Hydrocarbon Polymer Patents (Class 264/331.17)
  • Patent number: 9868236
    Abstract: A manufacturing method of a composite long fiber product has steps of preparing base materials, mixing the base materials, and injection molding. In the step of preparing base materials, a first plastic base material, a second plastic base material, and a carbon fiber base material are prepared. In the step of mixing the base materials, the carbon fiber base material is grinded in a first mixing device and is mixed with the first plastic base material. An average length of the grinded carbon fiber base material is at least 10 millimeters. In the step of the injection molding, the first plastic base material and a mixture of the second plastic base material and the carbon fiber base material are injected into a molding device. The mixture of the second plastic base material and the carbon fiber base material can diffuse uniformly in the molding device.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: January 16, 2018
    Inventor: Kun-Nan Tseng
  • Patent number: 9017590
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 9011737
    Abstract: A system for making PET objects including a means for reacting a first PET precursor and a second PET precursor to produce a PET melt; a means for flowing the PET melt to a valve having at least two outlets; a means for flowing the PET melt from at least one of the at least two outlets to at least one die forming line and one pelletizing (cutter) line. A means for controlling individually the mass flow of the PET melt in each of the at least two system lines independently of the other and a means for forming the PET objects from the PET melt. The control scheme is a combination of a feed forward system as well as a feedback loop. The entire control scheme is part of the overall system PLC. The fine tuning of the pressure at the outlet of the die forming loop is controllers to less than +/?1 bar to obtain maximum control of formed part.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Chemlink Capital Ltd.
    Inventors: Nicholas P. Barakat, William Karszes
  • Publication number: 20150101726
    Abstract: A method of preparing a green tire innerliner, the method comprising mixing one or more vulcanizable rubbery polymers, less than 0.75 parts by weight zinc oxide, less than 0.75 parts by weight magnesium oxide, and less than 0.75 parts by weight sulfur, per 100 parts by weight rubber, to form a vulcanizable mixture and extruding the mixture to form a green tire innerliner.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 16, 2015
    Inventors: James D. Ulmer, Robert Gibbons Barned, Lisa Marie Dinger, Joseph Lanzarotta
  • Patent number: 8962755
    Abstract: A dual reactor solution process gives high density polyethylene compositions containing a first ethylene copolymer and a second ethylene copolymer and which have good processability, toughness, and environmental stress crack resistance combined with good organoleptic properties. The polyethylene compositions are suitable for compression molding or injection molding applications and are particularly useful in the manufacture of caps and closures for bottles.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 24, 2015
    Assignee: Nova Chemicals (International) S.A.
    Inventors: XiaoChuan Wang, Yves Lacombe, Mark Edmund Weber
  • Publication number: 20140342141
    Abstract: Disclosed herein are ethylene-based polymers having low densities and narrow molecular weight distributions, but high melt strengths for blown film processing. Such polymers can be produced by peroxide-treating a metallocene-catalyzed resin.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Inventors: Lili Cui, Ashish M. Sukhadia, Vivek Rohatgi
  • Patent number: 8871131
    Abstract: Provided are processes comprising crosslinking polyethylene or using crosslinked polyethylene. Furthermore, the processes may include compacting and/or sintering the polyethylene. The polyethylene can comprise virgin ultrahigh molecular weight polyethylene having a weight average molecular weight of at least 1,000,000 g/mol, to provide a compacted composition comprising virgin ultrahigh molecular weight polyethylene.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: October 28, 2014
    Assignee: Smith and Nephew Orthopaedics AG
    Inventors: Hans Schmotzer, Yvo Dirix, Paul Smith, Theo Tervoort, Lorenz Brunner
  • Publication number: 20140145376
    Abstract: A process for homogenizing and pelletizing a polyethylene composition comprising the steps of a) providing a polyethylene composition having a density of from 0.90 g/cm3 to 0.97 g/cm3 and a melt flow rate MFR21.6 at 190° C. under a load of 21.6 kg of from 1 g/10 min to 80 g/10 min, b) melting the polyethylene composition; c) passing the melt through a combination of screens consisting of screens having a mesh opening of at least 205 ?m and comprising at least two screens having a mesh opening of from 205 ?m to 350 ?m; and e) pelletizing the molten polyethylene composition, the use of a polyethylene composition obtained by such a process for the preparation of films, fibers, pipes, blow-molded articles, injection-molded articles, compression-molded articles or rotomolded articles and films, fibers, pipes, blow-molded articles, injection-molded articles, compression-molded articles or rotomolded articles prepared from a polyethylene composition obtained by such a process.
    Type: Application
    Filed: May 8, 2012
    Publication date: May 29, 2014
    Applicant: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Ulf Schueller, Jens Wiesecke, Decio Malucelli, Marco Consalvi
  • Patent number: 8623261
    Abstract: A method of preparing a thermoformed article which is relatively isotropic in terms of shrinkage of the final thermoformed article along the sheet extrusion flow path (the longitudinal direction) and the transverse direction. The article is prepared from an isotactic polypropylene produced by the polymerization of propylene with an isospecific metallocene catalyst. The polymer has a melt flow rate within the range of 1-5 grams/10 minutes and a melting temperature of no more than 160° C. The polypropylene is extruded to provide a sheet which is oriented in at least one direction and has a thickness of 10-100 mils. The sheet is heated to a temperature of 135-160° C, and thermoformed in contact with a template having the desired configuration to produce the thermoformed article. The thermoformed article is then cooled and retrieved from the template to arrive at the final product.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 7, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Mahesh Patkar, Michael Musgrave
  • Publication number: 20130324644
    Abstract: A synthetic article comprising at least one polyester resin adhesive and at least one lignin-based material and a method of preparing a synthetic article comprising mixing at least one polyester resin adhesive and at least one lignin-based material to obtain a blended material and forming a synthetic article from the blended material.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventor: Louise Batchelor
  • Publication number: 20130224486
    Abstract: The invention provides systems and methods for preparing a plastic containing feedstream for conversion to valuable carbon-containing products such as synthetic crude oil. In some systems and methods, the plastic material is prepared from carpet scrap.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: COMMUNITY ENERGY SYSTEMS
    Inventor: Community Energy Systems
  • Publication number: 20130203930
    Abstract: A composition comprising: (I) 30 to 85 wt % of a polypropylene component comprising a polypropylene copolymer; (II) 5 to 49 wt % of a second component comprising at least one ethylene alkyl (meth)acrylate polymer having a (meth)acrylate content of at least 15 wt %; and (III) 10 to 50 wt % of glass fibres.
    Type: Application
    Filed: May 19, 2011
    Publication date: August 8, 2013
    Applicant: BOREALIS AG
    Inventors: Renate Schininger, Claudia Kniesel
  • Publication number: 20130196168
    Abstract: A method for secondary-molding a polymer nano oriented crystal material in accordance with an embodiment of the present invention includes the steps of: heating the polymer nano oriented crystal material so that the polymer nano oriented crystal material changes into a mobile phase or a melt having a dense entanglement network structure; molding the polymer nano oriented crystal material which changed into the mobile phase or the melt including the dense entanglement network in the step; and cooling the polymer nano oriented crystal material, which has undergone the step, until the polymer nano oriented crystal material changes into an ordered phase.
    Type: Application
    Filed: October 7, 2011
    Publication date: August 1, 2013
    Applicants: SUNALLOMER LTD., HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Junichiro Washiyama, Takeshi Nakajima, Yuka Akiyama, Shingo Ueno
  • Patent number: 8486323
    Abstract: The instant invention provides rotational molded articles, and method of making the same. The rotational molded articles according to the present invention comprise a polyethylene composition comprising: (a) at least 85 percent by weight of the units derived from ethylene; and (b) less than 15 percent by weight of units derived from one or more ?-olefin comonomers; wherein the polyethylene composition has a density in the range of 0.930 to 0.945 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.50, a melt index (I2) in the range of 0.5 to 20 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the polyethylene composition.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Mark B. Davis, Mridula Kapur, William J. Michie, Jr., Peter Schindler, Nathan J. Wiker, Debra R. Wilson
  • Patent number: 8394475
    Abstract: Industrial polyolefin piping system with improved stiffness, impact strength for use at high service temperature, comprising single or multilayer pipes, fitting, chambers, valves and vessels, consisting of ?-nucleated propylene homopolymers with an IR??0.98 having a tensile modulus ?1500 MPa, a Charpy impact strength, notched, at +23° C.?30 kJ/m2 and a Vicat B temperature >90° C. and a Heat Distortion Temperature >100° C. The industrial polyolefin piping system is suitable for chemical plant constructions comprising single or multilayer pipes, fittings, chambers, valves and vessels with improved stiffness, impact strength and high service temperature, preferred for conveyance of natural gas, dangerous liquids and/or toxic liquids.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 12, 2013
    Assignee: Borealis Technology Oy
    Inventors: James McGoldrick, Siegfried Liedauer, Carl-Gustaf Ek
  • Publication number: 20120296045
    Abstract: A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Fengkui Li, Tim J. Coffy, Michel Daumerie
  • Patent number: 8262976
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: September 11, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: David Wayne Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 8137608
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 20, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20120022216
    Abstract: The present invention disclosed a process for the preparation of thermal insulation sheets fashioned from certain unseparated mixtures of post-consumer plastic articles. The mixtures of such articles used are those which contain articles made of polyethylene terephthalate (PET) and polystyrene (PS) and optionally also articles made of high density polyethylene (HDPE). An unseparated mixture of such articles is provided in Step A of the process. This mixture is then crushed and shredded in Step B to form plastic flakes, and these plastic flakes are then homogenized In Step C to form a uniform blend of the several plastic types. Homogenization of the flakes can be carried out either by melt-blending them or by further comminution to produce very fine particles of the mixed plastics. The resulting homogenized mixture of plastic types is then compression molded in Step D into sheets ranging in thickness from about 3 to 10 mm.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 26, 2012
    Applicant: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventor: Fares D. ALSEWAILEM
  • Publication number: 20110306442
    Abstract: Provided is a composition comprising a mixture of a high molecular weight (Mw between 80,000 and 500,000 Da) carboxylate functionalized ethylene terpolymer, a high molecular weight (Mw between 80,000 and 500,000 Da) carboxylate functionalized ethylene dipolymer and a low molecular weight (Mw between 2,000 and 30,000 Da) carboxylate functionalized ethylene copolymer wherein the carboxylic acid groups are at least partially neutralized to form salts containing zinc cations. The composition provides a good balance of hardness, flexural modulus and scuff resistance. The composition is used in films, multilayer structures and other articles of manufacture, such as golf balls.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 15, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventor: JOHN CHU CHEN
  • Patent number: 8063175
    Abstract: Methods of making ultrahigh molecular weight polyethylene (UMWPE) having increased strength and/or wear resistance, such as high yield strength, high tensile strength, high load strength, and/or high impact strength. Some embodiments include making UHMWPE having increased strength and/or wear resistance, such as that listed above, where the UHMWPE has co-monomers.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 22, 2011
    Assignee: Smith & Nephew Orthopaedics AG
    Inventors: Paul Smith, Jeroen Visjager, Theo Tervoort
  • Patent number: 8026309
    Abstract: A process is provided for producing a compatibilized polymeric blend. A first thermoplastic polymer and a reactive moiety are provided to a progressive melt kneading apparatus. The reactive moiety comprises a first reactive group capable of reacting with the first thermoplastic polymer but not a second polymer and a second reactive group capable of reacting with the second polymer but not the first polymer. The first thermoplastic polymer and the reactive moiety are then melt kneaded so that the first reactive group reacts with the first thermoplastic polymer and the second reactive group is grafted to the first thermoplastic polymer, forming a molten self-compatibilizer. A molten second polymer is then provided. The molten self-compatibilizer is melt kneaded with the molten second polymer so that the second reactive group reacts with the second polymer to form a compatibilized polymeric blend. Also provided are articles formed from the compatibilized polymer blend.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 27, 2011
    Assignee: PRS Mediterranean Ltd.
    Inventors: Izhar Halahmi, Oded Erez, Adi Erez
  • Patent number: 8003752
    Abstract: Articles made of and/or including ultrahigh molecular weight polyethylene (UMWPE) having increased strength and/or wear resistance, such as high yield strength, high tensile strength, high load strength, and/or high impact strength. Some embodiments of articles made of and/or including UHMWPE having increased strength and/or wear resistance, such as that listed above, include UHMWPE having co-monomers.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 23, 2011
    Assignee: Smith & Nephew Orthopaedics AG
    Inventors: Paul Smith, Jeroen Visjager, Theo Tervoort
  • Patent number: 7927536
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 19, 2011
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20110052930
    Abstract: The present disclosure is directed to a thermoforming process and thermoformed articles produced therefrom. The thermoforming process includes heating a structure with a gloss layer composed of a propylene-based polymer having a melt flow rate from about 0.1 g/10 min to about 1.5 g/10 min, and producing a thermoformed article wherein the gloss layer has a post-thermoformed Gardner gloss value within 25% of the pre-thermoformed Gardner gloss value for the gloss layer. The thermoformed article may have a gloss layer with a post-thermoformed Gardner gloss value greater than or equal to about 60.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Inventors: Jinder Jow, Michael S. Broadway, Malcolm F. Finlayson, Todd A. Hogan, Drew A. Davidock, Angel S. Mendez
  • Publication number: 20110023202
    Abstract: This invention covers a method of manufacturing a composite laminate comprising the steps of (a) cutting a plurality of ply shapes from prepreg sheet stock, (b) stacking, in the desired order, the prepreg ply shapes to form a subassembly of from 2 to 8 cut plies, the subassembly further comprising at least 2 different ply shapes, (c) pre-consolidating the subassembly under heat and pressure to form a semi-rigid preform, (d) assembling a plurality of semi-rigid preforms into a mold, and (e) consolidating the plurality of preforms under heat and pressure to form a cured composite laminate. The prepreg plies further comprise from 70 to 92% by weight of a fabric made from continuous yarn having a tenacity of at least 20 grams per dtex and a modulus of at least 550 grams per dtex, and from 8 to 30% by weight of a thermoplastic matrix copolymer blend. The composite laminate is particularly useful as an anti-ballistic hard armor laminate in articles such as helmets and other hard armor products.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: BRYCE VANARSDALEN, Thomas D. Boyer
  • Publication number: 20110003136
    Abstract: A light wood-containing material having an average density in the range from 200 to 600 kg/m3, comprising, based in each case on the wood-containing material: A) from 30 to 95% by weight of wood particles; B) from 1 to 25% by weight of a filler having a bulk density in the range from 10 to 150 kg/m3, selected from the group consisting of foamable plastic particles and already foamed plastic particles; C) from 0.1 to 50% by weight of a binder and, if appropriate, D) additives, the following relationship being true for the d? values according to Rosin-Rammler-Sperling-Bennet of the wood particles A) and of the particles of the filler B): d? of the particles A)?2.5×d? of the particles B).
    Type: Application
    Filed: October 18, 2007
    Publication date: January 6, 2011
    Applicant: BASF SE
    Inventors: Michael Schmidt, Michael Finkenauer, Günter Scherr, Frank Braun, Stephan Weinkötz, Jürgen von Auenmüller, Oliver Richter, Maxim Peretolchin
  • Publication number: 20100301258
    Abstract: that are made up of oriented polymer chains are provided. Chains of polymer may be oriented or substantially aligned in one or more directions exhibiting enhanced thermal conductivity along the direction of orientation. Orientation of polymers within sheets may lead to a wide range of thermally relevant applications.
    Type: Application
    Filed: April 17, 2008
    Publication date: December 2, 2010
    Applicant: Massachusetts Institute of Technolohy
    Inventors: Gang Chen, Erik Skow, Xiaoyuan Chen
  • Patent number: 7785520
    Abstract: A honeycomb containing a thermoplastic material, high modulus fiber and thermoset resin has process steps of fracturing the thermoset resin, bending, molding or forming the honeycomb in a mold or over a form, heating to allow flow of thermoplastic material and cooling of the honeycomb to retain the shape of the mold or form.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 31, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Subhotosh Khan, Gary Lee Hendren, Mikhail R. Levit
  • Patent number: 7780896
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 24, 2010
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20100183488
    Abstract: Cylindrical devices (frits) are prepared by embedding aminoalkyl- or mercaptoalkyl-modified Controlled Pore Glass (CPG) in high-density polyethylene. Methods and devices pertaining to their use in the synthesis of nucleic acids are described. A reusable synthesis column or a reusable 96-chamber synthesis plate have been designed to hold one to 96 of the said frits that are inserted reproducibly into the synthesis chambers with a frit insertor. A short gas surpressure is required to drive entry of chemical reagents into the said frit. Reagents are retained into the frit until a second, longer surpressure is applied to drain the said reagents.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Applicant: CHEMISTRY & TECHNOLOGY FOR GENES, INC.
    Inventors: Nam Ngo, Laurent Jaquinod, Hong Wang
  • Patent number: 7758796
    Abstract: UHMWPE panels of large width may be ram extruded from a slit die in a stable process, by restraining a panel which exits the die below the crystalline melt temperature against movement away from the die by a back pressure device, so as to exert a back pressure between the back pressure device and the die, the back pressure device preferably constructed of a plurality of differentially adjustable elements so as to be able to compensate for changes in processing characteristics over time. Vertically restraining UHMWPE panels as they further cool also greatly improves product characteristics.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Quadrant EPP AG
    Inventors: Joseph V. Gregg, Wesley Allen Kohler
  • Patent number: 7758797
    Abstract: UHMWPE panels of large width may be prepared by a continuous ram extrusion process by employing a slit die which preferably narrows from both sides in a direction transverse to the machine direction, and/or which employs a plurality of transversely positioned cooling zones located on the top and the bottom of the die, proximate the exit thereof. The panel exits the die at a temperature lower than the crystalline melt temperature.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Quadrant EPP AG
    Inventors: Joseph V. Gregg, Wesley Allen Kohler, Lyle D. Berning
  • Publication number: 20100155998
    Abstract: A shape memory polymer composition is described comprising greater that 90 wt. % cyclooctene, less than 10 wt. % of a multicyclic diene, comprising at least two cyclo olefinic rings with at least two reactive double bonds, and less than 2 wt. % of a metathesis catalyst.
    Type: Application
    Filed: October 29, 2009
    Publication date: June 24, 2010
    Inventors: Joseph D. Rule, Kevin M. Lewandowski
  • Publication number: 20100137522
    Abstract: Disclosed is a bearing material of a medical implant, which is an ultrahigh molecular weight polyethylene (UHMWPE) composite. The composite comprises, for example, UHMWPE and a polyethylene copolymer having a polymer backbone and pendant hydrophilic groups or pendant surface active agents that are attached to the polymer backbone. Also disclosed are methods for preparing bearing materials. The bearing material has one or more advantageous properties including reduced immune response, reduced wear, and/or increased lubrication.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Applicant: DEPUY PRODUCTS, INC.
    Inventors: Richard S. King, Craig Ernsberger
  • Publication number: 20100127428
    Abstract: A composite bipolar plate for a polymer electrolyte membrane membrane fuel cell (PEMFC) is prepared as follows: a) melt compounding a polypropylene resin and graphite powder at 100-250° C. and 30-150 rpm to form a melt compounding material, the graphite powder content ranging from 50 wt % to 95 wt % based on the total weight of the graphite powder and the polypropylene resin, and the polypropylene resin being a homopolymer of propylene or a copolymer of propylene and ethylene, wherein 0.05-20 wt % carbon nanotubes, based on the weight of the polypropylene resin, are added during the melt compounding; and b) molding the melt compounding material from step a) to form a bipolar plate having a desired shaped at 100-250° C. and 500-4000 psi.
    Type: Application
    Filed: July 20, 2009
    Publication date: May 27, 2010
    Applicant: YUAN ZE UNIVERSITY
    Inventors: Chen-Chi M. Ma, Shu-Hang Liao, Chuan-Yu Yen, Cheng-Chih Weng, Ching-Hung Yang, Ming-Yu Yen, Min-Chien Hsiao, Shuo-Jen Lee, Yi-Hsiu Hsiao
  • Publication number: 20100119753
    Abstract: The invention relates to a plastic pipe having improved resistance to thermooxidative degradation when this pipe is in long-term contact with liquids which comprise disinfectants having an oxidizing action. To achieve this, the pipe according to the invention has a fluorine coating on its inner surface.
    Type: Application
    Filed: August 1, 2008
    Publication date: May 13, 2010
    Applicant: Basell Polyolefine GmbH
    Inventor: Heinz Vogt
  • Publication number: 20100084363
    Abstract: The instant invention is a high-density polyethylene composition, method of producing the same, injection molded articles made therefrom, and method of making such articles. The high-density polyethylene composition of the instant invention includes a first component, and a second component. The first component is a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.920 to 0.946 g/cm3, and a melt index (I21.6) in the range of 1 to 15 g/10 minutes. The second component is a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 30 to 1500 g/10 minutes. The high-density polyethylene composition has a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3.
    Type: Application
    Filed: October 25, 2007
    Publication date: April 8, 2010
    Inventors: William J. Michie, JR., Stephanie M. Whited, Nathan J. Wiker, Dale M. Elley-Bristow
  • Publication number: 20100069576
    Abstract: Provided are processes comprising crosslinking polyethylene or using crosslinked polyethylene. Furthermore, the processes may include compacting and/or sintering the polyethylene.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 18, 2010
    Applicant: SMITH & NEPHEW ORTHOPAEDICS AG
    Inventors: Hans Schmotzer, Yvo Dirix, Paul Smith, Theo Tervoort, Lorenz Brunner
  • Patent number: 7658875
    Abstract: A polymer film having a thickness of 10 microns or less and improved barrier characteristics to both water vapor and oxygen is formed from a biaxially-oriented polypropylene film of isotactic polypropylene. The polypropylene is prepared by the polymerization of propylene in the presence of an isospecific metallocene catalyst. The film has a permeability to water vapor of less than about 2.5 g/m2 day/25 ?m and a permeability to oxygen of less than about 2200 cc/m2 day/25 ?m. The film also has a haze properties of less than about 1%. The polypropylene contains 0.1 to 1% 2,1 insertions and has an isotacticity of at least 96% meso pentads. The isotactic polypropylene thus produced is then extruded into a sheet that is biaxially-oriented by stressing the sheet in the transverse and longitudinal directions to a draw ratio of at least about 6:1 in the transverse direction, and at least about 4:1 in the longitudinal direction.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: February 9, 2010
    Assignee: Fina Technology, Inc.
    Inventor: Scott D. Cooper
  • Publication number: 20090318654
    Abstract: Ultrahigh molecular weight polyethylene compositions of highly beneficial sintering characteristics are disclosed and methods for making and processing time. Additionally, products comprising these compositions are described.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Applicant: Smith & Nephew Orthopaedics AG
    Inventors: Paul Smith, Jeroen Visjager, Theo Tervoort
  • Publication number: 20090258209
    Abstract: A composition is described in one aspect as comprising one or more propylene-?-olefin terpolymers; wherein the propylene-?-olefin terpolymer(s) possess a melting temperature (Tm) within the range of from less than 105° C., and a heat of fusion (Hf) within the range of from less than 75 J/g; one or more polyolefin(s); and oil; wherein fillers are present, if at all, at a level that maintains a Haze value of 65% or less for the composition. The terpolymer in one embodiment is a polymer comprising at least 65 wt %, by weight of the terpolymer, of propylene-derived units, within the range of from 5 to 35 wt % of ethylene or other ?-olefin and a diene such as ethylidiene norbornene, and in certain embodiments having a Mooney Viscosity (ML(1+4)@125° C.) within the range of from 10 to 50 (ASTM D1646). The compositions can be cured to form transparent or translucent articles such as sheets that are also flexible.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Inventors: Sunny Jacob, Gary K. Lawrence, Edward John Blok, Ralph E. Raulie
  • Patent number: 7589138
    Abstract: A process for the preparation of a molded article formed of an isotactic ethylene propylene copolymer comprising providing an isotactic ethylene-propylene copolymer having an ethylene content of no more than 5 weight percent produced by the copolymerization of ethylene and propylene in the presence of an isospecific metallocene catalyst; heating the copolymer to a molten state; incorporating a nucleating agent into copolymer in an amount effective to provide a uniform shrinkage of the molded article at 48 hours molding of the at least 85% as determined by the differential in transverse and longitudinal shrinkage at the 48 hour mark; extruding the molten copolymer into a mold cavity; cooling the copolymer within the confines of the mold cavity to solidify the copolymer and form the molded article which is then retrieved from the mold cavity.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: September 15, 2009
    Assignee: Fina Technology, Inc.
    Inventor: Frank Li
  • Patent number: 7563398
    Abstract: A process for manufacturing extrudable/melt spinnable concentrate pellets which contain phase change materials (PCMs), whether the PCMs are micro-encapsulated absorbed into carrier polymers, or non-micro-encapsulated within the concentrate pellets. The polymer matrix within the concentrate pellets can be any thermoplastic polymer or combination of thermoplastic polymers, and the concentrate pellets can then be blended into similar thermoplastic polymers to form mono-filament melt spun fibers, extruded films, injection molded products, etc., or the concentrate pellets can be blended with other thermoplastic polymers to form bi-component or multi-component melt spun fibers, extruded films, injection molded products, etc.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: July 21, 2009
    Assignee: Outlast Technologies, Inc.
    Inventors: Mark Henry Hartmann, Monte Christopher Magill
  • Patent number: 7547405
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 16, 2009
    Assignee: Biomet Manufacturing Corp.
    Inventors: David Wayne Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20090118415
    Abstract: A polymer composition having (i) 0.01 to 50% wt (e.g. 0.05 to 15% wt) of a propylene polymer with a polymeric nucleating agent is disclosed. Preferably, the agent contains vinyl compound units and (ii) a heterophasic propylene polymer which includes less (or no) polymeric nucleating agent than the propylene polymer in (i).
    Type: Application
    Filed: February 13, 2007
    Publication date: May 7, 2009
    Applicant: Borealis Technology OY
    Inventors: Sveinung Aasetre, Thor Kamfjord
  • Patent number: 7494947
    Abstract: The polypropylene-based thermoplastic fibers are uniform in cross-section, not having any degraded surface skin, and they are heat-weldable at a pressure at a temperature which is lower than the melting temperature, by virtue of internal heating due to the effect of said pressure. They are made of a first constituent with high crystallinity and at least one second constituent, compatible with the first constituent, and of crystallinity that is lower than that of the first constituent. They have a quantity of primary oxidation inhibitor lying in the range 350 ppm to 1000 ppm. Such fibers are made by spinning under conditions that avoid molecular degradation by thermal oxidation at the periphery of the fibers, in particular with cooling that is rapid immediately on leaving the extrusion head. The non-woven fabric obtained by heat-bonding such fibers is characterized by weld points that are in the form of a polymer laminate that is uniform and transparent.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: February 24, 2009
    Assignee: ALBIS
    Inventor: Galliano Boscolo
  • Patent number: 7462318
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 9, 2008
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20080230956
    Abstract: A process for producing foam moldings from prefoamed foam particles which have a polymer coating in a mold under pressure, wherein the prefoamed foam particles comprise from 10 to 70% by weight, based on the foam particles, of a filler, and also foam moldings produced therefrom and their use.
    Type: Application
    Filed: August 9, 2006
    Publication date: September 25, 2008
    Applicant: BASF SE
    Inventors: Markus Allmendinger, Klaus Hahn, Bernhard Schmied, Michael Riethues
  • Publication number: 20080211140
    Abstract: The present invention relates to methods of recovering hydrocarbons or low polarity organic chemicals from hard surfaces, water and water surfaces, in their vapor state and from porous substrates. The hydrocarbons or low-polarity organic chemicals may be included in a spill. More particularly, the invention relates to the absorption of certain hydrocarbons and low-polarity organic chemicals by applying thermoplastic elastomers of a triblock copolymer of the general configuration A-B-A. The preferred A-B-A copolymer of the invention is a low to medium molecular weight hydrogenated polystyrene-poly(isoprene+butadiene)-polystyrene or polystyrene-b-ethylene/ethylene-propylene-b-styrene block copolymer.
    Type: Application
    Filed: February 11, 2008
    Publication date: September 4, 2008
    Applicant: RTA SYSTEMS, INC
    Inventors: LYLE D. BURNS, Geoffrey O. Mitchell