Plural Treatment Stages Or Zones Patents (Class 264/211.18)
  • Patent number: 11964422
    Abstract: Described herein are various embodiments of a valve that may be opened and closed using a thixotropic or “stress yield” material, or other material that temporarily changes phase upon application of energy to the material. More particularly, some embodiments may include a valve that is opened and closed using a granular gel that is a temporary phase change material.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: April 23, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Joshua Muse, Meghan Hughes, Carl David Crane, Thomas Ettor Angelini, Kyle D. Schulze, Tapomoy Bhattacharjee, Wallace Gregory Sawyer, Curtis Taylor
  • Patent number: 8968615
    Abstract: A bulk of polyester polymer particles comprising polyester polymer comprising greater than 75% virgin polyester polymer, the particles having: A) an It.V. of at least 0.72 dl/g, and B) 10 ppm or less of residual acetaldehyde; and C) at least two melting peaks, wherein one of said at least two melting peaks is a low peak melting point within a range of 140° C. to 220° C. and having a melting endotherm area of at least the absolute value of 1 J/g. The particles may also have a degree of crystallinity within a range of 20% and a maximum degree of crystallinity Tcmax defined by the equation: Tcmax=50%?CA?OH where CA is the total mole % of all carboxylic acid residues other than terephthalic acid residues, based on 100 mole % of carboxylic acid residues, and OH is the total mole % of all hydroxyl functional compound residues other than ethylene glycol residues, based on 100 mole % of hydroxyl functional compounds residues.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: March 3, 2015
    Assignee: Eastman Chemical Company
    Inventors: Michael Paul Ekart, Frederick Leslie Colhoun, Mary Therese Jernigan, Stephen Weinhold, Rodney Scott Armentrout
  • Patent number: 8946375
    Abstract: A method for making over-indexed thermoplastic polyurethane elastomer precursor. The precursor may be cross-linked.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 3, 2015
    Assignee: NIKE, Inc.
    Inventors: Yasushi Ichikawa, Thomas J. Kennedy, III, Chien-Hsin Chou, Hui-Kai Liao
  • Patent number: 8906277
    Abstract: The invention relates to film products containing desired levels of active components and methods of their preparation. Desirably, the films disintegrate in water and may be formed by a controlled drying process, or other process that maintains the required uniformity of the film. Desirably, the films may be exposed to temperatures above that at which the active components typically degrade without concern for loss of the desired activity.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 9, 2014
    Assignee: MonoSol Rx, LLC
    Inventors: Robert K. Yang, Richard C. Fuisz, Garry L. Myers, Joseph M. Fuisz
  • Patent number: 8900497
    Abstract: The invention relates to the film products and methods of their preparation that demonstrate a non-self-aggregating uniform heterogeneity. Desirably, the films disintegrate in water and may be formed by a controlled drying process, or other process that maintains the required uniformity of the film. The films contain a polymer component, which includes polyethylene oxide optionally blended with hydrophilic cellulosic polymers. Desirably, the films also contain a pharmaceutical and/or cosmetic active agent with no more than a 10% variance of the active agent pharmaceutical and/or cosmetic active agent per unit area of the film.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 2, 2014
    Assignee: MonoSol Rx, LLC
    Inventors: Robert K. Yang, Richard C. Fuiz, Garry L. Myers, Joseph M. Fuiz
  • Patent number: 8900498
    Abstract: The invention relates to the film products and methods of their preparation that demonstrate a non-self-aggregating uniform heterogeneity. Desirably, the films disintegrate in water and may be formed by a controlled drying process, or other process that maintains the required uniformity of the film. The films contain a polymer component, which includes polyethylene oxide optionally blended with hydrophilic cellulosic polymers. Desirably, the films also contain a pharmaceutical and/or cosmetic active agent with no more than a 10% variance of the active agent pharmaceutical and/or cosmetic active agent per unit area of the film.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 2, 2014
    Assignee: MonoSol Rx, LLC
    Inventors: Robert K. Yang, Richard C. Fuisz, Garry L. Myers, Joseph M. Fuisz
  • Patent number: 8784710
    Abstract: A method of making an expanded polytetrafluoroethylene (ePTFE) membrane including the steps of: providing an unsintered or partially sintered ePTFE membrane; matting the unsintered or partially sintered ePTFE membrane; and immediately thereafter, sintering the matted ePTFE membrane. A method for making ePTFE tubes includes the steps of: providing an unsintered or partially sintered ePTFE membrane; wrapping the ePTFE membrane around a mandrel or form tool to form an ePTFE tube; matting the ePTFE tube; immediately thereafter, sintering the matted ePTFE tube; and removing the sintered ePTFE tube from the mandrel or form tool.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 22, 2014
    Assignee: Phillips Scientific Inc.
    Inventors: Douglas R. Hansen, James V. Phillips
  • Patent number: 8771516
    Abstract: Permselective asymmetric membranes suitable e.g. for hemodialysis, hemodiafiltration and hemofiltration of blood, and having improved performance, including improved sieving characteristics, providing enhanced removal of middle molecular weight substances, e.g. inflammatory mediators having a molecular weight between 20 and 40 kDa. The improved sieving characteristics are due to a narrow pore size distribution of the membranes created in the production process. Processes for the preparation of these membranes, devices comprising these membranes, and the use of these membranes in hemodialysis, hemodiafiltration and hemofiltration of blood, as well as in bioprocessing, plasma fractionation and the preparation of protein solutions.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: July 8, 2014
    Assignee: Gambro Lundia AB
    Inventors: Bernd Krause, Carina Zweigart, Heinrich Behr
  • Patent number: 8734609
    Abstract: A process for continuous manufacturing of moisture-curable polyurethane formulations used as sealants and adhesives. The process is characterized by the fact that the reactive components are introduced independently, and without the need for a prepolymer, to a mixer. Solid or liquid raw materials can be either pre-blended or fed directly to the mixer, a twin-screw extruder, which provides the requisite energy to homogenously mix the raw materials and drive the chemical reaction. The process is designed so that the extruder barrel and screw allow variable feed addition and heat exchange down the length of the machine. This allows various operations to be performed at different points in the extruder, including reaction, dispersive mixing, distributive mixing and devolitization.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 27, 2014
    Assignee: Bostik, Inc.
    Inventor: Sean G. Duffy
  • Patent number: 8597555
    Abstract: The present invention relates to a method for manufacturing nonwoven and nonwoven obtainable by said method. Particularly, the invention relates to a nonwoven provided with improved tactile and absorbent characteristics, which make it suitable for use in the field of surface cleaning, personal hygiene, or formation of garments. The method is based on the use of lobed spunbonded filaments which have been treated by means of thickening means.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 3, 2013
    Assignee: Ahlstrom Corporation
    Inventor: Roberto Pedoja
  • Patent number: 8580175
    Abstract: A method of continuous curing and post-curing of a plurality of extruded strands is provided. A plurality of extruded strands is wrapped through a plurality of spindle units rotatably connected to a rigid frame structure. A plurality of dual spindles are provided in a plurality of upper and lower spindle units, wherein each dual spindle comprises a free spinning roller and a driven roller. A chamber that comprises a dual function chamber configured for heating and cooling is supported on the rigid frame structure. The plurality of extruded strands is continuously transferred between the upper spindle units and the lower spindle units such that the plurality of extruded strands runs in a vertical fashion that continuously alternates between the lower spindle units and the upper spindle units. Each of the plurality of strands is transferred independently of each other and continuously passed through the chamber for continuous curing and post-curing.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: November 12, 2013
    Inventor: Michael R. Thomas
  • Patent number: 8529817
    Abstract: The present invention provides a stretched thermoplastic resin foam sheet that has excellent flexibility even compressed to a thickness as thin as about 0.05 mm, and a method for producing the same. The stretched thermoplastic resin foam sheet of the present invention is producible by stretching a thermoplastic resin foam sheet and has a compressive strength of 1 to 500 kPa as measured in accordance with JIS K6767 when compressed in a thickness direction thereof to a thickness of 0.05 mm. Accordingly, the stretched thermoplastic resin foam sheet has excellent flexibility even compressed to a thickness as thin as about 0.05 mm and is suitably used as a sealing material for a small electronic device such as mobile phones.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 10, 2013
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Takumei Uno, Eiji Tateo, Futoshi Kanazawa
  • Patent number: 8440125
    Abstract: Disclosed is a method for producing polyethylene films which have high resistance to deformation or elongation under loading in tension. The method comprises orienting in the machine direction (MD) a high density polyethylene film at a draw-down ratio effective to give the film an MD tensile strength at yield greater than or equal to 50,000 psi, wherein the HDPE has a density greater than 0.940 g/cm3.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 14, 2013
    Assignee: Equistar Chemicals, LP
    Inventor: D. Ryan Breese
  • Patent number: 8361366
    Abstract: A process for preparing ultra-high molecular weight poly(alpha-olefin) (UHMWPO) multi-filament yarns having improved tensile properties at higher productivity. The process includes drawing a solution yarn, then drawing a gel yarn and then drawing a dry yarn continuously in sequence to form a partially oriented yarn, winding up the partially oriented yarn, unrolling the yarn, drawing the partially oriented yarn to form a highly oriented yarn, cooling the highly oriented yarn under tension and winding up the highly oriented yarn.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 29, 2013
    Assignee: Honeywell International Inc.
    Inventors: Thomas Yiu-Tai Tam, Qiang Zhou, John A. Young, Charles R. Arnett, John E. Hermes
  • Patent number: 8287786
    Abstract: A method and apparatus for using a cryogen for cooling articles, particularly having applications for chilling extrusions. The apparatus and method including removing thermal energy from an article by conductive and convective heat transfer. The apparatus and method allows for heat transfer from an outer surface of an article, and from an inner surface of the article.
    Type: Grant
    Filed: November 17, 2007
    Date of Patent: October 16, 2012
    Inventor: Michael R. Thomas
  • Publication number: 20120074064
    Abstract: Permselective asymmetric membranes suitable e.g. for hemodialysis, hemodiafiltration and hemofiltration of blood, and having improved performance, including improved sieving characteristics, providing enhanced removal of middle molecular weight substances, e.g. inflammatory mediators having a molecular weight between 20 and 40 kDa. The improved sieving characteristics are due to a narrow pore size distribution of the membranes created in the production process. Processes for the preparation of these membranes, devices comprising these membranes, and the use of these membranes in hemodialysis, hemodiafiltration and hemofiltration of blood, as well as in bioprocessing, plasma fractionation and the preparation of protein solutions.
    Type: Application
    Filed: May 19, 2010
    Publication date: March 29, 2012
    Applicant: GAMBRO LUNDIA AB
    Inventors: Bernd Krause, Carina Zweigart, Heinrich Behr
  • Patent number: 8097195
    Abstract: The invention relates to a method for energy usage during the cooling of extrusion profiles, preferably pipes, wherein energy is supplied in the form of heat for melting the plastic and heat is withdrawn from the plastic again for shaping at least in the devices of mold, calibration, and cooling bath until the plastic is self-supporting. According to the invention, it is provided that a coolant medium runs through the extrusion line opposite to the extrusion direction for cooling, the medium which is used for cooling being guided from one device to the next and the coolant medium heating further in each device.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: January 17, 2012
    Assignee: Battenfeld-Cincinnati Austria GmbH
    Inventor: Erik Sehnal
  • Patent number: 8092732
    Abstract: The present invention provides a processing method of the natural cellulose fiber with feature for enhancing the capability of antifungi, antibacteria and deodorization. The procedure is that firstly modify and reduce the properties of the natural chitosan of high polymer material to nanometer scale; secondly dunk the chitosan into the syrup-like mixture of wood pulp and NMMO solvent to yield quasi-dope; thirdly dehydrate the quasi-dope of paste mixture to form the mud-like dope; fourthly spin the dope by dryjet wet spinning method; fifthly regenerate the filament in coagulation bath, water rinse and dry; finally water rinse, dry, apply the lubricant to finish. The water soluble chitosan, which has been treated by property modification and reduced to nanometer scale, can effectively and completely solve in the cellulose of low DP to offer wider extent of selection in the DP and better flexibility of adding percentage in content of modified chitosan.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Acelon Chemical and Fiber Corporation
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang
  • Patent number: 7846363
    Abstract: A process for preparing ultra-high molecular weight poly(alpha-olefin) (UHMWPO) multi-filament yarns having improved tensile properties at higher productivity. The process includes drawing a solution yarn, then drawing a gel yarn and then drawing a dry yarn continuously in sequence to form a partially oriented yarn, winding up the partially oriented yarn, unrolling the yarn, drawing the partially oriented yarn to form a highly oriented yarn, cooling the highly oriented yarn under tension and winding up the highly oriented yarn.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 7, 2010
    Assignee: Honeywell International Inc.
    Inventors: Thomas Y-T. Tam, Qiang Zhou, John A. Young, Charles R. Arnett, John E. Hermes
  • Patent number: 7718104
    Abstract: A process for the production of a polymeric film comprising a copolyester having an acid component and a diol component, said acid component comprising a dicarboxylic acid and a sulfomonomer containing a sulfonate group attached to the aromatic nucleus of an aromatic dicarboxylic acid, said process comprising the steps of: (i) melt-extruding a layer of said copolyester; (ii) stretching the extrudate in at least one direction; (iii) heat-setting the film by raising the temperature of the stretched film to a temperature T1 in a first heating zone such that (TM-T1) is in the range of from 5 to 30° C., and then raising the temperature of the film to a temperature T2 in a second heating zone such that (TM-T2 is in the range of from 0 to 10° C.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: May 18, 2010
    Assignee: Dupont Teijin Films US Ltd.
    Inventors: William Alasdair MacDonald, Pierre Georges Osborne Moussalli, Kenneth Evans, Julian Peter Attard, David Boyce, Christopher Charles Naylor, Brian John Farmer, legal representative, David Edward Robins, legal representative
  • Patent number: 7704594
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 27, 2010
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Patent number: 7691306
    Abstract: The present invention relates to a transparent polypropylene based sheet and its manufacturing method capable of: providing proper properties as a transparent sheet such as tensile characteristic, impact resistance, rigidity and little generation of whitening when being folded as well as maintaining transparency; preventing generation of a gum-like material in molding; and realizing continuous production. A manufacturing machine 1 includes: an extruding unit 11 for melting and kneading a raw material and extruding the material into a sheet-like shape; a first cooling unit 12 for cooling the melted sheet-like resin composition 20a to obtain a sheet (sheet-like article) 20; a preheating unit 13 for reheating the sheet 20; a heat treatment unit 14 for heat-treating the sheet-like resin composition 20; and a second cooling unit 15 for cooling the heat-treated sheet 20. The raw material of a resulting sheet 21 contains a polypropylene resin (a) and a metallocene-type ethylene-?-olefin copolymer (b).
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: April 6, 2010
    Assignee: Idemitsu Unitech Co., Ltd.
    Inventors: Akira Funaki, Masahiro Akamatsu, Shigeki Yamaguchi, Kenichi Mori, Tomoyuki Kitajima
  • Publication number: 20090318043
    Abstract: The invention concerns a method for making polymeric extruded composite products and carbon nanotubes. Said method includes the following steps: a) performing an oxidation pretreatment of the carbon nanotubes; b) dispersing the nanotubes in a polymer solution; c) extruding the resulting dispersion into an intermediate product; d) drying said intermediate product; e) post-treating said dried intermediate product by hot drawing process; f) post-treating said dried intermediate product of said drawn intermediate product by drawing in an ionic solution; g) performing a formalizing treatment process: Steps e) f) and g) are optional. The extruded polymeric products obtained by the inventive method can contain up to 80 wt. % of nanotubes.
    Type: Application
    Filed: March 5, 2007
    Publication date: December 24, 2009
    Applicant: NANOLEDGE INC.
    Inventors: Thibault Vaugien, Kai Schierholz
  • Publication number: 20090156077
    Abstract: The present invention relates to a non-woven web useful for the manufacture of suede-like fabric for a car seat cover and a preparation method thereof. The non-woven web according to the present invention is prepared from a copolymer of polyethylene terephthalate and polytrimethylene terephthalate by dispersion in water using a surfactant and crosslinking using flowing water, and has superior mechanical properties including touch, dyeability, wear resistance, etc. Particularly, with superior isotropic mechanical properties over existing materials, it is suitable to be used as car seat cover material.
    Type: Application
    Filed: June 21, 2008
    Publication date: June 18, 2009
    Applicants: Hyundai Motor Company, Kia Motors Corporation
    Inventor: ChaeHwan Hong
  • Patent number: 7087269
    Abstract: The present invention relates to a multi-component composite separate membrane and a method for preparing the same, and to a multi-component composite membrane comprising a support layer and active layers, wherein the support layer is located between the active layers.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: August 8, 2006
    Assignee: LG Chemical Co., Ltd.
    Inventors: Sang-Young Lee, Byeong-In Ahn, Soon-Yong Park, You-Jin Kyung, Heon-Sik Song
  • Patent number: 6905646
    Abstract: A method of producing a synthetic resin rod (wire), comprising: an extruding step of extruding a synthetic resin rod; a pre-cooling step of spraying a cooling medium on the rod to pre-cool the rod extruded down to a temperature (T° C.) satisfying the following condition: T?{(a softening point of the synthetic resin)+5} [° C.]; and a main cooling step of letting the rod thus pre-cooled pass through water to cool the rod.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: June 14, 2005
    Assignee: Sumitomo Electric Industries, Ltd
    Inventors: Ryoei Oka, Nobumasa Nirasawa, Saburo Yoshimura, Hironori Matsumoto
  • Patent number: 6811638
    Abstract: The present invention provides a process for heat treatment of non-woven composite elastic material including a non-woven elastic layer; a non-woven gatherable layer. The process includes stretching the material, heating the material and cooling the material. The material has a softer more cloth-like feel.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: November 2, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Kenneth B. Close, David J. Baer, Charles A. Smith, Stephen Primm, Walter A. Mattingly, Scott R. Lange
  • Patent number: 6805946
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: October 19, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Patent number: 6572970
    Abstract: A process for the production of coated planar moldings of thermoplastics is disclosed. The process entails extrusion of a molded body, cooling of the molding, applying the aqueous-based coating agent and drying. The coating agent, having a pH value of less than 6, contains a salt of sulfondicarboxylic diester, a water-insoluble oxide of metal or semi-metal and an acid/water mixture. It is applied to at least one surface of the molding immediately after the production of the molding and with the aid of an application roll.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 3, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Peter Bier, Peter Capellen, Jürgen Röhner, Siegfried Anders
  • Patent number: 6540953
    Abstract: A method of producing a microporous membrane comprising the steps of: extruding a polymer at a temperature of from (polymer melting point +10° C.) to (polymer melting point +100° C.); drawing the extruded polymer at a rate of 5˜120 m/min in 10˜150° C. to obtain a polymer film; annealing the polymer film at a temperature of from (polymer melting point −100° C.) to (polymer melting point −5° C.) for 10 seconds to 1 hour; irradiating both surfaces of the annealed polymer film with an ion-particle amount of 102˜1020 ion/cm2 energized at 10−2˜107 KeV, at an irradiating distance of 5˜100 cm under a vacuum of 10−2˜10−[torr; cold stretching the irradiated polymer film at a temperature of from −20° C. to (polymer melting point −40° C.); hot stretching the cold stretched polymer film at a temperature of from (polymer melting point −40° C.) to (polymer melting point −5° C.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: April 1, 2003
    Assignee: LG Chemical Ltd.
    Inventors: Sang-Young Lee, Myung-Man Kim, Heon-Sik Song
  • Patent number: 6462105
    Abstract: An aliphatic polyester composition for a masterbatch which is improved in dispersibility of a filler, anti-blocking property, transparency, molding stability and slipperiness and which is suited for production of an aliphatic polyester film, and a method for producing an aliphatic polyester film using said composition. An aliphatic polyester composition for a masterbatch comprising 100 parts by weight of an aliphatic polyester and 0.1 to 40 parts by weight of an anti-blocking agent and a method for producing an aliphatic polyester film using said composition are provided.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: October 8, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takayuki Kuroki, Shuhei Ikado
  • Patent number: 6368533
    Abstract: A process for forming fibers, films and fibrous webs from thermoset polymers is disclosed. The process includes first forming an energy activatable prepolymer composition. The prepolymer composition is extruded through a die in order to form polymeric articles. Once extruded through the die, the prepolymer composition is then contacted with an energy source which causes the prepolymer composition to irreversibly undergo a chemical transformation to form a thermoset polymer. The cured polymeric articles can then be collected onto a surface and used as desired. The energy source used to activate the prepolymer composition can be, for instance, a heated gas stream, ultra sonic sound waves, or a radiation source.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: April 9, 2002
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: Michael T. Morman
  • Patent number: 6319456
    Abstract: This invention relates to methods and apparatus for manufacturing shaped polymeric articles by substantially continuous vacuum forming. The method includes providing a sheet of hot polymeric material which is disposed onto a rotating belt having a mold impression. Vacuum pressure is applied to the polymeric material through the belt so as to draw the hot polymeric material into intimate contact with the mold impression to form a patterned sheet portion and a remaining sheet portion. This method thereafter cools at least the patterned sheet portion below a heat deflection temperature of the polymeric material, forms the remaining sheet portion, and then cools the remaining sheet portion below the heat deflection temperature so that features other than the central pattern, such as nail and butt edges, can be mechanically worked into the polymeric sheet.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: November 20, 2001
    Assignee: Certainteed Corporation
    Inventors: Thomas Gilbert, Kenneth D. Bosler, Edward C. Dell
  • Patent number: 6313212
    Abstract: A process for producing a rubber compound for tires, where the ingredients of the rubber compound include: a polymer base containing an unsaturated chain which can be crosslinked with sulphur-based systems; at least one silica-based reinforcing filler; a silica-binding agent including a silane containing at least one sulphur atom; and a vulcanizing system. The process includes the steps of feeding the polymer base, the silica-based reinforcing filler, and the silica-binding agent ingredients continuously into a path for mixing and advancing an ingredient blend, wherein the mixing and advancing of the blend take place together. The path includes an initial stretch, an intermediate stretch, and a final stretch; each stretch defined between respective inlet and outlet sections.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: November 6, 2001
    Assignee: Pirelli Coordinamento Pneumatici S.p.A.
    Inventors: Renato Caretta, Roberto Pessina, Antonio Proni
  • Publication number: 20010012548
    Abstract: A polymeric film and method for making the film. Mixing a structural material with a secondary material to form a unitary mixture prior to processing forms the film. For a printable film, the secondary material is a printable material. The unitary mixture is extruded and heated so as to cause the printable material to bloom to the surface of the mixture. The result is a film that is stiffer and that lays flatter than prior multi-layered films that were prone to curling. The rollers used to stretch the film during this heat-setting stage are preferably very smooth so as to enhance the transverse-direction strength and stiffness of the film. In another embodiment of the invention, the secondary material is a clarity-enhancing material that may be styrene-ethylene-butadiene-styrene block copolymer. The blend combination is a suitable replacement for polyvinyl chloride films in that it is soft, conformable, flexible and clear.
    Type: Application
    Filed: January 30, 2001
    Publication date: August 9, 2001
    Inventor: Theodore R. Coburn
  • Patent number: 6200510
    Abstract: A method of applying an indicia to the surface of a cellulose casing by non contact printing wherein the indicium is applied in-line with the casing manufacture at a location between the wet end and the dry end of the casing manufacturing process wherein the indicia comprises an ink that is cured and cross linked with the cellulose prior to the casing reaching the dry end of the process. The indicia preferably is in the form of a dot matrix pattern that is visible yet presents no barrier to the passage of smoke.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: March 13, 2001
    Assignee: Viskase Corporation
    Inventors: Paul Edmund DuCharme, Jr., Rama Ramagopal