Conveying Or Aligning Particulate Material Patents (Class 264/437)
  • Publication number: 20100084791
    Abstract: A method of fabricating micro- and nano-scale fiber comprises: spreading micro- and nano-scale particles into a liquid or fluid-like material prior to forcing portions of the liquid or fluid-like material that surround the particles to depart from the original liquid or fluid-like environment by using a force field; stretching to elongate the portions of the liquid or fluid-like material until the free ends of the stretched portions stop motion to complete fiber or fiber-like structures in micro- and nano-scales.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 8, 2010
    Inventors: Xingtao Wu, Yong Shi
  • Publication number: 20100075104
    Abstract: Process for manufacturing composite sheets based on PVC and a network of long fibers, said process comprising the following steps: dispersing PVC in powder form in said network; subjecting the dispersion to an alternating electric field with a sufficient intensity and for a sufficient time in order to distribute the powder in the network; and heating the dispersion under pressure until the powder forms a continuous matrix.
    Type: Application
    Filed: November 26, 2007
    Publication date: March 25, 2010
    Applicant: SOLVAY (SOCIETE ANONYME)
    Inventors: Claude Dehennau, Dominique Grandjean
  • Patent number: 7611656
    Abstract: A method of fabricating a plastic molded article is disclosed. In the method, a compound liquid, including two component liquids insoluble in each other and having different dielectric constants, is supplied between two electrodes, and an electric field is applied between the electrodes. At least one of the component liquids is an un-cured curable resin liquid. Upon application of the electric field, the higher dielectric constant component liquid is extended along the direction of the electric field, thus forming a bridge structure linking the electrodes. When the curable resin is cured after the bridge structure is formed, a plastic molded article is obtained.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: November 3, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Daiki Minegishi, Hisaaki Koseko
  • Patent number: 7601281
    Abstract: A flowable insulating resin 1 is placed in a sheet-like molding die space and conductive magnetic particles 2 are dispersed in the insulating resin 1. A first magnetic field G1 is acted in the sheet thickness direction on the position where a conductive path is to be formed in the die space, and conductive magnetic particles 2a are locally collected together to form a conductive path. Simultaneously, a second magnetic field G2 is acted in the sheet thickness direction on the intermediate region and the magnetic field G2 is moved in the lateral direction to move conductive magnetic particles 2b left in the intermediate region to join the collection forming the conductive path. As a result, the number of the conductive magnetic particles left in the insulating resin becomes smaller.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: October 13, 2009
    Assignee: Nitto Denko Corporation
    Inventors: Toshiaki Masaki, Kenichi Ikeda, Osamu Maekawa, Yasuo Nakatasuka, Masataka Tada
  • Publication number: 20090117269
    Abstract: An electrically conductive composite material includes metallic nanostrands distributed throughout a matrix constructed of a polymer, ceramic, or elastomer. The nanostrands may have an average diameter under four microns and an average aspect ratio over ten-to-one. Larger fibers may also be included to enhance electrical conductivity or other properties. The nanostrands and/or fibers may be magnetically oriented to enhance electrical conductivity along one direction. A pressure sensor may be formed by utilizing an elastomer for the matrix. Electrical conductivity through the composite material varies in proportion to deflection of the elastomer. A composite material may be applied to a surface as an electrically conductive paint. Composite materials may be made by cutting a blank of the nanostrands to the desired shape, inserting the matrix, and curing the matrix. Alternatively, a suspension agent may first be used to dispose powdered nanostrands in the desired shape.
    Type: Application
    Filed: December 11, 2006
    Publication date: May 7, 2009
    Applicant: Metal Matrix Composites Company
    Inventors: George Clayton Hansen, Lauren Hansen, William C. Jenkin
  • Patent number: 7452492
    Abstract: A method of fabricating a magnetic coder device, the method being of the type consisting in making a mixture of ferromagnetic particles or ferrites in a matrix, in molding the matrix, and in subjecting the molded matrix to a magnetic field so as to obtain a continuous alternation of north and south magnetic poles, which method consists in using a matrix having viscosity that is sufficiently low to enable the ferrites to migrate, in applying a magnetic field during the molding operation while maintaining the matrix at a given temperature in order to reduce its viscosity and thereby making it easier to cause the ferromagnetic particles to migrate and become oriented in their direction of easy magnetization, and to obtain discontinuous shapes having high particle concentration, and in suddenly cooling the matrix while the magnetic field is maintained so as to freeze the particles in the matrix.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 18, 2008
    Assignee: Hutchinson
    Inventors: Pascal Sautier, Gilles Argy
  • Patent number: 7425295
    Abstract: A Production method of tone wheel made of elastic material to be fixed to a rotating member in which a magnetic encoder is assembled in combination of the tone wheel and a magnetic sensor provided at a fixed member. The tone wheel is produced by using newly designed an assembled molding die which comprises one die blocks and the other die blocks which are detachably engaged each other, and which has a flash groove at matching surface where the distal of the one die blocks and that of the other die blocks are matched. The one die blocks have an annular molding surface formed on the magnetic die member side of the assembled die, and the other die blocks have an annular molding receiving surface part which is formed with an annular molding surface.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: September 16, 2008
    Assignee: Uchiyama Manufacturing Corp.
    Inventors: Hideo Mizuta, Manabu Ono
  • Publication number: 20080102266
    Abstract: The present invention provides a composite material sheet wherein a filler is oriented in a given direction in an organic resin matrix by an electric field. The composite material sheet of the present invention 10 contains filler 1 and organic resin 3, and is characterized in that the filler 1 is dendritically aggregated in the organic resin matrix and oriented in the thickness direction. As a result, properties such as dielectric property, conductivity, thermal conductivity and the like can be strikingly improved as compared to conventional composite materials obtained by simply dispersing a filler.
    Type: Application
    Filed: June 6, 2007
    Publication date: May 1, 2008
    Inventors: Yasuo Nakatsuka, Susumu Kiyohara, Michio Tan, Kenichi Ikeda, Katsufumi Tanaka, Ryuichi Akiyama
  • Patent number: 7301232
    Abstract: An integrated circuit package includes a die mounted on a substrate, an integrated heat spreader set above the die, and an array of carbon nanotubes mounted between the die and the integrated heat spreader. The integrated heat spreader is fixed on the substrate, and includes an inner face. The array of carbon nanotubes is formed on the inner face of the integrated heat spreader. Top and bottom ends of the carbon nanotubes perpendicularly contact the integrated heat spreader and the die respectively. Each carbon nanotube can be capsulated in a nanometer-scale metal having a high heat conduction coefficient.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: November 27, 2007
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Charles Leu, Tai-Cherng Yu, Chuan-De Huang, Wen-Jeng Huang, Jhy-Chain Lin, Ga-Lane Chen
  • Publication number: 20070269644
    Abstract: A method of fabricating a porous, fiber-reinforced thermoplastic sheet having increased lofting properties is provided. The method includes adding reinforcing fibers having an average length of about 5 mm to about 50 mm, and thermoplastic resin powder particles to an agitated aqueous foam to form a dispersed mixture, laying the dispersed mixture of reinforcing fibers and thermoplastic resin particles down onto a support structure, evacuating the water to form a web, generating a z-axis orientation of a portion of the reinforcing fibers, heating the web above the glass transition temperature of the thermoplastic resin, and pressing the web to a predetermined thickness to form a porous thermoplastic composite sheet having a void content of about 1 percent to about 95 percent.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Coray Avery Harper, Charles William Peterson, Venkatkrishna Raghavendran
  • Patent number: 7291381
    Abstract: A thermally conductive formed article according to the present invention includes a matrix, and short carbon fibers which are present in the matrix. The short carbon fibers are oriented in a fixed direction in the matrix. A ratio I(002)/I(110) between an intensity I(110) of a diffraction peak ascribable to a (110) surface of carbon and an intensity I(002) of a diffraction peak ascribable to a (002) surface of carbon, occurring when X-rays are irradiated onto the thermally conductive formed article along the direction of orientation of the short carbon fibers, is 10 or less.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: November 6, 2007
    Assignee: Polymatech Co., Ltd.
    Inventors: Masayuki Tobita, Naoyuki Shimoyama, Shinya Tateda, Tsunehisa Kimura, Masafumi Yamato
  • Patent number: 7172712
    Abstract: A method of making a multichromal sphere includes the steps of preparing a composition of at least (1) a matrix material and (2) at least two sets of particles, each of the sets of particles having a color different from at least one of another of the sets of particles and a segregation (e.g., an electrical or magnetic) property different from at least one of another of the sets of particles, encapsulating the composition within a shell to form an encapsulated sphere, immobilizing the encapsulated sphere in a manner to restrict at least rotation of the encapsulated sphere, subjecting the immobilized encapsulated sphere to an external field associated with the segregation property different among the sets of particles, under conditions in which the sets of particles are able to migrate within the matrix material, thereby producing color segregation in the immobilized encapsulated sphere, and solidifying the matrix material while substantially maintaining the color segregation.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: February 6, 2007
    Assignee: Xerox Corporation
    Inventors: Peter M. Kazmaier, Barkev Keoshkerian, George Liebermann, Naveen Chopra, Hadi K. Mahabadi, Jaan Noolandi, Francisco E. Torres
  • Patent number: 7052570
    Abstract: A method for producing a capillary bead array comprises the steps of: dispensing beads into a liquid pool, outside a capillary, having a depth of almost the same length as the particle diameter of a bead; leveling the excessive beads by moving a leveling member which is in contact with and relatively capable of be moved to the liquid pool to remove excessive beads that the liquid pool cannot contain; aligning the beads in the liquid pool one- or two-dimensionally; bonding adjacent individual beads to each other; producing a structure having the plurality of beads bonded and aligned one- or two-dimensionally; removing the structure from the liquid pool; and disposing the structure in the capillary formed of soft resin, so that the beads comprising the plurality of beads retaining the one- or two-dimensional alignment can be introduced simultaneously into the capillary.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: May 30, 2006
    Assignee: Hitachi Software Engineering CO, Ltd.
    Inventors: Osamu Kogi, Hiroshi Kishida
  • Patent number: 6872325
    Abstract: Briefly, in accordance with one embodiment of the present invention, a process for making a magnetic composite which comprises providing a polymeric resin and a magnetic powder, the magnetic powder having a mean particle size with a value for standard deviation that is less than the value for the mean particle size of the said magnetic powder, the said magnetic composite being made by mixing said magnetic powder with said polymeric resin and molding the said mixture into a desired shape and a size and said magnetic composite having a magnetic permeability between 30 and 50. In another embodiment the present invention is a composition for a magnetic composite comprising a polymeric resin and a magnetic powder, the said powder having a mean particle size with a value of standard deviation that is less than the value of the mean particle size of the magnetic powder, wherein said magnetic composite has a magnetic permeability between about 30 and about 50.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 29, 2005
    Assignee: General Electric Company
    Inventors: Krisanu Bandyopadhyay, Kunj Tandon, Amit Chakrabarti
  • Patent number: 6844378
    Abstract: A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 18, 2005
    Assignee: Sandia Corporation
    Inventors: James E. Martin, Robert A. Anderson, Rodney L. Williamson
  • Publication number: 20040202862
    Abstract: A method of making a multichromal sphere includes the steps of preparing a composition of at least (1) a matrix material and (2) at least two sets of particles, each of the sets of particles having a color different from at least one of another of the sets of particles and a segregation (e.g., an electrical or magnetic) property different from at least one of another of the sets of particles, encapsulating the composition within a shell to form an encapsulated sphere, immobilizing the encapsulated sphere in a manner to restrict at least rotation of the encapsulated sphere, subjecting the immobilized encapsulated sphere to an external field associated with the segregation property different among the sets of particles, under conditions in which the sets of particles are able to migrate within the matrix material, thereby producing color segregation in the immobilized encapsulated sphere, and solidifying the matrix material while substantially maintaining the color segregation.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 14, 2004
    Inventors: Peter M. KAZMAIER, Barkev KEOSHKERIAN, George LIEBERMANN, Naveen CHOPRA, Hadi K. MAHABADI, Jaan NOOLANDI, Francisco E. TORRES
  • Patent number: 6740282
    Abstract: Magnetizable fibers dispersed in a viscous body, particularly reinforcing metal fibers dispersed in a wet cementitious material, is carried out by providing a fiber aligning member (15) having a nonmagnetic wall (17) including a first wall portion (17A) and a second wall portion (17B), moving the aligning member (15) relative to the viscous body with the first wall portion (17A) leading and the second portion (17B) trailing it and with the first and second wall portions (17A, 17B) contacting the viscous body, and directing a magnetic field into the viscous body through the first wall portion (17A) to subject the fibers (F) to a moving magnetic field.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 25, 2004
    Inventor: Björn Svedberg
  • Patent number: 6733715
    Abstract: A method of manufacturing hollow ceramics fibers with the pores of the micron-scale hollow structure unidirectionally oriented, the method of manufacturing is characterized in the steps of dispersing organic fibers in a dielectric liquid and applying high voltage to the dielectric liquid containing the dispersed organic fibers to electrostatically align them to produce a fiber accumulation in which the organic fibers are unidirectionally oriented, using the fiber accumulation as a mold and dipping the fiber accumulation in a ceramics base solution, and then removing the mold by treatment with heat or organic solvents.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: May 11, 2004
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi Hozumi, Yoshiyuki Yokogawa, Tetsuya Kameyama
  • Patent number: 6685870
    Abstract: Fine particles (23) are oriented and dispersed in a polymer medium to obtain a composite material (24), which is high-density compression molded to such a size that a photonic band gap develops, thereby obtaining a photonic crystal element (26). The orientation of the fine particles (23) in the polymer medium can be carried out on a scale (tens of micrometers to several millimeters) where required manipulations can be done with ease.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: February 3, 2004
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Mitsuo Ukechi, Ryoji Kaku
  • Patent number: 6682811
    Abstract: A reinforced continuous molded article which is equally reinforced in all aspects is suitable for molding into automobile exterior trim. The article comprises at least one thermoplastic, having essentially homogeneously mixed therein about 2% to about 15% by volume reinforcing particles having one or more layers of 0.7 nm-1.2 nm thick platelets, wherein more than about 50% of the reinforcing particles are less than about 20 layers thick. A method of producing reinforced articles comprising these reinforcing particles is also disclosed. Optionally, such articles may have embossed surfaces or may have a decorative film laminated thereto.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: January 27, 2004
    Assignee: Magna International of America, Inc.
    Inventor: Phillip S. Wilson
  • Patent number: 6649115
    Abstract: A method of forming an interconnection component with integral conductive elastomeric sheet material, comprising providing a connector frame defining an opening, casting uncured elastomeric conductive polymer interface (ECPI) material onto the connector frame spanning the opening, and curing the ECPI in the presence of a magnetic field, to integrally couple the ECPI to the connector frame, and create a series of spaced conductive columns through the ECPI thickness.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 18, 2003
    Assignee: Paricon Technologies Corporation
    Inventors: Roger E. Weiss, Everett F. Simons
  • Patent number: 6620287
    Abstract: A method of manufacturing a fiber assembly, the method comprising: (a) providing a plurality of layers, each layer comprising sintered fibers of piezoelectric material aligned substantially parallel; (b) laminating the plurality of layers; and (c) applying a matrix material to the laminated layers to affix the layers and form a fiber assembly.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: September 16, 2003
    Inventor: Richard B. Cass
  • Patent number: 6613267
    Abstract: A method is provided for manufacturing a holder which has a holding part and a connector part. The holding part has an elastic body holding a built-in electronic part in a position. The method steps include pouring a liquid polymer mixed with a magnetic electric conductor into a mold for forming the holder. A magnetic force is applied to a desired position in the mold to orient the magnetic electric conductor to form a connector pattern of the connector part with the magnetic force. A holding part is molded integrally with the connector part to provide a one piece integral structure by crosslinking the liquid polymer. The magnetic electric conductor may be linked together by a force of a magnetic field. This defines a conductive passage in the connector part.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: September 2, 2003
    Assignee: Polymatech Co., LTD
    Inventor: Hideaki Konno
  • Patent number: 6592959
    Abstract: An encoder made of rubber material in which the S-poles and the N-poles are alternately magnetized in circumference, whose magnetic force is strong and whose variation of the magnetic force is slight in the circumferential direction when it is magnetized. And a manufacturing method thereof. A ring shaped rubber compound made of unvulcanized rubber material into which magnetic powders are mixed and having thickness t1 of 1.5 times to 5 times thicker than the thickness t of the encoder made of rubber material as the final product is vulcanizingly molded. In this vulcanizingly molding process, the thickness of ring shaped rubber compound is reduced to one fifth (⅕) to two thirds (⅔) by compressing the ring shaped rubber compound in the axial direction under high temperature. And then, vulcanizingly molded one is magnetized S-poles and N-poles alternately in circumference.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: July 15, 2003
    Assignee: Uchiyama Manufacturing Corp.
    Inventors: Yoshihiko Yamaguchi, Yasuo Taniguchi
  • Patent number: 6517744
    Abstract: A heat-conductive sheet comprising a cured or semi-cured binder wherein a carbon fiber is orientated in the direction of the thickness of the heat-conductive sheet. This heat-conductive sheet exhibits a high anisotropic heat conductivity along the direction of the thickness thereof to thereby enable efficiently releasing heat from a heating element such as a semiconductor element or semiconductor package. Moreover, the heat-conductive sheet is excellent in not only heat resistance, durability and mechanical strength but also adherence to the heating element.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: February 11, 2003
    Assignee: JSR Corporation
    Inventors: Takeo Hara, Shin-ichiro Iwanaga, Hozumi Sato, Ryoji Setaka
  • Patent number: 6372173
    Abstract: Process for production of three-dimensional objects by stereolithography in which a laser hardens particular areas of constantly succeeding layers of resin fluid. Prior to or during laser light action, the particles, which define physical or mechanical qualities of the object-to-be-produced, will be added into, and/or alternatively, will be produced within the resin fluid, leading to a resin-fluid-particle-mixture. The particles are integrated into the resin and/or compound with resin and/or other particles by means of laser light action or ultrasonic mixing.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: April 16, 2002
    Inventor: Klaus-Jürgen Peschges
  • Publication number: 20010042944
    Abstract: Fine particles (23) are oriented and dispersed in a polymer medium to obtain a composite material (24), which is high-density compression molded to such a size that a photonic band gap develops, thereby obtaining a photonic crystal element (26). The orientation of the fine particles (23) in the polymer medium can be carried out on a scale (tens of micrometers to several millimeters) where required manipulations can be done with ease.
    Type: Application
    Filed: February 28, 2001
    Publication date: November 22, 2001
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Mitsuo Ukechi, Ryoji Kaku
  • Patent number: 6290868
    Abstract: The present application is directed to a new class of composite materials, called field-structured composite (FSC) materials, which comprise a oriented aggregate structure made of magnetic particles suspended in a nonmagnetic medium, and to a new class of processes for their manufacture. FSC materials have much potential for application, including use in chemical, optical, environmental, and mechanical sensors.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: September 18, 2001
    Assignee: Sandia Corporation
    Inventors: James E. Martin, Robert C. Hughes, Robert A. Anderson
  • Patent number: 6287505
    Abstract: Self-tuning materials which can efficiently emit or receive radio waves in spite of being simple in their construction and small in their dimension, and are applied to patch antenna, wave directors or the like. Metallic chips containing two or more kinds of ingredients which are distributed in a layered, net-like or needle-shaped configuration, and an organic or inorganic bonding material which is small in dissipation of electric power under radio waves of high frequencies are mixed with each other, and are pressurized under a high pressure while being highly electrified in the direction perpendicular to the pressurizing direction to mold the metallic chips and the bonding material in a plate-shaped configuration while being heated.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: September 11, 2001
    Assignee: Suisaku Limited
    Inventor: Etsuko Kaitani
  • Patent number: 6241935
    Abstract: A powder feed system for delivering a quantity of particulate material to a die cavity of a powder press is provided. The powder press has a table-like platen surface which is flush with and surrounds a die in which the die cavity sits, an upper punch appending from an upper ram and a lower punch. The powder feed delivery system includes a receptacle for receiving and delivering particulate material to the cavity. The receptacle has an ingress through which particulate material is received under pressure and an egress for registering with the interior of the cavity and through which particulate material is delivered under pressure from a feed conduit to the cavity. The feed conduit is attached at a first end to the receptacle ingress. At least one pressure generator is attached to a top end of a pressure vessel attached at a second end to the feed conduit.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: June 5, 2001
    Assignee: Materials Innovation, Inc.
    Inventors: Glenn L. Beane, David S. Lashmore
  • Patent number: 6241921
    Abstract: Optically heterogeneous display elements utilize fused pigment particles, which may be manufactured with polymer shells having desired charge, photoresponse, or density characteristics. The particles may be microencapsulated prior to formation of the display element, so that the element is formed internally within the container in which it is permanently housed. The element may function as a bichromal display, a light valve, or a programmable magnetic element.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: June 5, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Hidekazu Yoshizawa
  • Patent number: 6197228
    Abstract: A method of making rotating element sheet material utilizing magnetic latching is disclosed. First a plurality of rotating elements, each element having a magnetized segment, are mixed with an elastomer and a plurality of magnetic particles to attract the magnetic particles to the magnetized segments. Then a magnetic field is applied to orient the elements in a common direction. When the rotating elements have all been oriented in a common direction, they are held in that orientation for a long enough period of time to allow the magnetic particles to migrate in the elastomer to the regions of the elastomer in the vicinity of the magnetized segments of the elements. The elastomer is then cured to form an elastomer substrate with trapped rotating elements and magnetic particles. The elastomer substrate is then immersed into a bath of dielectric plasticizer which is absorbed more readily by elastomer than by the rotating elements.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: March 6, 2001
    Assignee: Xerox Corporation
    Inventor: Nicholas K. Sheridon
  • Patent number: 6190509
    Abstract: A method of making an anisotropic conductive element for use in microelectronic packaging includes providing a layer of an anisotropic conductive material incorporating a dielectric material in a fluid condition and electrically conductive particles in the dielectric material and applying a field to the anisotropic conductive material so as to alter the configuration of the particles. The layer has a pair of oppositely directed major faces, a vertical direction between the major faces and horizontal directions parallel to the major faces. The field applied to the layer of anisotropic conductive material may include electrical or magnetic fields. In certain embodiments, at last some of the conductive particles are elongated so that when the field is applied to the layer of anisotropic conductive material, the field turns the axes of elongation of at least some of the elongated particles towards the vertical direction.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: February 20, 2001
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 6136256
    Abstract: The formation of dust particle agglomerates within a plasma reactor is controlled through adjustment of the ratio of the temperatures of two particle species within the plasma. Adjustment of the ratio of temperatures is achieved by means of one or more temperature control devices which alter the temperature of one particle species with respect to the temperature of a second particle species. The temperature of a neutral particle species may be adjusted with respect to the temperature of dust particles present within the plasma by heating or cooling the neutral gas supplied to the plasma chamber. Alternatively, the temperature of the dust particles may be raised or lowered with respect to the neutral gas particles by heating or cooling the substrate from which the dust particles emerge.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: October 24, 2000
    Assignee: Council for the Central Laboratory of The Research Councils
    Inventors: Robert Bingham, Vadim N. Tsytovich
  • Patent number: 6097531
    Abstract: A method of forming magnetized rotating elements for a rotating element display where all the elements are magnetized in the same orientation is provided. First, at least two planar streams of hardenable liquids flowing in substantially the same direction are provided. Each stream has an associated optical modulation characteristic and at least one stream has an associated optical modulation characteristic different from at least one other stream. At least one stream includes a magnetic pigment. The streams are then merged to form a reservoir containing side-by-side amounts of each liquid from each stream. A free jet is then formed containing side-by-side amounts of each liquid from the reservoir. Then a portion of the free jet is passed through a magnetic field which is oriented transverse to the direction of the free jet to magnetize the magnetic pigment. The rotating elements formed can be either spherical in shape or cylindrical in shape.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: August 1, 2000
    Assignee: Xerox Corporation
    Inventor: Nicholas K. Sheridon
  • Patent number: 6093338
    Abstract: A crystal-oriented ceramic has an isotropic or pseudoisotropic perovskite-type-structure of not smaller than 10% in Lotgering orientation degree. The ceramic may contain at least one of Bi, Sr and Ca. A host material, a raw material capable of producing a guest material and an additive having the ability of converting a host material into a guest material are mixed and roll-pressed, and sintered under heat to give the crystal-oriented ceramic as a large-sized and bulky material. This crystal-oriented ceramic has good crystal orientation-dependent characteristics including piezoelectricity, pyroelectricity, ionic conductivity, giant magneto-resistivity effect, etc. This crystal-oriented ceramic can be produced by orienting epitaxially the polycrystals of an isotropic or pseudoisotropic perovskite oxide according to the orientation of the crystal plane or axis of a host material. The ceramic can be applied to an inexpensive and large-sized device.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: July 25, 2000
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshihiko Tani, Tsuguto Takeuchi, Yasuyoshi Saito
  • Patent number: 6063323
    Abstract: A process and installation are provided for making an extruded sintered ceramic product. The method involves extruding a moist profile and simultaneously drying it with microwave radiation as it is extruded. As the profile is extruded and dried, it is supported at a position where it has been at least partially dried. The installation comprises extrusion means for extruding a moist profile, support means for supporting the extruded profile at an at least partially dried part thereof, and a microwave radiation source for directing microwaves at the profile.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: May 16, 2000
    Assignee: Implico B.V.
    Inventors: Paul F Fuls, Andre K Joubert, Diederik Kapp
  • Patent number: 6054071
    Abstract: Twisting balls (10) for an electric-paper display are formed from a polarizable material and encapsulated in a protective shell (12). The balls (10) are disposed between first and second electrodes (14, 16) which generate an electric field. The electric field polarizes each ball (10) transforming each into a dipole electret having a first and second charged poles. At least one colorant (20) is applied to each of the balls (10) to obtain multichromal balls such that the charged poles are distinct from each other. The polarized multichromal balls may then be used in fabricating an electric-paper display by encapsulating the balls (10) in an array such that each ball is capable of rotating in response to a selectively applied electric field.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: April 25, 2000
    Assignee: Xerox Corporation
    Inventor: James C. Mikkelsen, Jr.
  • Patent number: 6025285
    Abstract: A method and apparatus for aligning discontinuous fibers (F 101, 212) is described. A feeder apparatus (20, 120, 220, 220A) is used to align the fibers in a horizontal plane for feeding to the aligning apparatus (40, 140, 240, 240A) providing an electrical (E) field to orient the fibers in one preselected direction. A support or conveyor (70, 170, 270) receives the aligned fibers. The method and apparatus provides composite products having improved physical properties because of the alignment. The fibers can be of different lengths and a mixture of different types to make composites with controlled microstructure and properties. The composite materials can be in the form of non-woven, discontinuous fiber reinforced thermoplastic stampable sheets with controlled fiber orientation distribution. The composites are useful for a variety of goods.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: February 15, 2000
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Murty N. Vyakarnam, Lawrence T. Drzal
  • Patent number: 6004499
    Abstract: Standing planar compression waves are used to control the spacing and alignment of previously randomly distributed and randomly oriented loose fibrous elements in a fluid medium. A relatively intense standing planar compression wave comprising the superposition of multiple planar compression waves travelling in opposite directions is established between a pair of emitter/reflector surfaces working in concert. The fibrous elements gravitate to the nodes of the standing waves and align themselves parallel to the emitter/reflector surface of the transducer. The composite material may be solidified by cooling (or other process), which freezes the fibrous elements in an aligned array, thereby effecting the directional dependency of various structural properties of the composite material (including compression strength, tensile strength, and modulus of elasticity).
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: December 21, 1999
    Assignee: Face International Corporation
    Inventors: Richard P Bishop, Bradbury R Face
  • Patent number: 5935507
    Abstract: The present invention involves a multi-point laser trapping device in which laser light is irradiated on medium that includes micro-particles, and captures and arranges multiple micro-particles within said medium simultaneously; and is characterized by irradiating the aforementioned laser light from a single laser light source, and by arranging in that light route grating which forms on medium a diffraction pattern consisting of multiple point laser spots.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Moritex Corporation
    Inventors: Yuhkoh Morito, Shuji Shikano, Michinari Hoshina
  • Patent number: 5932038
    Abstract: A structural panel, board, or beam and method of making same, with straw that is oriented is provided. The straw is preferably oriented such that strands are parallel oriented in one or more directions. The straw strands are chopped, split, and a binder such as MDI is added.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: August 3, 1999
    Assignee: Alberta Research Council
    Inventors: Lars Bach, Kenneth W. Domier, Raymond Holowach
  • Patent number: 5922268
    Abstract: An electric type paper display having memory properties, rapid response times and multi-optical property display with an image of high quality is made. Each display element is wholly in contact with liquid in a cavity and the surface of each display element has a portion with a most positive charge. When an electrical field is applied from the outside, each display element is turned correspondingly to the direction of the electric field and, then electrically migrated through the liquid and attached to the inner surface of the cavity. Among multiple display surfaces of each display element an optical property is selected according to an image signal and is visible through a transparent support to an observer. Afterwards, the attached state of each display element, i.e.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: July 13, 1999
    Assignee: Xerox Corporation
    Inventor: Nicholas K. Sheridon
  • Patent number: 5897826
    Abstract: A powder feed system for delivering a quantity of particulate material to a die cavity of a powder press is provided. The powder press has a table-like platen surface which is flush with and surrounds a die in which the die cavity sits, an upper punch appending from an upper ram and a lower punch. The powder feed delivery system includes a receptacle for receiving and delivering particulate material to the cavity. The receptacle has an ingress through which particulate material is received under pressure and an egress for registering with the interior of the cavity and through which particulate material is delivered under pressure from a feed conduit to the cavity. The feed conduit is attached at a first end to the receptacle ingress. At least one pressure generator is attached to a top end of a pressure vessel attached at a second end to the feed conduit.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: April 27, 1999
    Assignee: Materials Innovation, Inc.
    Inventors: David S. Lashmore, Glenn L. Beane
  • Patent number: 5895854
    Abstract: A vehicle wheel is provided with a pneumatic tire and has a way to provide information. The pneumatic tire has at least at one predetermined location a rubber mixture that is permeated with magnetizable particles. An annular band of this rubber mixture contains the magnetizable particles anisotropically aligned in a peripheral direction of the tire. The tire can be used in a slip regulation system.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: April 20, 1999
    Assignee: Continental Aktiengesellschaft
    Inventors: Thomas Becherer, Martin Fehrle
  • Patent number: 5888340
    Abstract: A method and apparatus for aligning discontinuous fibers (F 101, 212) is described. A feeder apparatus (20, 120, 220, 220A) is used to align the fibers in a horizontal plane for feeding to the aligning apparatus (40, 140, 240, 240A) providing an electrical (E) field to orient the fibers in one preselected direction. A support or conveyor (70, 170, 270) receives the aligned fibers. The method and apparatus provides composite products having improved physical properties because of the alignment. The fibers can be of different lengths and a mixture of different types to make composites with controlled microstructure and properties. The composite materials can be in the form of non-woven, discontinuous fiber reinforced thermoplastic stampable sheets with controlled fiber orientation distribution. The composites are useful for a variety of goods.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: March 30, 1999
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Murty N. Vyakarnam, Lawrence T. Drzal
  • Patent number: 5840241
    Abstract: Standing planar compression waves are used to control the spacing and alignment of previously randomly distributed and randomly oriented loose fibrous elements in a fluid medium. Standing planar compression waves are established within the medium by a magnetostrictive or piezoelectric transducer. The fibrous elements gravitate to the nodes of the standing waves and align themselves parallel to the vibrating surface of the transducer. The composite material may be solidified by cooling (or other process), which freezes the fibrous elements in an aligned array, thereby effecting the directional dependency of various structural properties of the composite material (including compression strength, tensile strength, and modulus of elasticity).
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: November 24, 1998
    Inventors: Richard Patten Bishop, Bradbury Robinson Face
  • Patent number: 5786023
    Abstract: Method and apparatus for the selective heat-induced deposition of solid material from gas-phase or super-critical fluids to produce three-dimensional parts by pyrolysis of the fluids. The apparatus involves computer/feedback control of the evolving shape by direct monitoring of the volumetric deposition rate or growth profile, and modifying light beam focal properties, the position and orientation of the deposit relative to the beam foci, and/or the pressure and flow of reactants to the growth zone. The precursor gases may be pressurized and heated to the critical point or beyond, becoming super-critical fluids, without condensation. Growth occurs by diffusion of reactants to the growth zone through a boundary layer over the deposit. One method of growth includes directing a large-area impinging jet of precursor fluid(s) onto a deposit interface, while limiting the reaction zone to a smaller area determined solely by size of the heated zone (through use of a radiant beam, e.g.).
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: July 28, 1998
    Inventors: James L. Maxwell, Joseph Pegna
  • Patent number: 5728346
    Abstract: Chiral composite material is made using an apertured plate (2) having apertures (3) therethrough corresponding to the desired locations of chiral elements (4) in the composite material. The plate (2) is located to overlie a substrate (1) with or without the intermission of spacer (10) which may be apertured in correspondence with the plate (2) or which may be ring like in form. The chiral elements (4) are held in position by locating means such as a tab (5) which may be magnetic in, on or associated with the plate (2) and a first layer (8) of liquid host material is placed in the apertures (3) around the elements (4) against the substrate (1), allowed to set and the plate (2) removed. A second layer (9) of liquid host material is then applied to the set first layer (8) and allowed to set to produce the desired composite material.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: March 17, 1998
    Assignee: British Aerospace Public Limited Company
    Inventor: Sajad Haq
  • Patent number: 5589129
    Abstract: A liquid resin composition prepared by mixing an ionic material and/or a chargeable material into a thermosetting or thermoplastic resin is injected into a mold having a predetermined inner shape, and a DC voltage is applied to the liquid resin composition to concentrate the ionic material and/or chargeable material on a desired portion or to distribute the ionic material and/or chargeable material continuously. Thereafter, the resin composition is thermally cured when the resin composition contains the thermosetting resin, or the resin composition is hardened by cooling when the resin composition contains the thermoplastic resin, thereby obtaining a molding having a predetermined shape.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: December 31, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuguo Kato, Cao M. Thai