By Assembling Coil And Core Patents (Class 29/606)
  • Patent number: 8615872
    Abstract: A flow measurement device and a method of manufacturing a flow measurement device having a measurement tube made from plastic or at least a plastic liner are provided. According to an exemplary embodiment, the measurement tube can be fabricated from plastic in an injection molding apparatus. Thereafter, electrical components of the measurement tube, such as electrodes and a coil holder, for example, can be concomitantly injection molded in a common, separate injection molding process. The electrical components can there be installed easier and more reliably in position.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 31, 2013
    Assignee: ABB Technology AG
    Inventors: Karl-Heinz Rackebrandt, Klaus Schäfer, Marco Ehrenberg
  • Publication number: 20130334447
    Abstract: An HVAC system has an electronic expansion valve that has a valve body comprising a first motor component and a coil assembly comprising a plurality of stator bars, the plurality of stator bars being sealed from a surrounding environment by at least one fluid tight barrier at least partially disposed between the valve body and the plurality of stator bars.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: TRANE INTERNATIONAL INC.
    Inventor: Eli Carlton Beard
  • Patent number: 8607436
    Abstract: A method for terminating and winding coils of a core (20) of a dynamo electric machine. The coils being formed from at least an electric wire (W) and the core (20) having a longitudinal axis (20?). The coils (19) are wound by relatively moving a wire dispenser (21) with respect to a core with relative motions of translation and rotation; at least a stretch of wire extends from the coil and the stretch of wire is provided with a portion (W4) for a termination connection to a termination structure (22) of the core (20) such as a tang. The method avoids waste cut wire in the apparatus. The core is provided with a groove (120) at an end to receive at least a wire in the path of the wire for the termination of the coils. The apparatus comprises a wire deflector positioned adjacent the end of the core, where the groove (120) is located, in order to intercept and align the wire with the groove (120).
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: December 17, 2013
    Assignee: ATOP S.p.A.
    Inventors: Massimo Ponzio, Maurizio Mugelli
  • Publication number: 20130328656
    Abstract: The magnetic element has a first core member, a winding part, and a second core member, and is manufactured by way of at least a winding part placement step of placing the winding part on the face of the first core member on the side on which the core part is provided, such that the core part is positioned within the inner periphery of the winding part, and an injection molding step of injection molding so as to surround the first core member and the winding part with resin material, and in the winding part placement step, the winding part is placed on the face of the first core member on the side on which the core part is provided, with at least a portion of the inner peripheral face of the winding part distanced from the outer peripheral face of the core part.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 12, 2013
    Applicant: SUMIDA CORPORATION
    Inventor: Shinichi SAKAMOTO
  • Patent number: 8601672
    Abstract: In one embodiment, a stimulation lead comprises: a lead body of insulative material surrounding a plurality of conductors; a plurality of electrodes; and a plurality of terminals, the plurality of terminals electrically coupled to the plurality of electrodes through the plurality of conductors; wherein each conductor of the plurality of conductors is helically wound about an axis within the lead body in at least an outer portion and an inner portion relative to the axis, the outer portion comprises a first winding pitch and the inner portion comprises a second winding pitch, the second winding pitch is less than the first winding pitch, the inner portion of each respective conductor being disposed interior to the outer portions of other conductors of the plurality of conductors; wherein an impedance of each conductor of the plurality of conductors substantially reduces MRI-induced current when the stimulation lead is present in an MRI system.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 10, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Benjamin A Tranchina
  • Patent number: 8601673
    Abstract: A method of producing an inductor with high inductance includes forming a removable polymer layer on a temporary carrier; forming a structure including a first coil, a second coil, and a dielectric layer on the removable polymer layer; forming a first magnetic glue layer on the removable polymer layer and the structure; removing the temporary carrier; and forming a second magnetic glue layer below the structure and the first magnetic glue layer.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Cyntec Co., Ltd.
    Inventor: Shih-Hsien Tseng
  • Publication number: 20130320981
    Abstract: An imaging system is presented. The imaging system includes a cradle, and a first sheet of coils disposed inside of the cradle such that a first end of the first sheet of coils protrudes out of the cradle and a second end of the first sheet of coils is coupled to a structure, wherein a requisite expanse of the first sheet of coils is flexibly pulled out from the cradle by pulling the first end.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Selaka Bandara Bulumulla, Thomas Kwok-Fah Foo, Christopher Judson Hardy
  • Publication number: 20130307659
    Abstract: A distribution transformer having a slot-and-tab core frame assembly. The core frame (17) encloses a transformer core (11) having at least one phase and provides compression on the core yokes and end members of the transformer to bind the assembly together. First and second clamps (10, 24) of the core frame contain receiving slots (34) for the tabbed (18, 28), longitudinal side supports (20), creating an interlock when connected. For larger transformers, the tabbed side supports may be alternatively comprised of a subassembly of end plates, cams, and tabbed locking plates, encompassing a sturdy locking mechanism.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 21, 2013
    Inventor: Charles W. Johnson
  • Patent number: 8584348
    Abstract: A method of making an electronic ceramic component. The method includes steps of terminating a ceramic body with a metalized terminal and encompassing a portion of the ceramic body by an insulating resin. The step of encompassing further comprises steps of preparing a liquid resin precursor, applying the liquid resin precursor to a surface of the ceramic body, thereby wetting the surface of the ceramic body while not wetting the metalized terminal, and curing the liquid resin precursor applied to the wetted surface of the ceramic body to form a resin coating covering the surface of the ceramic body after removing extra quantity of the liquid resin precursor from the not wetted metalized terminal. The liquid resin precursor comprises an element selected from a group consisting of resin solution or resin emulsion that has a surface tension adjusted by changing a resin precursor concentration.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 19, 2013
    Assignee: Weis Innovations
    Inventor: Frank Wei
  • Patent number: 8584347
    Abstract: The present invention provides a stator core winding method for a motor and a structure thereof. The method includes preparing a stator core including a plurality of core cavities; winding a pair of second-phase coils into the plurality of core cavities of the stator core; winding a pair of first-phase coils, a pair of the second-phase coils and two pairs of third-phase coils into the plurality of core cavities of the stator core; and winding two pairs of the first-phase coils, a pair of the second-phase coils and a pair of the third-phase coils into the plurality of core cavities of the stator core.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 19, 2013
    Assignee: Taigene Electric Machinery Co., Ltd.
    Inventor: Chung Shung-Lin
  • Patent number: 8581466
    Abstract: An example electric machine includes a stator disposed about an axis having a plurality of slots. The electric machine also includes a plurality of windings each having a first portion and a second portion. At least two of the plurality of windings are at least partially disposed within each of the plurality of slots. At least one of the first portion or second portion of at least one of the plurality of windings of each slot includes a first exposed end with a surface having a plurality of grooves, the surface in contact with a second exposed end of at least one other winding of the same slot. The first exposed end and second exposed end form a joint between the plurality of windings. A braze material is dispersed in a plurality of grooves disposed between the first exposed end and the second exposed end.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: November 12, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Dhaval Patel, Gordon W. Friske
  • Patent number: 8572838
    Abstract: Embodiments of a high temperature electromagnetic coil assembly are provided, as are embodiments of a method for fabricating such a high temperature electromagnetic coil assembly. In one embodiment, the method includes the steps of applying a high thermal expansion ceramic coating over an anodized aluminum wire, coiling the coated anodized aluminum wire around a support structure, and curing the high thermal expansion ceramic coating after coiling to produce an electrically insulative, high thermal expansion ceramic body in which the coiled anodized aluminum wire is embedded.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 5, 2013
    Assignee: Honeywell International Inc.
    Inventors: James Piascik, Eric Passman, Reza Oboodi, Robert Franconi, Richard Fox, Gary J. Seminara, Gene Holden, Jacob Harding
  • Patent number: 8575812
    Abstract: A winding for an n-phase electric motor is disclosed. The inventive winding comprises a number of consecutive winding groups of n individual windings, wherein at any point in time an individual winding of a first group exhibits one direction of current flow and wherein at the same point in time a corresponding individual winding of an adjacent group exhibits the opposite direction of current flow. There is also disclosed a method for preparing such winding. It is further disclosed a magnetic unit adapted for such winding, comprising permanent magnets being essentially triangular in cross-section. Further, there is disclosed electric motors using the inventive winding concept, as well as geodetic instruments taking advantage thereof. An electric motor according to the disclosed inventive concept is particularly well suited for direct drive.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: November 5, 2013
    Assignee: Trimble AB
    Inventors: Magnus Westermark, Mikael Hertzman
  • Publication number: 20130289412
    Abstract: Rotational intravascular ultrasound (IVUS) imaging devices, systems, and methods are provided. The present disclosure is particularly directed to rotary transformers incorporating flex circuits that are suitable for use in rotational IVUS systems. In one embodiment, a rotary transformer for a rotational IVUS device includes: a rotational component and a stationary component. At least one of the rotational and stationary components includes a core formed of a magnetically conductive material and a flex circuit coupled to the core. In some instances, the flex circuit is coupled to the core such that a coil portion of the flex circuit is received within a recess of the core and an extension of the flex circuit extending from the coil portion extends through an opening of the core.
    Type: Application
    Filed: March 19, 2013
    Publication date: October 31, 2013
    Inventors: Paul Douglas Corl, David Miller
  • Patent number: 8567046
    Abstract: A method for making a magnetic component is provided. The method comprises providing a core with one or more ridges protruding from one or more surfaces of the core, depositing one or more electrically conductive materials on the core, and removing at least a portion of the one or more ridges to form one or more continuous conductors wound around the core. Each of the one or more continuous conductors defines at least one insulating gap. Further, a magnetic component and methods for making the magnetic component are also presented.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 29, 2013
    Assignee: General Electric Company
    Inventors: Satish Prabhakaran, John Stanley Glaser, Ljubisa Dragoljub Stevanovic, Juan Manuel Rivas Davila
  • Patent number: 8549732
    Abstract: A surgical navigation system for navigating a region of a patient includes a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits. The dynamic reference frame may be repeatably placed on the patient in a precise location for guiding the instruments. The instruments may be precisely guided by positioning sensors near moveable portions of the instruments. Electrical sources may be electrically isolated from the patient.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: October 8, 2013
    Assignee: Medtronic Navigation, Inc.
    Inventors: Bruce M. Burg, John H. Dukesherer, Bradley A. Jascob, Paul Kessman
  • Patent number: 8549731
    Abstract: Ceramic inductors are made from stacked sheets of co-fired ceramic. At least one of the ceramic sheets has a slot with a conductor disposed in the slot. The conductor has a thickness equal to a thickness of the ceramic sheet containing the slot. The conductor has a large thickness (compared to prior art co-fired ceramic inductors) and therefore can carry large currents. The present ceramic inductor can be used in power electronics applications due to the ability to carry large currents. The present ceramic inductor preferably has an inductance that decreases with increasing current. A decreasing inductance characteristic tends to increase energy efficiency in a voltage regulator when the inductor is used as an output inductor. Specifically, the variable inductance tends to substantially increase energy efficiency at low current loads without adversely affecting efficiency at high loads.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 8, 2013
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michele H. Lim, J. D. van Wyk
  • Patent number: 8539666
    Abstract: A method is for making an electrical inductor. The method includes forming a first subunit having a sacrificial substrate, and an electrically conductive layer defining the electrical inductor and including a first metal on the sacrificial substrate. The method includes forming a second subunit having a dielectric layer and an electrically conductive layer thereon defining electrical inductor terminals and having the first metal, and coating a second metal onto the first metal of one of the first and second subunits. The method includes aligning the first and second subunits together, heating and pressing the aligned first and second subunits to form an intermetallic compound of the first and second metals bonding adjacent metal portions together, and removing the sacrificial substrate.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: September 24, 2013
    Assignee: Harris Corporation
    Inventors: Michael Raymond Weatherspoon, Louis Joseph Rendek, Jr., Lawrence Wayne Shacklette, Robert Patrick Maloney, David M. Smith
  • Patent number: 8542865
    Abstract: An electromechanical transducer 180, motor structure 200 and voice coil winding support structure or bobbin 210 are configured to protect and transport heat away from a voice coil 220 which is would solely within the interior of bobbin 210 and configured for reciprocating movement in close proximity to an extended cooling pole piece 204. A compact, economical and efficient adaptation of a pancake style motor includes generous volume for a powerful magnet 208, while providing an extended, linear range of excursion and continuous cooling for the generously overhung voice coil 220.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 24, 2013
    Inventor: Robert M. O'neill
  • Publication number: 20130241686
    Abstract: A reactor includes a coil and a core unit having partial cores butted against one another to form a closed magnetic path. The partial cores include a first partial core forming and a second partial core. The first partial core is inserted in the hollow of the coil. A pressed face of the first partial core is oriented orthogonal to the winding axis direction of the coil. The second partial core is butted against the first partial core. A pressed face of the second partial core is oriented orthogonal to a direction different from the winding axis direction. The pressed face of the second partial core is a substantially flat plane.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: TAMURA CORPORATION
    Inventors: Ryo Nakatsu, Toshikazu Ninomiya, Kotaro Suzuki, Tsutomu Hamada
  • Publication number: 20130234526
    Abstract: A controllable inductor system includes a multiphase inductor comprising a central winding, a first control winding, and a second control winding, and a control portion comprising a first control logic portion operative to receive a signal indicative of a current of the first control winding and a signal indicative of a current of the sum of the first control winding and the second control winding and modulate a first pulse width modulated signal to responsively control a first transistor connected to the first control winding, and a second control logic portion operative to receive the signal indicative of the current of the first control winding and a signal indicative of a current of the sum of the first control winding and the second control winding and modulate a second pulse width modulated signal to responsively control a second transistor connected to the second control winding.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: RAYTHEON COMPANY
    Inventors: Boris S. Jacobson, Edward Jung
  • Patent number: 8528190
    Abstract: A method of manufacturing a power module on a substrate. In one embodiment, the method includes providing power conversion circuitry including providing a magnetic device having a magnetic core and at least one switch on the substrate. The method also includes placing a shielding structure with a baffle over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber and the baffle directs the encapsulant away from the magnetic core thereby limiting an amount of the encapsulant that contacts the magnetic core within the chamber.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: September 10, 2013
    Assignee: Enpirion, Inc.
    Inventors: Ashraf W. Lotfi, Mathew Wilkowski, John D. Weld
  • Publication number: 20130222100
    Abstract: A reactor 1 of the present invention includes: a combined product 10 provided with a coil 2 and a magnetic core 3 where the coil 2 is disposed; and a case 4 storing the combined product 10. The case 4 includes: a bottom plate portion 40 fixed to a fixation target when the reactor 1 is installed in the fixation target; a side wall portion 41 attached to the bottom plate portion 40 to surround the combined product 10; and a heat dissipation layer 42 formed on the inner face of the bottom plate portion 40 to be interposed between the bottom plate portion 40 and the coil 2. The bottom plate portion 40 is made of aluminum, and the side wall portion 41 is made of an insulating resin. The heat dissipation layer 42 is made of an adhesive agent whose thermal conductivity is high and which exhibits an excellent insulating characteristic.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 29, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yasushi Nomura, Atsushi Ito, Akinori Ooishi, Takahiro Onizuka, Yoshiaki Matsutani
  • Patent number: 8516688
    Abstract: An assembly includes a cylindrical magnet assembly, which includes comprises at least one coil mounted on a former. The assembly also includes a bore tube with a number of radially-directed retaining protrusions formed in a material of the bore tube, each of the number of radially-directed retaining protrusions configured to bear against a periphery of a corresponding cavity in the former.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Siemens Plc.
    Inventor: Russell Peter Gore
  • Patent number: 8510932
    Abstract: A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 20, 2013
    Assignee: Advanced Magnet Lab, Inc.
    Inventor: Rainer Meinke
  • Publication number: 20130207763
    Abstract: A cooling device for an electrical apparatus having an air gap. The cooling device includes a heat transfer element coupled to the core. The heat transfer element includes a first material to facilitate transferring heat out of the core. The cooling device further includes an electrical insulator coupled to the heat transfer element. The insulator includes a second material to facilitate flow of magnetic flux across the air gap.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: General Electric Company
    Inventor: General Electric Company
  • Patent number: 8505193
    Abstract: Integrated high frequency balanced-to-unbalanced transformers and inductors suitable for operation in high frequencies, such as radio frequencies. Embodiments disclosed give consideration to issues related to the layout of the top and bottom inductors for the minimization of capacitive effects between layers and methods of manufacturing thereof. The manufacturing process comprises forming of a first winding in a first metal layer; forming an insulating layer over at least the first metal layer; forming of a second winding in a second metal layer such that the second winding path has both a vertical and a horizontal displacement to the first conductive path, preferably with an overlap that is less than a full overlap; and forming shunts to ensure continuity of each of the first and second windings.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 13, 2013
    Assignee: Theta Microelectronics, Inc.
    Inventor: Yannis Papananos
  • Publication number: 20130201728
    Abstract: A forward converter comprises a magnetic component with a transformer and a filter output inductor. Also disclosed is a method for assembly of a forward converter. A first and a second U/UR core are arranged to form an O-core. Windings of the transformer are arranged on the O-core. A bobbin-less U/UR core is arranged to abut the O-core, and windings of a filter output inductor are arranged directly on a body section of the bobbin-less U/UR core. Alternatively, windings of the transformer are arranged on a first section of an E/ER core, and windings of the filter output inductor are arranged directly on a second, bobbin-less section of the E/ER core.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 8, 2013
    Applicant: DET INTERNATIONAL HOLDING LIMITED
    Inventor: DET International Holding Limited
  • Patent number: 8484829
    Abstract: Methods of manufacturing low profile magnetic components configured as a power management devices for an electrical system of an electronic device involve prefabricated coil windings assembled with a plurality of flexible dielectric sheet layers, and laminating the plurality of flexible dielectric sheets around the prefabricated coil windings to form a dielectric body having a low profile chip configuration attachable to the electronic device.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 16, 2013
    Assignee: Cooper Technologies Company
    Inventors: Daniel Minas Manoukian, Robert James Bogert
  • Patent number: 8484831
    Abstract: A method includes coating a conductive wire with a paste comprising a first inorganic dielectric material, an organic binder, and a solvent to form a coated wire, drying the coated wire at a first drying temperature to remove at least a portion of the solvent and form a green wire, winding the green wire around a core to form a green assembly, heat treating the green assembly at a decomposing temperature above the first temperature and below a melting point of the first inorganic dielectric material to decompose the organic binder to form an intermediate assembly, and exposing the intermediate assembly to a densifying temperature that is above the decomposing temperature and substantially equal to or above the melting point of the first inorganic dielectric material to densify the dielectric material on the conductive wire.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: July 16, 2013
    Assignee: Honeywell International Inc.
    Inventors: James Piascik, Reza Oboodi, Robert Franconi
  • Patent number: 8476526
    Abstract: A device for controlling an electric field at a high voltage component including a resistive layer for field control, an insulating layer arranged on the resistive layer and a semi-conducting or conducting layer arranged on the insulating layer. The three layers meet at a triple point where the insulating layer ends. An interface between the resistive layer and the insulating layer makes in the triple point an angle to the semi-conducting or conducting layer of 60°-120°.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 2, 2013
    Assignee: ABB Technology Ltd.
    Inventor: Radim Lichy
  • Patent number: 8468681
    Abstract: A method for establishing a wind turbine generator with one or more Permanent Magnet (PM) rotors. The method comprises the steps of: manufacturing a generator prepared for taking one or more PM rotors, manufacturing one or more rotors comprising a plurality of holding means prepared for retaining PM material, mounting substantially non-magnetized PM material prepared for magnetization in said holding means before or after said one or more rotors are mounted in said generator, connecting a magnetization system for magnetizing said PM material in the generator, and magnetizing said PM material with said magnetization system. The invention also relates to a wind turbine nacelle, a wind turbine comprising said wind turbine nacelle and use of a wind turbine.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: June 25, 2013
    Assignee: Vestas Wind Systems A/S
    Inventors: Lars Helle, Philip Richard Jacobsen Carne Kjaer, Morten Lindholm, Flemming Buus Bendixen, Ion Boldea
  • Publication number: 20130147589
    Abstract: A transformer (10) includes a ferromagnetic core (14); winding structure (12) mounted on the core; electrical terminals (40, 40?) connected to the winding structure; a fast transient mitigator circuit (52) including an impedance circuit serially connected between one of the terminals and the winding structure, and a capacitor connected from the one terminal to external ground. The mitigator circuit is constructed and arranged to reduce a frequency spectrum and magnitude of fast transients. An encasement (16), of an insulating resin, commonly encapsulates the core, the winding structure and at least the impedance circuit of the mitigator circuit.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 13, 2013
    Applicant: ABB TECHNOLOGY AG
    Inventor: ABB TECHNOLOGY AG
  • Publication number: 20130147588
    Abstract: A transformer is provided having a stacked core with a pair of outer legs extending between a pair of yokes. The core is arranged in a plurality of layers. Each of the layers includes a pair of yoke plates and a pair of outer leg plates. In an inner-most layer, the width of each yoke plate is less than the width of each outer leg plate. In each of the layers, the inner points of the outer leg plates are substantially in contact with the yoke plates. The cross-section of the inner leg and the outer legs may be rectangular or cruciform.
    Type: Application
    Filed: April 14, 2011
    Publication date: June 13, 2013
    Applicant: ABB Technology AG
    Inventors: Charlie Sarver, William E. Pauley, JR.
  • Patent number: 8458893
    Abstract: Generally, methods and processes for assembling magnetic components are presented herein. More specifically, conductors are wound around a substantially hollow bobbin. Portions of the conductors may be temporarily positioned outside the bobbin through slots in the flanges of the bobbin during the assembly process. Insulating layers may be wrapped around the conductors. The center legs of a pair of magnetic core halves may be inserted into the bobbin. The base of the magnetic core halves may have a passage to allow a conductor to pass therethrough at a height less than the height of the base.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 11, 2013
    Assignee: Flextronics AP, LLC
    Inventors: Antony Brinlee, Arturo Silva
  • Patent number: 8456266
    Abstract: A vacuum cast or “solid” transformer coil assembly and a method of manufacturing thereof are provided. A solid transformer coil assembly, according to an embodiment of the invention, includes a dielectric substrate, the coil windings provided around the substrate, and an epoxy compound encapsulating the substrate and the coil windings. The substrate is provided with raised “buttons” comprising the same epoxy material as the epoxy compound used for encapsulation. The buttons maintain a specific distance between the coil and the dielectric substrate. The buttons are arranged such that they support the windings and allow the encapsulating epoxy to flow around them flooding the entire mold without entrapping air or creating voids.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: June 4, 2013
    Assignee: Engineered Products of Virginia, LLC
    Inventor: Curtis Frye
  • Patent number: 8453318
    Abstract: A method of making a planar coil is disclosed in the present invention. First, a substrate having a trench is provided. Then, a barrier and a seed layer are formed on the substrate in sequence. An isolative layer is used for guiding a conductive material to flow into a lower portion of the trench such that accumulation of the conductive material at opening of the trench is prevented before the lower portion of the trench is completely filled up, thereby avoiding gap formation in the trench.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: June 4, 2013
    Assignee: Touch Micro-System Technology Corp.
    Inventors: Hung Yi Lin, Ming Fa Chen
  • Publication number: 20130127579
    Abstract: A reactor comprises a reactor core in which two U-shaped core members are connected in a ring shape with gap sections including adhesive layers therebetween, a primary insert-molded resin part which is provided covering leg parts of the core member and which includes joint sections formed around end surfaces of the leg parts a coil placed around the gap sections and the leg parts of the core members, and a secondary insert-molded resin part which is made of a thermoplastic resin and which is insert-molded around the coil to fix the coil on the reactor core and fix the leg parts of the two core members in a connected state, wherein the joint sections of the primary insert-molded resin parts are fitted to each other in a state where the core members are placed connected in a ring shape, to form a peripheral wall surrounding the gap section.
    Type: Application
    Filed: June 27, 2011
    Publication date: May 23, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Ueno, Fumio Nomizo
  • Patent number: 8443511
    Abstract: A scalable MEMS inductor is formed on the top surface of a semiconductor die. The MEMS inductor includes a plurality of magnetic lower laminations, a circular trace that lies over and spaced apart from the magnetic lower laminations, and a plurality of upper laminations that lie over and spaced apart from the circular trace.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 21, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson
  • Patent number: 8434213
    Abstract: There is provided a system for readily and efficiently fabricating a wound coil composed of a bobbinless coil. The system includes a coil winding device having an upper jig to which an upper plate is attached and a lower jig to which a lower plate is attached which are provided so as to be relatively displaceable and a tension device for applying predetermined tension to a wire rod fed from a wire rod supplying source. The coil winding device is provided with a claw section having first through third split claws that function as a winding section around which the wire rod is wound between the upper and lower plates and that slide in a radial direction when the upper jig is assembled coaxially with the lower jig.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 7, 2013
    Assignee: Keihin Corporation
    Inventors: Tomohiro Nomura, Hirozumi Kon, Satoshi Tokuda, Osamu Hinata
  • Patent number: 8424193
    Abstract: A wiring assembly having a conductor positioned about an axis in a helical-like configuration to provide a repetitive pattern which rotates around the axis. In one embodiment, when a current passes through the conductor, a magnetic field having an orientation orthogonal to the axis changes direction as a function of position along the axis.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 23, 2013
    Assignee: Advanced Magnet Lab, Inc.
    Inventor: Rainer Meinke
  • Publication number: 20130088318
    Abstract: A reactor 1? includes one coil 2, a magnetic core 3 to which the coil 2 is arranged, and a case 4 containing an assembly 10 of the coil 2 and the magnetic core 3. The magnetic core 3 includes an inner core portion 31 inserted into the coil 2, and a coupling core portion 32 disposed around the coil 2. The coupling core portion 32 is made of a mixture of magnetic powder and resin. The coil 2 is covered with the coupling core portion 32 and is enclosed within the case 4 in a sealed state. The reactor 1? includes, in an outermost surface region exposed at an opening of the case 4, a magnetic shield layer 5 made of non-magnetic powder, having smaller specific gravity than the magnetic powder and having electrical conductivity, and the resin. A small reactor capable of reducing magnetic flux leaked to the outside is thereby provided.
    Type: Application
    Filed: May 27, 2011
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Kazuhiro Inaba
  • Patent number: 8413318
    Abstract: A method for manufacturing an armature core is provided, in which a plurality of split cores, which are formed by laminating core pieces produced through punching by punching dies, are coupled together to form an annular shape as a whole, so as to manufacture one armature core. The method includes: preparing a plurality of sets of the split cores, each set having three split cores, so as to form one armature core; and arranging the three split cores in each set at intervals of 120° in the circumferential direction. The three split cores in each set are formed by core pieces that have been punched by the same part of the same punching die.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 9, 2013
    Assignee: Asmo Co., Ltd.
    Inventors: Shinji Ikeda, Kenji Yoshimura, Shingo Matsuoka
  • Patent number: 8413316
    Abstract: Method for bonding a wire conductor arranged on a preferably card-like substrate during the manufacture of a transponder unit having a wire coil and a chip module, comprising a first phase, wherein the coil is permanently joined with the substrate, and a second phase, wherein the wire conductor and the chip module are bonded, whereas in the first phase at least one of the end portions of the wire conductor intended for later bonding with the chip module is attached to the substrate with a free loop being formed, and that the loop thus formed is gripped in a second phase and a section of the loop is then bonded with a bonding area of the chip module and attached to it in an electronically conductive manner.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: April 9, 2013
    Assignee: Hid Global Ireland Teoranta
    Inventors: Seamus O'Keeffe, Brendan Morley
  • Publication number: 20130082812
    Abstract: A coil part is provided. The coil part includes a coil layer including a core and a first coil and a second coil disposed on and under the core, a lower magnetic layer bonded under the coil layer, and an upper magnetic layer bonded on the coil layer. Accordingly, it is possible to improve process and productivity and cut fabrication costs by preventing process defects that occur during the fabrication process of a coil part using a ferrite substrate.
    Type: Application
    Filed: March 6, 2012
    Publication date: April 4, 2013
    Inventors: Young Seuck Yoo, Jeong Bok Kwak, Yong Suk Kim, Sang Moon Lee, Kang Heon Hur, Sung Kwon Wi
  • Patent number: 8410576
    Abstract: An inductor is formed on a wafer by attaching a first core structure to the wafer with a pick and place operation, forming a coil with one or more thick metal layers over the first core structure, and then attaching a second core structure to the first core structure with the pick and place operation after the coil has been formed. In addition, the pick and place operation can also be used to attach one or more integrated circuits to the wafer to form an integrated inductive device.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 2, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Andrei Papou
  • Patent number: 8407881
    Abstract: An object of the present invention is to provide a small, high-power rotating electrical machine by suitably forming a distributed winding coil such that two stator magnetic poles each formed of in-phase coil turns are arranged within an electric angle of 360 degrees formed by magnetic poles of the rotor. The present invention provides a method for manufacturing a stator, the method including a first step of placing a distributed winding coil 207 composed of a wire wound around a reel 210, as a whole, inside a stator core 202, and a second step of moving an insertion blade 213 so as to spread the distributed winding coil 207 in the radial direction of the stator core 202, thus inserting the distributed winding coil 207 into a stator core slot 206.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 2, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Naganawa, Kenji Miyata, Takashi Ishigami
  • Patent number: 8407883
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis is enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 2, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Publication number: 20130077250
    Abstract: A power supply converter (100) comprising a first FET (210) connected to ground (230), the first FET coupled to a second FET (220) tied to an input terminal (240), both FETs conductively attached side-by-side to a first surface of a metal carrier (120) and operating as a converter generating heat; and a packaged load inductor (110) tied to the carrier and an output terminal (241), the inductor package wrapped by a metal sleeve (113) in touch with the opposite surface of the metal carrier, the sleeve operable to spread and radiate the heat generated by the converter.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan A. HERBSOMMER, Osvaldo J. LOPEZ, Jonathan A. NOQUIL, David JAUREGUI, Lucian HRISCU
  • Publication number: 20130074324
    Abstract: A reactor which may be employed in an inverter for automotive vehicles. The reactor includes a coil, a core, a casing, and a positioning member. The core is made of a solidified magnetic powder/resin mixture and has the coil embedded therein. The positioning member is disposed in the casing to position the coil relative to the casing and equipped with fins configured to stir the magnetic powder/resin mixture before solidified. Specifically, the positioning member is designed to perform two functions: one is to fix the location of the coil within the casing, and the other is to stir the magnetic powder/resin mixture through the fins, thus eliminating the need for removing a portion of the magnetic powder/resin mixture adhered to the fins, which leads to improved productivity of the reactor.
    Type: Application
    Filed: November 15, 2012
    Publication date: March 28, 2013
    Applicant: DENSO CORPORATION
    Inventor: DENSO CORPORATION