Pressure Failure Patents (Class 303/122.09)
  • Publication number: 20030111898
    Abstract: An electro-hydraulic brake system containing four isolation piston assemblies each of which is comprised of a cylinder, a piston, and a pair of hydraulic lines. The cylinder has only two apertures, and the piston is disposed in the cylinder. The first hydraulic line communicates between a wheel brake and a first side of the piston through one of the apertures. The second hydraulic line communicates between an accumulator and a second side of the piston through the other of the apertures. The system components are arranged in a compact, easy to manufacture package.
    Type: Application
    Filed: December 14, 2001
    Publication date: June 19, 2003
    Applicant: DELPHI TECHNOLOGIES INC.
    Inventors: David F. Reuter, Jerry L. Newton, Robert S. Mattern
  • Publication number: 20030090148
    Abstract: Method and apparatus for activation of an emergency brake function (8; 8′) within a vehicle (1) in dependence of whether a regular brake function. The method and apparatus include a first brake circuit and a second brake circuit that are out of order. A first sensor (20; 20′) is included for detecting whether the pressure (p1) in the first brake circuit falls below a first limit value (p1G). A second sensor is included (21; 21′) for detecting whether the pressure (p2) in the second brake circuit falls below a second limit value (p2G). A means is also provided (16; 24, 25, 26) for activation of said emergency brake function if the pressure (p1) in the first brake circuit falls below the first limit value (p1G) at the same time as the pressure (p2) in the second brake circuit falls below the second limit value (p2G). An activation process for an emergency brake function is provided regarding the method.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 15, 2003
    Applicant: Volvo Articulated Haulers AB
    Inventor: Goran Eliasson
  • Patent number: 6557951
    Abstract: A brake system with hydraulic brake boosting has a hydraulic actuating unit which comprises a hydraulic reservoir, a brake pedal, a brake-pressure generator and a pedal-travel simulator, a hydraulic unit comprising a pressure generator, a hydraulic wheel-brake device and a control unit for coordinating the functions of the actuating unit, of the hydraulic unit and of the wheel-brake device. The pedal-travel simulator possesses a variable displacement volume which is connected to the hydraulic reservoir via a hydraulic line. In order to design electrohydraulic brakes by simple means so as to be more fail-safe, a return line is provided between the wheel-brake device and the displacement volume of the pedal-travel simulator.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: May 6, 2003
    Assignee: DaimlerChrysler AG
    Inventors: Georg Frentz, Peter Woll
  • Patent number: 6547048
    Abstract: A hydraulic pressure intensifier for operating a vehicle braking system under conditions that are not conducive to the proper operation of a power assist for the braking system. The hydraulic pressure intensifier has an intensifier inlet fluidly connected to a master cylinder and an intensifier outlet fluidly connected to a wheel cylinder. A bypass valve has an input and output fluidly connected to the intensifier inlet and the intensifier outlet, respectively. With normal power assisted braking operation, the bypass valve is open and the master cylinder is fluidly connected to the wheel cylinder via the bypass valve. In a manual or nonpower assisted braking operation, the bypass valve is closed; and the hydraulic pressure intensifier is fluidly connected between the master cylinder and the wheel cylinder.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: April 15, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Timothy A. Haerr, Gary C. Fulks
  • Patent number: 6542793
    Abstract: There is provided a pedal apparatus for vehicles, which comprises a pedal reaction-force addition means 4 for adding a reaction force to a pedal 1 of a vehicle, a pedal force detection means 2 for detecting a force added to the pedal 1, a pedal reaction-force control means 3 for adjusting the output of the pedal reaction-force addition means 4. During the running of the vehicle, the pedal reaction-force control means 3 performs the adjustment of a reaction force of the pedal on the basis of the driving environment of the vehicle and the driver's intention and judgement in pedal operation in the driving environment, whereby it is ensured that when the driver has no intention of operating the pedal, the driver can sufficiently place his or her foot on the pedal and that when he driver has any intention of operating the pedal, the driver can realize a smooth pedal operation.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: April 1, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takao Kojima, Kazuhiko Satou, Toshimichi Minowa, Satoru Kuragaki, Tokuji Yoshikawa
  • Publication number: 20030038539
    Abstract: A method and system for ensuring reliable operation of a brake booster system for a vehicle braking system in which a pressure value prevailing in the brake pressure reservoir of the brake booster system is sensed by a pressure sensor. An error occurring in the brake booster system is detected by evaluating the sensed pressure value prevailing in the brake pressure reservoir as a function of the actuation of the brake actuating mechanism. The brake booster system includes a diagnostic circuit that is connected to the pressure sensor and to the brake actuating mechanism.
    Type: Application
    Filed: July 29, 2002
    Publication date: February 27, 2003
    Inventors: Ernst Wild, Kristina Eberle
  • Patent number: 6513885
    Abstract: The braking control system provides dual redundant control of hydraulically operated wheel braking for an aircraft. A primary hydraulic system provides hydraulic power for normal operation of the plurality of wheel brakes, and a secondary hydraulic system provides hydraulic power for alternate operation of the plurality of wheel brakes. A control unit is provided for controlling brake pressure communicated to the wheel brakes through the primary and secondary hydraulic systems, and a monitor channel is operatively connected to the primary hydraulic system for detecting faults in the primary and secondary hydraulic systems and for selecting between the primary and secondary hydraulic systems for providing braking pressure. The monitor channel detects occurrence of loss of pressure in the primary hydraulic system, if any brake has unwanted pressure applied, and if a fault is detected on the primary or secondary channels that affects more than one wheel brake on each landing gear.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: February 4, 2003
    Assignee: Hydro-Aire, Inc.
    Inventors: Bijan Salamat, Robert F. Mackness
  • Patent number: 6505893
    Abstract: Two brake circuits (1, 2) each comprise at least one wheel brake (VL, VR, HL, HR), a fluid control module (38, 42, 44; 40, 46, 48; 24) for fluid pressure control at the at least one wheel brake, and at least one brake line (50, 52; 54, 56) for connecting the fluid control module to the at least one wheel brake, such that only one brake line is connected to each wheel brake. In order to increase the safety of the vehicle brake system during braking with only one intact brake circuit, according to the invention in the vehicle brake system a sensor arrangement (58) for determining failure of a brake circuit is provided, and the fluid control modules in the event of failure of a brake circuit are capable of controlling the fluid pressure at the at least one wheel brake of the intact brake circuit in such a way that the gradient of a developing yawing moment (G) of a vehicle provided with the vehicle brake system does not exceed a predetermined maximum value.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: January 14, 2003
    Assignee: Lucas Automotive GmbH
    Inventors: Frank Schmidt, Steven Keen, Ingo Montermann, Christoph Puderbach
  • Publication number: 20020109403
    Abstract: A brake control apparatus for controlling at least three brake devices provided for braking respective at least three wheels of an automotive vehicle which includes two wheels located on respective left and right sides of the vehicle, wherein an emergency brake control portion is provided for controlling at least two normal brake devices when at least one of the at least three brake devices is defective, such that a difference between a total left-side braking force to be generated by at least one normal brake device located on the left side of the vehicle and a total right-side braking force to be generated by the other normal brake device or devices located on the right side is made larger when operations of all of the normal brake devices in a detected running condition of the vehicle are not likely to deteriorate the vehicle running stability, than when the operations of all of the normal brake devices in the detected running condition are likely to deteriorate the vehicle running stability.
    Type: Application
    Filed: April 23, 2002
    Publication date: August 15, 2002
    Inventors: Takayuki Yamamoto, Seiichi Kojima, Hiroaki Aizawa, Naoki Sawada
  • Patent number: 6430493
    Abstract: A vehicular brake control device makes it possible to detect a failure or malfunction in closing an electromagnetic valve which is placed between a master cylinder and each of wheel cylinders. The vehicular brake control device includes a pressure application device which is capable of applying a hydraulic pressure automatically, i.e., regardless of a brake pedal depression, to each of wheel cylinders by way of a hydraulic pressure control device 17 from a master cylinder 20 and an ECU 18 which drives the pressure application unit 12 and the hydraulic pressure control device 17 to adjust a braking force of each of wheels. The hydraulic pressure control device 17 includes a set of pressure-maintaining and pressure-reducing valves for each wheel. The ECU 18 has a pressure application check division 77 which begins to check the pressure application at a predetermining timing.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: August 6, 2002
    Assignee: Aisen Seiki Kabushiki Kaisha
    Inventors: Wataru Tanaka, Toshiaki Hamada, Hirofumi Nitta
  • Patent number: 6425644
    Abstract: A braking pressure control apparatus for a hydraulically operated brake, including a first hydraulic system having a first hydraulic pressure source power-operated to pressurize a working fluid and capable of controlling the fluid pressure, for operating the brake, a second hydraulic system having a second hydraulic pressure source operable by an operating force acting on a manually operable brake operating member, to pressurize the working fluid to a pressure higher than a level corresponding to the operating force, for operating the brake, a switching device operable to selectively establish a first state in which the brake is operated with the pressurized fluid delivered from the first hydraulic pressure source, and a second state in which the brake is operated with the pressurized fluid delivered from the second hydraulic pressure source, and a diagnosing device operable to diagnose the second hydraulic system on the basis of the fluid pressure in the second hydraulic system.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: July 30, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Fumiaki Kawahata, Tetsuya Miyazaki, Hirohiko Morikawa, Akihiro Otomo
  • Patent number: 6412885
    Abstract: In order to prevent a needlessly excessive yaw moment from being applied to the vehicle, thereby improving the running stability of the vehicle when either one of the braking force generation units went wrong, a brake system for vehicles having electric brake units (14) each provided for each of the wheels to generate a braking force by its actuator (22) being driven according to the amount of depression of a brake pedal, and a controller (38) for controlling each of the electric brake units independently of others, is so constructed as to judge if any of the electric brake units went wrong (step 253, 259, 550, 650), and when either one of the electric brake units went wrong, to control the electric brake units other than the wrong unit according to the depression amount of the brake pedal so as to accomplish a best available stability of running of the vehicle.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: July 2, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Shirai, Yasunori Yoshino, Akihiro Otomo, Hideyuki Inoue
  • Patent number: 6398318
    Abstract: A method for monitoring a braking system contained in a vehicle. The braking system includes at least one brake circuit. The brake circuit, on the output side, contains valve configurations, to which wheel brake cylinders allocated to the brake circuit are connected. The braking system furthermore has at least one pump capable of delivering braking medium to at least two wheel brake cylinders. During predetermined vehicle states, the at least one pump is actuated and the first valve configurations are driven by predefined driving signals. Ascertained for at least one wheel of the vehicle during the actuation of the pump and the first valve configurations is a wheel-performance variable which describes the wheel performance, in particular the wheel-rotation performance, of the corresponding wheel. The braking system is checked for a first and/or second fault as a function of this wheel-performance variable.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: June 4, 2002
    Assignee: Robert Bosch GmGH
    Inventor: Thomas Braun
  • Patent number: 6394561
    Abstract: In a brake system of a vehicle in which a pair of wheel cylinders are supplied with a fluid pressure by a fluid circuit having a pair of inlet control valves for selectively connecting the pair of wheel cylinders respectively to an outlet port of a motor-driven pump and a pair of outlet control valves for selectively connecting the pair of wheel cylinders respectively to a fluid reservoir, a brake control device controls the motor driving of the pump and opening/closing of the inlet and outlet control valves, such that a controlled fluid pressure is supplied to the pair of wheel cylinders at least temporarily with the pair of inlet control valves substantially fully opened, while the pair of outlet control valves substantially closed, wherein it is judged if there is a difference between output signals of a pair of wheel cylinder pressure sensors beyond a predetermined threshold value, thereby judging the pair of wheel cylinder pressure sensors to be both operating normally when the difference is not larger t
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: May 28, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Sakamoto, Akihiro Otomo
  • Patent number: 6389349
    Abstract: An activation signal of a pump of a braking system is created as a function of a pressure gradient, preferably from a pressure accumulator. In this context, the switched-on time of a pulse-width modulated signal within an activation clock cycle is varied, taking into consideration the accumulator pressure gradient, in order to activate the pump. This is done by addressing a switching arrangement by way of a control unit. Activation as a function of the pressure gradient can be accomplished alternatively to or in combination with activation as a function of the generator voltage of the pump motor.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 14, 2002
    Assignee: Robert Bosch GmbH
    Inventor: Juergen Hachtel
  • Publication number: 20020050739
    Abstract: A method and a device for controlling wheel brakes is proposed. To improve the availability and to fulfill legal requirements imposed on an electrical braking system, a control of the valves derived from a second power circuit independent of the first one is provided in the event of a fault, via which the braking pressure in the at least one wheel brake can be set even in the event of a fault.
    Type: Application
    Filed: July 23, 2001
    Publication date: May 2, 2002
    Inventors: Georg Koepff, Reinhard Weiberle, Bernd Kesch
  • Patent number: 6354672
    Abstract: A braking system including a brake cylinder, a first hydraulic pressure source having a first pump device for pressurizing a working fluid, a second hydraulic pressure source operable in response to an operation of a brake operating member, to pressurize the fluid to a pressure higher than a value corresponding to an operating force of the brake operating member, and a brake-cylinder-pressure control device operable when the brake cylinder is disconnected from the second hydraulic pressure source, to control the pressure of the fluid pressurized by the first hydraulic pressure source, such that the fluid pressure in the brake cylinder is controlled to a value determined on the basis of the operating force, and wherein an emergency communication device is operated when at least one of the brake-cylinder-pressure control device and the first pump device fails to normally function, to hold the brake cylinder in communication with the second hydraulic pressure source.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: March 12, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin Seiki Kabushiki Kaisha
    Inventors: Eiji Nakamura, Akihiro Otomo, Fumiaki Kawahata, Tetsuya Miyazaki, Hiroshi Toda
  • Patent number: 6272417
    Abstract: A vehicle braking system including a controller, in an initial anti-skid cycle, performs a first determination to select a high or a low control mode in accordance with wheel speed parameters. The controller in a second, or subsequent anti-skid cycle, performs a second determination to determine whether a near &mgr; test is to be performed in accordance with wheel speed parameters. The controller consequent upon selection of low control mode performs a near &mgr; test. The near &mgr; test includes performing a rise in the brake pressure and then selecting a high or low mode in accordance with the speed of the wheels resulting from the rise in brake pressure in the near &mgr; test.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: August 7, 2001
    Assignee: Haldex Brake Products Limited
    Inventors: Colin F. Ross, Dudley J. Harrison
  • Patent number: 6254202
    Abstract: A vehicle capable of performing automatic driving can be braked with a hydraulic braking pressure produced by a master cylinder having a vacuum booster and a hydraulic braking pressure produced by a hydraulic pressure pump provided to an ABS/B-TCS hydraulic pressure control unit. During normal braking, the vehicle performs braking with the hydraulic braking pressure produced by the master cylinder, by controlling a linear solenoid of the vacuum booster in accordance with a command from an automatic driving electronic control unit. If an insufficient braking force is obtained from the hydraulic braking pressure produced by the master cylinder or a failure occurs in the braking system of the master cylinder, the vehicle performs emergency braking with the hydraulic braking pressure produced by the hydraulic pressure pump of the ABS/B-TCS hydraulic pressure control unit HU.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: July 3, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Yoshimichi Kawamoto
  • Patent number: 6244672
    Abstract: A method and an apparatus for controlling a brake system, the brake pressure of at least one wheel brake being controlled electrically as a function of at least the braking request of the driver. The brake system includes a high-pressure reservoir, whose pressure is detected and taken into consideration in controlling the brake system. In case of failure of the reservoir pressure detection system, the reservoir pressure is estimated on the basis of a model, and the estimated reservoir pressure is taken into consideration in controlling the brake system.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: June 12, 2001
    Assignee: Robert Bosch GmbH
    Inventor: Juergen Hachtel
  • Patent number: 6203122
    Abstract: A method of electronic brake force distribution is applied to contribute to vehicle stability even in the event of failure of the system that detects failure of the front-axle brake circuit (13) in a vehicle (1). The method involves initiating a pressure maintenance or pressure reduction phase only after the standards with respect to a minimum vehicle deceleration upon brake circuit failure are met. This way, it is ensured that the standards are observed, on the one hand, and locking of the rear wheels (6,7) before the front wheels (4,5) is prevented with great likelihood, on the other hand. Thus, electronic brake force distribution (EBD) is switched over to less sensitive criteria. This makes allowance for both possibilities in the event of a failure of a pressure switch (15), i.e., that the front-axle brake circuit (13) is intact or that it is defective.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: March 20, 2001
    Assignee: Continental Teves AG & Co. OHG
    Inventors: Norbert Ehmer, Thomas Pröger, Markus Zenzen