus for making a shingle, together with the shingle made thereby, is provided, in which one or more thermoplastic materials are extruded or co-extruded to form an extrudate, with the extrudate being cut into a preliminary shingle shape, which is allowed to dissipate heat, and then is delivered to a compression mold, wherein the preliminary shingle shape is compression molded to substantially its final dimensions and is then discharged from the mold and allowed to cool.Type: GrantFiled: March 5, 2010Date of Patent: December 25, 2012Assignee: CertainTeed CorporationInventors: Thomas Kevin MacKinnon, Robert E. Dodd, Joong Youn Kim, Douglas H. Wylie
-
Patent number: 8337734Abstract: A method for manufacturing a non stick medical tube is provided. The method includes providing a first plastic resin to a tubing extrusion device and providing a second plastic resin to a tubing extrusion device, the second plastic resin comprising a medical grade amide compound. The method further includes mixing the first plastic resin with the second plastic resin and extruding the resin mixture such that said medical grade amide compound is present on an inner surface of said medical tube after extrusion to promote release of contacting surfaces of said inner surface of the medical tubing after contact.Type: GrantFiled: September 10, 2010Date of Patent: December 25, 2012Assignee: CareFusion 303, Inc.Inventors: Ludmila Victoria Nikitina, Kenneth Whitley
-
Patent number: 8262963Abstract: Methods for making bioabsorbable copolymer filaments are provided herein. The methods include drying the polymer pellets to be extruded, melt extrusion of copolymer components, stretching the filaments in one or more draw steps and permitting the drawn filaments to relax. The copolymer preferably contains units derived from glycolide or glycolic acid and units derived from an alkylene carbonate, such as, for example, trimethylene carbonate.Type: GrantFiled: June 17, 2010Date of Patent: September 11, 2012Assignee: Tyco Healthcare Group LPInventors: John Kennedy, Richard P. Stevenson
-
Patent number: 8211345Abstract: This invention provides an optical film having a reduced thickness and an increased width, which is free from bleedout with the elapse of time (during storage) in a continuous wound state, a method for manufacturing an optical film, and a polarizing plate using the optical film. The optical film is a plasticizer-containing optical film having an overall width of 1500 mm to 4000 mm produced by a solution casting method. The amount of the plasticizer present in the center portion in the surface side of the optical film is determined as value A by TOF-SIMS. The amount of the plasticizer present in the center portion in the back side is determined as value B by the TOF-SIMS. Value X is determined by formula 1 based on the values A and B. The amount of the plasticizer present in the end portion in the surface side of the optical film is determined as value A? by TOF-SIMS, and the amount of the plasticizer present in the end portion of the back side is determined as value B? by the TOF-SIMS.Type: GrantFiled: July 12, 2007Date of Patent: July 3, 2012Assignee: Konica Minolta Opto, Inc.Inventor: Masahiro Shibuya
-
Patent number: 8211340Abstract: The present invention relates to a process for the production of a yarn consisting of a squared-analogous cross-section polyamide filament for uncoated airbag fabrics, characterized in that the process comprises the steps of: heating and melting a raw material of polyamide, extruding the molten polyamide through a squared-analogous spinning nozzle to form a spun filament, cooling and solidifying the spun filament, followed by drawing the filament, to obtain a squared-analogous cross-section drawn yarn; to uncoated fabrics for the manufacture of airbags prepared by the said process, characterized in that the fabrics are prepared from a yarn consisting of a squared-analogous cross-section polyamide filament and exhibit low air permeability, enhanced flame resistance and aging performance against the environment; and to a use of the uncoated fabrics for the manufacture of airbags with a low air permeability prepared therefrom.Type: GrantFiled: June 13, 2008Date of Patent: July 3, 2012Assignee: Shinkong Synthetic Fibers CorporationInventors: Swu-Chen Shen, Yi-Jen Tu
-
Patent number: 8168104Abstract: Disclosed herein are a method of manufacturing a wood plastic composite panel, including a panel manufacturing process of extruding and cooling a resin complex, such that wood fiber is uniformly dispersed into a synthetic resin matrix, to manufacture the resin complex into the form of a panel, an embossing process of forming a wood pattern corresponding to the cut-open surface of a natural lumber on the surface of the panel to a predetermined depth, and a brushing process of removing some of a synthetic resin layer from the surface of the panel to form linear micro concavo-convex parts to a predetermined depth, and an apparatus for manufacturing a wood plastic composite panel that is capable of efficiently performing the same.Type: GrantFiled: November 13, 2006Date of Patent: May 1, 2012Assignee: LG Chem, Ltd.Inventors: Yousoo Han, Seongchan Park, Jungil Son, Dongjin Kim, Sangho Han, Yunhwan Hwang
-
Patent number: 8163217Abstract: This invention relates to a method of making a heat-resistant transparent container which involves the steps of: a primary stretching and heat-setting process wherein an amorphous polyethylene terephthalate sheet is heated, primarily stretched and then primarily heat-set and a secondary stretching and heat-setting process wherein the sheet treated in the primary stretching and heat-setting process is molded with heating in a mold of a thermoforming machine while secondary stretching is performed, followed by secondary heat-setting in the same mold.Type: GrantFiled: June 12, 2007Date of Patent: April 24, 2012Assignee: Nakamoto Packs Co., Ltd.Inventors: Shigeru Takaoka, Hiroshi Shibano, Jun Kawata
-
Publication number: 20120070615Abstract: Provided is a method for producing a polyester film, including: subjecting a polyester raw material resin, which contains a titanium compound and has an intrinsic viscosity of from 0.71 to 1.00, to melt extrusion using a twin-screw extruder which includes a cylinder; two screws disposed inside the cylinder; and a kneading disk unit disposed in at least a portion of a region extending from a 10%-position to a 65%-position of screw length with respect to an upstream end of the screws in a resin extrusion direction as a starting point, at a maximum shear rate generated inside the twin-screw extruder of from 10 sec?1 to 2000 sec?1; forming an unstretched film by cooling and solidifying the melt extruded polyester resin on a cast roll; subjecting the unstretched film to biaxial stretching in a longitudinal direction and a lateral direction; and heat fixing the stretched film formed by biaxial stretching.Type: ApplicationFiled: August 29, 2011Publication date: March 22, 2012Applicant: FUJIFILM CORPORATIONInventors: Zemin SHI, Akihide FUJITA, Akira YAMADA
-
Publication number: 20120040232Abstract: This invention relates to microporous membranes comprising polyolefin, the use of such membranes as battery separators, and methods for producing such microporous membranes. In particular, the invention relates to microporous membranes having a shutdown temperature in the range of 120.0° C. to 130.0° C. and a maximum solid state heat shrinkage ?30.0%.Type: ApplicationFiled: March 5, 2010Publication date: February 16, 2012Applicant: Toray Tonen Specialty Separator Godo KaishaInventors: Takeshi Ishihara, Satoshi Miyaoka, Koichi Kono, Donna J. Crowther, Patrick Brant
-
Patent number: 8104625Abstract: A microporous membrane made of polyolefins which comprises polyethylene (PEA) 8-60 wt. % of which is accounted for by components having a molecular weight of 10,000 or lower and in which the ratio of the weight-average molecular weight (Mw) to the number-average molecular weight (Mn), Mw/Mn, is 11-100 and the viscosity-average molecular weight (Mv) is 100,000-1,000,000 and polypropylene, and which has a content of components having a molecular weight of 10,000 or lower of 8-60 wt. %, a porosity of 20-95%, and a degree of thermal shrinkage at 100° C. of 10% or lower.Type: GrantFiled: May 19, 2005Date of Patent: January 31, 2012Assignee: Asahi Kasei Chemicals CorporationInventors: Yusuke Nagashima, Hidenobu Takeyama, Daisuke Inagaki
-
Publication number: 20110304080Abstract: A geocell is disclosed that has high strength and stiffness, such that the geocell has a storage modulus of 500 MPa or greater at 23° C.; a storage modulus of 150 MPa or greater at 63° C. when measured in the machine direction using Dynamic Mechanical Analysis (DMA) at a frequency of 1 Hz; a tensile stress at 12% strain of 14.5 MPa or greater at 23° C.; a coefficient of thermal expansion of 120×10?6/° C. or less at 25° C.; and/or a long term design stress of 2.6 MPa or greater. The geocell is suitable for load support applications, especially for reinforcing base courses and/or subbases of roads, pavement, storage areas, and railways.Type: ApplicationFiled: August 24, 2011Publication date: December 15, 2011Inventors: Izhar Halahmi, Oded Erez, Adi Erez
-
Publication number: 20110306747Abstract: A polyester film containing a polyester resin having an intrinsic viscosity IV of from 0.73 to 0.9 dL/g in which the polyester film has a specific heat change at 85° C. to 135° C. (?Cp) of from 0.06 to 0.1 J/g, has an excellent weather resistance, a good planar surface state and a low thermal shrinkage.Type: ApplicationFiled: June 10, 2011Publication date: December 15, 2011Applicant: FUJIFILM CORPORATIONInventors: Kiyokazu HASHIMOTO, Yasutomo GOTO, Kenji KANO
-
Patent number: 8038430Abstract: A method of coating metal wire with extrudate using an extrusion system. The method includes the steps of advancing the metal wire through an extrusion die of the extrusion system and extruding molten extrudate over the metal wire as the metal wire is advanced through the extrusion die. Image data is generated, using one or several electronic cameras, concurrently with the advancing, and extruding to provide visual feedback indicative of the concentricity or non-concentricity of extrudate surrounding the metal wire as the metal wire exits the extrusion die.Type: GrantFiled: October 13, 2009Date of Patent: October 18, 2011Assignee: Advanced Neuromodulation Systems, Inc.Inventors: John W. Swanson, Lucien M. Rucker
-
Publication number: 20110224369Abstract: A heat-shrinkable polyester film having a heat-shrinkage change per degree Celsius (%/° C.) along the main shrinkage direction of 1.5 to 3.0 in the range of 60° C. to 70° C., 2.5 to 3.5 in the range of 70° C. to 80° C., 1.0 to 2.0 in the range of 80° C. to 90° C., and 0.1 to 1.0 in the range of 90° C. to 100° C., has a good appearance quality after shrinkage and thus suitable for a wrapping material, particularly a label for a bottle.Type: ApplicationFiled: March 7, 2011Publication date: September 15, 2011Applicant: SKC CO., LTD.Inventors: Seong Do KIM, Tae Byoung OH, Tae Houng JEONG
-
Patent number: 8017052Abstract: A process and apparatus for making a shingle, together with the shingle made thereby, is provided, in which one or more thermoplastic materials are extruded or co-extruded to form an extrudate, with the extrudate being cut into a preliminary shingle shape, which is allowed to dissipate heat, and then is delivered to a compression mold, wherein the preliminary shingle shape is compression molded to substantially its final dimensions and is then discharged from the mold and allowed to cool.Type: GrantFiled: January 7, 2010Date of Patent: September 13, 2011Assignee: CertainTeed CorporationInventors: Thomas Kevin MacKinnon, Robert E. Dodd, Joong Youn Kim, Douglas H. Wylie
-
Patent number: 7993569Abstract: The present invention provides a method of manufacturing high-melting-tension heat-resistant transparent or opaque sheets, boards, and molds from polyethylene terephthalate (PET). The method is characterized in that a mixture of: (1) PET polyester whose melt flow rate (MFR) is 45-130 g/10 minutes (a); (2) coupling agent master batch (f) comprising coupling agent (d) and substrate (e), wherein coupling agent (d) is a mixture of compounds containing 2 epoxy groups (b) and compounds containing 3 or more epoxy groups (c); and (3) catalyst master batch (i) comprising coupling reaction catalyst (g) and substrate (h); is melted in a reaction-extruder to give PET polyester whose MFR is 40 g/10 minutes or less.Type: GrantFiled: August 27, 2004Date of Patent: August 9, 2011Assignees: FTEX, Incorporated, Nakamoto Packs Co., Ltd.Inventors: Yukio Kobayashi, Takashi Fujimaki, Takashi Nakamoto
-
Patent number: 7966743Abstract: A dryer operable in close proximity to and in series with an inkjet printhead comprises a heat source and an air bearing structure on one side of the predetermined path and having a pressurized air inlet and an air outlet adjacent to the drying position of the receiver medium. Air flow from the air bearing structure outlet forms an air bearing for the receiver medium. A microporous filter positioned at the outlet and being adapted to convert the air flow from the outlet to a diffuse flow, the microporous filter being formed of an inner layer of very fine screen for optimum air diffusion and an outer layer of courser woven screen to add rigidity and protection from scuffing.Type: GrantFiled: July 31, 2007Date of Patent: June 28, 2011Assignee: Eastman Kodak CompanyInventors: Michael J. Piatt, Kenneth E. Hix, Daniel Gelbart
-
Patent number: 7964127Abstract: A method for producing an optical film comprising the steps of: (i) melt casting a cellulose ester resin or a cycloolefin resin by extruding melt of the cellulose ester resin or the cycloolefin resin from a die onto a roll-shaped cooling drum; (ii) cooling and solidifying the extruded melt to form a film; (iii) stretching the film in a lateral direction of the film; and (iv) winding the film in a roll, wherein the cooling drum has plural regions divided predeterminedly in an axis direction of the cooling drum, a temperature of each region being independently controlled.Type: GrantFiled: August 26, 2010Date of Patent: June 21, 2011Assignee: Konica Minolta Opto, Inc.Inventor: Kenichi Kazama
-
Patent number: 7938999Abstract: An object of the present invention is to provide: a process for conveniently producing a fiber with high strength, regardless of molecular weight polymer composition, or the like of PHAs, which vary depending on origins such as a wild-type PHAs-producing microorganism product, a genetically modified strain product, and a chemical product; and the fiber with high strength produced through the process. The present invention provides: a process for producing a fiber, comprising: melt-extruding polyhydroxyalkanoic acid to form a melt-extruded fiber; rapidly quenching the melt-extruded fiber to the glass transition temperature of polyhydroxyalkanoic acid +15° C. or less, and solidifying the fiber to form an amorphous fiber; forming a crystalline fiber by leaving the amorphous fiber to stand at the glass transition temperature +15° C. or less; drawing the crystalline fiber; and further subjecting the crystalline fiber to stretch heat treatment.Type: GrantFiled: August 4, 2005Date of Patent: May 10, 2011Assignee: RikenInventors: Tadahisa Iwata, Toshihisa Tanaka, Yoshiharu Doi
-
Patent number: 7879272Abstract: An oriented thermoplastic elastomer film having reduced permeability and improved fatigue resistance comprising a dynamically vulcanized polymer blend of (A) a halogenated isobutylene elastomer and (B) polyamide, the film is produced by casting or blowing the above polymer blend under the condition such that a shear rate at a die lip for casting or blowing is regulated to control the molecular arrangement in the film, whereby the planar birefringence (PBR) of the resultant film becomes greater or equal to 0.002 and a production process of the same.Type: GrantFiled: December 28, 2009Date of Patent: February 1, 2011Assignees: ExxonMobil Chemicals Patents, Inc., The Yokohama Rubber Co., Ltd.Inventors: Yoshihiro Soeda, Andy Haishung Tsou, Foshee Joyce Caraway
-
Patent number: 7871554Abstract: The invention is directed to a process for producing polyimide film, including stretching, at 150° C. to 380° C. and a stretch ratio of 1.2 to 4.0, an unstretched polyimide film which is formed from a polyimide having a repeating unit represented by formula (1): (wherein R represents a tetravalent group derived from cyclohexane; and ? represents a divalent aliphatic, alicyclic, or aromatic group, or a combination thereof that has a total number of carbon atoms of 2 to 39 and may have at least one connecting group selected from the group consisting of —O—, —SO2—, —CO—, —CH2—, —C(CH3)2—, —OSi(CH3)2—, —C2H4O—, and —S—) and which has an organic solvent content of 0.5 wt. % or more and less than 30 wt. %. The produced polyimide film exhibits transparency, excellent heat resistance, and reduced dimensional changes.Type: GrantFiled: April 10, 2006Date of Patent: January 18, 2011Assignee: Mitsubishi Gas Chemical Company, Inc.Inventors: Jitsuo Oishi, Takashi Makinoshima, Ko Kedo, Shuta Kihara
-
Patent number: 7833468Abstract: The improved method and apparatus for longitudinal orientation of a tubular thermoplastic film as it leaves an annular extrusion die aims at a better control of this orientation. On its travel between the exit orifice (21) and the draw-down means, the at least partly molten film passes an annular frictional device (101), and the frictional force set-up hereby is variable in controlled manner. This device is cooled from its interior (105) in controlled manner by means of a fluid cooling medium. The friction may be controlled by airlubrication with air pressed through holes (123) in the frictional device or through microporous metal, (102) or alternatively by sucking the film against the frictional device.Type: GrantFiled: October 14, 2002Date of Patent: November 16, 2010Inventor: Ole-Bendt Rasmussen
-
Publication number: 20100233390Abstract: To provide a fiber made of a vinyl chloride resin which is excellent in heat resistance and thus hardly shrinks thermally even at a temperature exceeding 100° C. The fiber obtained by melt-spinning a resin composition comprising a vinyl chloride resin and from 1 to 300 parts by mass of a polyester resin based on 100 parts by mass of the vinyl chloride resin, wherein the vinyl chloride resin has a viscosity average polymerization degree of from 600 to 2,500; the polyester resin is a polylactic acid type resin; and the polyester resin has the melting point of from 100 to 300° C.Type: ApplicationFiled: February 22, 2007Publication date: September 16, 2010Applicant: DENKI KAGAKU KOGYO KABUSHIKI KAISHAInventors: Akira Sakurai, Yukihisa Hoshino
-
Patent number: 7785510Abstract: A process and apparatus for making a shingle, together with the shingle made thereby, is provided, in which one or more thermoplastic materials are extruded or co-extruded to form an extrudate, with the extrudate being cut into a preliminary shingle shape, which is allowed to dissipate heat, and then is delivered to a compression mold, wherein the preliminary shingle shape is compression molded to substantially its final dimensions and is then discharged from the mold and allowed to cool.Type: GrantFiled: September 15, 2005Date of Patent: August 31, 2010Assignee: CertainTeed CorporationInventors: Thomas Kevin MacKinnon, Robert E. Dodd, Joong Youn Kim, Douglas H. Wylie
-
Patent number: 7767298Abstract: An electrically conductive composite fiber comprising an electrically conductive layer formed of a polyester-based polymer (A) having a melting point of 200° C. or higher and containing from 23 to 33% by weight of electrically conductive carbon black, and a protective layer formed of a polyester-based polymer (B) having a melting point of 210° C. or higher, wherein the difference between the SP value of the (A) and the SP value of the (B) is adjusted to not greater than a predetermined value and the fiber strength and the elongation at break are adjusted within certain ranges. This can make it possible to obtain an electrically conductive composite fiber that has a superior antistatic performance, which is not degraded very much over a practical wearing for a long term, though it contains only a relatively small amount of electrically conductive carbon black, and that is suitable for the field of clothing such as clean room wears and working wears.Type: GrantFiled: October 13, 2006Date of Patent: August 3, 2010Assignee: Kuraray Co., Ltd.Inventors: Hitoshi Nakatsuka, Tadayoshi Koizumi, Kazuhiko Tanaka, Nobuhiro Koga, Masao Kawamoto, Kenichi Yoshioka
-
Publication number: 20100119804Abstract: Method for spinning polyether block amides (PEBAs) into fibers, whereby use is mainly made of at least one extruder, a cooling system, a sequential line for stretching, a relaxation unit, a heating unit and a winding system, characterized in that polyether block amides are taken as a base material whose initial hardness is situated between shore D15 and 80, better still between shore D20 and 75, even better between shore D27 and 69, and in that the stretched fibers are subjected to a temperature treatment in a heating unit before being wound, whereby their shrinkage is reduced to 0-10%, better still to 0-5% and even better to 0-3%.Type: ApplicationFiled: November 12, 2009Publication date: May 13, 2010Inventors: Dominique VAN MALDEREN, Herbert Maria De Breuck
-
Patent number: 7674524Abstract: A major object of the invention is to provide a thermoadhesive conjugate fiber with low heat shrinkability and high adhesion having low orientation and high elongation and having extremely satisfactory card-passing properties. The object of the invention can be achieved by a thermoadhesive conjugate fiber made of a fiber forming resin component and a crystalline thermoplastic resin having a melting point of at least 20° C. lower than that of the fiber forming resin component and having a breaking elongation of from 60 to 600%, a dry heat shrinkage percentage at 120° C. of from ?10.0 to 5.0%, and more preferably a percentage of crimp/number of crimps of 0.8 or more; and a manufacturing method of a thermoadhesive conjugate fiber, which includes drawing an undrawn yarn of a conjugate fiber taken up at a spinning rate of from 150 to 1,800 m/min in a low draw ratio of from 0.5 to 1.Type: GrantFiled: February 2, 2007Date of Patent: March 9, 2010Assignee: Teijin Fibers LimitedInventor: Hironori Goda
-
Patent number: 7674412Abstract: The apparatus is for forming a resin film from a resin for a middle portion to form a resin film main body of the resin film and a resin for edge portions to form both side edge portions in a crosswise direction of the resin film. The apparatus comprises: a feed block which includes a joining part where the resin for the middle portion in a molten state and the resin for the edge portions in a molten state are joined in such a manner as to enclose both side edges in the crosswise direction of the resin film main body with the resin for the edge portions; and an extruding die through which the joined resins are extruded to form the resin film. Thus, a method and apparatus for forming the resin film can avoid the inclusion of the resin for the middle portion in the trimmed-off selvages while preventing the film separation of the resins for the middle portion and for the edge portions, and therefore, increase the recyclability and the productivity of the resin film.Type: GrantFiled: December 2, 2003Date of Patent: March 9, 2010Assignee: FUJIFILM CorporationInventors: Tadahiro Kegasawa, Ryuichi Katsumoto, Masanori Takase
-
Patent number: 7662325Abstract: The present invention is a process for producing a fiber, comprising: melt-extruding polyhydroxyalkanoic acid; solidifying the polyhydroxyalkanoic acid by quenching it to its glass transition temperature +15° C. or less, to form an amorphous fiber; cold-drawing the amorphous fiber at its glass transition temperature +20° C. or less; and subjecting the fiber to heat treatment under tension. The present invention can provide: a process for producing a fiber with high strength, and the fiber produced through the process; and a process for producing a fiber with high strength and high modulus of elasticity and the fiber with high strength and high modulus of elasticity produced through the process, regardless of molecular weights of PHAs varying depending on origins such as a wild type PHAs-producing microorganism product, a genetically modified product, and a chemical product.Type: GrantFiled: February 1, 2007Date of Patent: February 16, 2010Assignees: Riken, Japan Science and Technology AgencyInventors: Tadahisa Iwata, Yoshiharu Doi, Hideki Yamane
-
Patent number: 7641825Abstract: Absorbable polyester fibers, braids, and surgical meshes with improved handling properties have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available and have a decreased tendency to curl, in the preferred embodiment, due to the inclusion of relaxation and annealing steps following methods are characterized by the following physical properties: (i) elongation to break from about 17% to about 85% (ii) Young's modulus of less than 350,000 psi, (iii) knot to straight ratio (knot strength/tensile strength) of 55-80% or (iv) load at break from 1100 to 4200 grams.Type: GrantFiled: July 29, 2005Date of Patent: January 5, 2010Assignee: Tepha, Inc.Inventor: Said Rizk
-
Patent number: 7622063Abstract: A filter element in the form of a nonwoven self-supporting filtration web having rows of folded or corrugated spaced-apart pleats, the web containing continuous thermoplastic fibers a majority of which are aligned at 90°±20° with respect to the row direction. The filter element can be made by forming rows of pleats in such a nonwoven web and cutting the web to a desired size and shape. The filter elements can provide improved mechanical and filtration properties and can exhibit reduced susceptibility to pleat deformation and the loss of space between pleats.Type: GrantFiled: July 17, 2006Date of Patent: November 24, 2009Assignee: 3M Innovative Properties CompanyInventors: Douglas C Sundet, Rahul R. Shah, John M. Brandner, Tien T. Wu
-
Patent number: 7611652Abstract: A monoaxially-oriented polymeric film material formed from an impact copolymer and having increased toughness relative to films that are monoaxially-oriented at conventional temperatures. A process for imparting high cross machine toughness to polymer films comprises forming a film; subjecting the film to monoaxial orientation, drawing the film; tempering the film, and annealing the film.Type: GrantFiled: June 2, 2006Date of Patent: November 3, 2009Assignee: Shaw Industries Group, Inc.Inventors: Larry L. English, Jeffrey W. Adams
-
Patent number: 7578957Abstract: Improved staple fibers and processes for producing them are provided. The processes are particularly useful for forming staple fibers from poly(trimethylene terephthalate), especially carpet staple fibers. The processes include prewetting undrawn yarns and drawing the fibers under wet and warm conditions, thermo-fixing the texture, and drying at relatively low temperatures. Fibers produced according to the processes disclosed herein have improved properties and reduced brittleness as compared to fibers prepared using conventional processes.Type: GrantFiled: December 10, 2003Date of Patent: August 25, 2009Assignee: E. I. du Pont de Nemours and CompanyInventors: Jing Chung Chang, Richard Lee Dommel, Ramunas L. Valteris, Robert Mamoru Linek, Alfred Harold Thompson, Nirmal Kumas Agarwal