With Yaw Control Patents (Class 303/146)
  • Patent number: 8311707
    Abstract: A method of detecting a minispare tire in a vehicle having a vehicle control system. The method includes detecting a rotational velocity of each of a plurality of wheels of the vehicle; determining whether a minispare tire is mounted on the vehicle based on the rotational velocities detected at each of the plurality of wheels; adjusting the vehicle control system if a minispare tire is mounted on the vehicle; sensing a hydraulic pressure of a braking system of the vehicle; and suspending determination of whether a minispare tire is mounted on the vehicle if the hydraulic pressure exceeds a predetermined critical pressure level.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 13, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Nachiket D. Patil
  • Patent number: 8272699
    Abstract: A brake apparatus is provided that can make a ratio between a front wheel braking force and a rear wheel braking force that is actually generated into an arbitrary ratio.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 25, 2012
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinya Imura, Kenichiro Matsubara, Hirotaka Oikawa
  • Patent number: 8229642
    Abstract: Improved methods of controlling the stability of a vehicle are provided via the cooperative operation of vehicle stability control systems such as an Active Yaw Control system, Antilock Braking System, and Traction Control System. These methods use recognition of road surface information including the road friction coefficient (mu), wheel slippage, and yaw deviations. The methods then modify the settings of the active damping system and/or the distribution of drive torque, as necessary, to increase/reduce damping in the suspension and shift torque application at the wheels, thus preventing a significant shift of load in the vehicle and/or improving vehicle drivability and comfort. The adjustments of the active damping system or torque distribution temporarily override any characteristics that were pre-selected by the driver.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: July 24, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: James W. Post, II, Xiaodi Kang, William Monsma
  • Patent number: 8224530
    Abstract: A steering system for a car having two front direction wheels and a number of electronic dynamic-performance control devices; the steering system has a steering wheel for controlling a turn angle of the front direction wheels, and a power-assist device which generates a power-assist torque which is added to the torque exerted on the steering wheel to vary the turn angle of the front direction wheels; the power-assist device has a control unit, which determines operation of the electronic dynamic-performance control devices, and modifies the power-assist torque as a function of operation of the electronic dynamic-performance control devices.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: July 17, 2012
    Assignee: Ferrari S.p.A.
    Inventors: Davide Montosi, Gianluigi Cavani, Amedeo Visconti
  • Patent number: 8219308
    Abstract: An engine-propelled monowheel vehicle comprises two wheels, close together, that circumscribe the remainder of the vehicle. When the vehicle is moving forward, the closely spaced wheels act as a single wheel, and the vehicle turns by leaning the wheels. A single propulsion system provides a drive torque that is shared by the two wheels. A separate steering torque, provided by a steering motor, is added to one wheel while being subtracted from the other wheel, enabling the wheels to rotate in opposite directions for turning the vehicle at zero forward velocity. The vehicle employs attitude sensors, for sensing roll, pitch, and yaw, and an automatic balancing system. A flywheel in the vehicle spins at a high rate around a spin axis, wherein the spin axis is rotatable with respect to the vehicle's frame. The axis angle and flywheel spin speed are continually adjustable to generate torques for automatic balancing.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 10, 2012
    Inventor: Karl F. Leeser
  • Patent number: 8210620
    Abstract: According to the braking force control system of the present invention it is prevented that the braking root pressure is increased unnecessarily high when the braking force increase suppressing control was initiated during the execution of the brake assist control without losing the effects of increasing the braking force available when the brake assist control only is executed.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 3, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yasuji Mizutani
  • Patent number: 8200391
    Abstract: A target yaw moment Mt of a vehicle is calculated to make the vehicle run stably (S20). The change rate ?d of an accelerator pedal operation amount ? is calculated (S30). Based on the change rate ?d, a proportion ?s1 for a steering angle control is calculated (S50). When the change rate ?d is a positive value, the proportion ?s1 gradually increases as the change rate ?d increases. A proportion ?b for a braking force control is calculated by subtracting the proportion ?s1 from 1 (1??s1) (S60). Based on the proportions ?s1 and ?b, a target yaw moment Mts for the steering angle control and a target yaw moment Mtb for the braking force control are calculated (S70). A steering-angle changing device (24) and a braking device (36) are controlled based on the target yaw moments Mts and Mtb, respectively (S400 to S430).
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 12, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Jun Sakugawa, Shiro Monzaki
  • Patent number: 8200452
    Abstract: To provide an attitude-angle detecting apparatus, which detects an attitude angle of a mobile object during movement with good accuracy by correcting an output value from an acceleration sensor, and to provide a method for the same. It is characterized in that it comprises an acceleration sensor for measuring an acceleration being applied to a mobile object, a yaw-rate sensor for measuring a yaw rate of the mobile object, a speed sensor for measuring a speed of the mobile object, a mobile-component acceleration calculating means for calculating an actual acceleration from the speed, calculating a centrifugal force from the yaw rate and the speed and calculating a mobile-component acceleration, a resultant force of the actual speed and the centrifugal force, and an attitude-angle calculating means for calculating an attitude angle from a gravitational acceleration, which is obtainable by correcting the acceleration with the mobile-component acceleration.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: June 12, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akihiro Ueda, Iwao Maeda, Kiyomi Nagamiya, Naoto Shibata
  • Patent number: 8185288
    Abstract: A brake system for a vehicle having a sensor device for providing a first and second sensor signal, a first and a second brake control device, which are directly connected to the sensor device and to provide a corresponding control signal for the first and/or second sensor signal, and a first and a second signal line for transmitting the control signal, the first signal line directly connecting the first brake control device to a first and second wheel actuator device and the second signal line directly connecting the second brake control device to a third and fourth wheel actuator device, the four wheel actuator devices exerting a braking torque corresponding to the control signal on the associated wheel, and the first wheel actuator device being directly connected to the second brake control device and/or the sensor device. A method for operating a brake system for a vehicle is also provided.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: May 22, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Strengert, Peter Blessing, Dirk Hofmann, Werner Harter
  • Patent number: 8180541
    Abstract: In a braking/driving force control apparatus, a vehicle target braking/driving force and a vehicle target yaw moment through the control of braking/driving forces of wheels are calculated, and when the target braking/driving force and the target yaw moment cannot be achieved through the control of the braking/driving forces of the wheels, it is determined which one of the braking/driving force and the yaw moment should take priority on the basis of the target braking/driving force and the target yaw moment. When it is determined that the braking/driving force should take priority, the braking/driving forces of the wheels are controlled so as to attain the target braking/driving force as much as possible, and when it is determined that the yaw moment should take priority, the braking/driving forces of the wheels are controlled so as to attain the target yaw moment as much as possible.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 15, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Kazuya Okumura, Michitaka Tsuchida, Yoshio Uragami, Kensuke Yoshizue, Satoshi Ando, Koji Sugiyama
  • Patent number: 8170755
    Abstract: A method of detecting a minispare tire in a vehicle having a vehicle control system. The method includes detecting a rotational velocity of each of a plurality of wheels of the vehicle; determining whether a minispare tire is mounted on the vehicle based on the rotational velocities detected at each of the plurality of wheels; adjusting the vehicle control system if a minispare tire is mounted on the vehicle; sensing a hydraulic pressure of a braking system of the vehicle; and suspending determination of whether a minispare tire is mounted on the vehicle if the hydraulic pressure exceeds a predetermined critical pressure level.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: May 1, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Nachiket D. Patil
  • Patent number: 8095272
    Abstract: A rotatable grip (ancillary operation member) is provided on a part of a steering wheel body of a steering wheel (main operation member) for turning wheels. When the grip is rotated, a difference is generated between left and right wheels, and a yaw moment generated with this difference can assist or suppress the turning of a vehicle. Because the grip constitutes a part of the steering wheel body, it is possible to rotate the grip to assist or suppress the turning of the vehicle, while operating the steering wheel to turn the vehicle. Because both the steering wheel body and the grip can be operated by the same hand of a driver, operational burden on the driver is alleviated. Thus, it is possible to concurrently provide an excellent operability of the main operation member for controlling a kinetic state of the vehicle, and an excellent operability of the ancillary operation member for controlling the operation of a yaw moment generating device.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuasa Suzuki, Minoru Higuchi, Yasuji Shibahata
  • Patent number: 8086383
    Abstract: A control input for operating an actual vehicle actuator and a control input for operating a vehicle model are determined by an FB distribution law based on a difference between a reference state amount determined by a vehicle model and an actual state amount of an actual vehicle such that the state amount error is approximated to zero, and then an actuator device of the actual vehicle and the model vehicle are operated based on the control inputs. The FB distribution law determines a control input for operating the model such that a state amount error is approximated to zero while restraining a predetermined restriction object amount from deviating from a permissible range. A vehicle control device capable of enhancing robustness against disturbance factors or their changes while performing operation control of actuators that is as suited to behaviors of an actual vehicle as possible is provided.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 27, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Hiroshi Kono, Takayuki Toyoshima, Hiroyuki Urabe, Shuji Shiraishi, Yukihiro Orimoto
  • Patent number: 8078361
    Abstract: Disclosed is a method for assisting an operator of a vehicle in adjusting a nominal steering angle at steerable wheels of the vehicle for the vehicle stabilization. An additional steering torque is applied to the steering line of the vehicle, which is determined dependent on a difference between a nominal steering angle and an instantaneous steering angle. The method is characterized in that a value of a load moment acting on the steering line of the vehicle is estimated, and that the additional steering torque is established dependent on the estimated value for the load moment.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 13, 2011
    Assignee: Continental Teves AG & Co., OHG
    Inventors: Fred Galkowski, Thomas Berthold, Thomas Raste, Urs Bauer
  • Patent number: 8050822
    Abstract: A driving/braking force manipulation control input of a k-th wheel, which denotes one or more specific wheels among a plurality of wheels of a vehicle, is determined such that a required condition concerning a relationship among a road surface reaction force that may act from a road surface on the k-th wheel on the basis of the detected values or estimated values of a road surface reaction force and a friction characteristic of the k-th wheel, a feedback control input related to the driving/braking force of the k-th wheel for bringing a difference between a state amount of the vehicle and a reference state amount close to zero, a driving/braking force feedforward control input based on a drive manipulated variable supplied by a driver of the vehicle, and a k-th wheel driving/braking force manipulation control input is satisfied.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 1, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takayuki Toyoshima, Hiroyuki Urabe, Hiroshi Kono
  • Patent number: 8020947
    Abstract: A vehicle turning motion control apparatus includes a turning condition sensing section to sense a turning condition of the vehicle; and a vehicle deceleration control section to initiate a deceleration control to decelerate the vehicle when the turning condition exceeds a deceleration start threshold. The control apparatus further includes a running state sensing section configured to sense a running state of the vehicle, and a threshold setting section configured to set the deceleration start threshold in accordance with the running condition.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 20, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Takeshi Ishimoto
  • Patent number: 8016365
    Abstract: An understeer suppressing apparatus for a vehicle includes an electric power steering device S for suppressing steering when the vehicle is in the understeer state, an alarm device A for informing a driver that the vehicle is in the understeer state, and a braking force distribution device B for generating moment of the vehicle by applying braking forces different from each other to the left and right wheels. As the degree of understeer is increased, the electric power steering device S, the alarm device A, and the braking force distribution device B are operated in this order.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: September 13, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masato Yuda, Yoshimichi Kawamoto, Norio Yamazaki, Shigenori Takimoto
  • Patent number: 8019498
    Abstract: An instruction value conversion section (31) of an operation target calculation section (30) converts an instruction signal from a joystick (25). In order to obtain a movement mode of a ship intended by an operator, a target propeller speed calculation section (32) calculates, using each converted value, target rotation speed of right and left propellers (13) and the propeller (14b) of a thruster (14). At a main engine operation control section (40), a slip rate determination section (41) calculates the slip rate U of a clutch mechanism (120) of a marine gear (12) in order to rotate the propellers (13) at the target rotation speed. A drive control section (42) controls operation of the main engine (11) and the clutch mechanism (120). Further, in a thruster operation control section (50), a drive control section (52) controls drive of the propeller (14b) in the rotational direction determined by an operation determining section (51).
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: September 13, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takayoshi Yamazaki, Atsuyuki Tsuzuki, Kouichi Iguchi
  • Patent number: 7983801
    Abstract: A system for and a method of controlling the stability of a vehicle includes an electronic control system controlling a vehicle stability control subsystem based at least in part on static tire data received by the electronic control unit.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: July 19, 2011
    Assignee: Kelsey-Hayes Company
    Inventor: Danny R. Milot
  • Patent number: 7974761
    Abstract: According to the present invention, when a target braking/driving force and a vehicle target yaw moment required to a vehicle cannot be achieved through a control of a braking/driving forces of wheels, in a rectangular coordinate of the braking/driving force and the yaw moment, a polygon indicating the maximum range of the braking/driving force and the yaw moment attainable by the braking/driving forces of the wheels, and an ellipse that crosses each side of the polygon and has a major axis and a minor axis aligning with the coordinate axis of the rectangular coordinate are set, for example.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: July 5, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Kazuya Okumura, Michitaka Tsuchida, Yoshio Uragami, Kensuke Yoshizue, Satoshi Ando, Koji Sugiyama
  • Patent number: 7970512
    Abstract: An integrated stability control system using the signals from an integrated sensing system for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include an IMU sensor cluster, a steering angle sensor, wheel speed sensors, any other sensors required by subsystem controls. The signals used in the integrated stability controls include the sensor signals; the roll and pitch attitudes of the vehicle body with respect to the average road surface; the road surface mu estimation; the desired sideslip angle and desired yaw rate from a four-wheel reference vehicle model; the actual vehicle body sideslip angle projected on the moving road plane; and the global attitudes. The demand yaw moment used to counteract the undesired vehicle lateral motions (under-steer or over-steer or excessive side sliding motion) are computed from the above-mentioned variables.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: June 28, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Todd Brown
  • Patent number: 7957877
    Abstract: A curving tendency detection device is provided to detecting a curving tendency (curving frequency and amount of curvature) in a vehicle roadway or a vehicle running state (behavior). Basically, the curving tendency detection device has a lateral acceleration differential value calculation section and a curving tendency estimation section. The lateral acceleration differential value calculation section calculates vehicle lateral acceleration differential values of a vehicle lateral acceleration acting on a vehicle as the vehicle lateral acceleration varies over time. The curving tendency estimation section estimates the curving tendency based on the vehicle lateral acceleration differential value calculated by the lateral acceleration differential value calculation section. Thus, the curving can be reliably detected by effectively avoiding a false curving tendency in cases in which the left and right wheels have different effective diameters, or the vehicle is driving straight along a laterally tilted road.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: June 7, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Akihiro Makiyama
  • Publication number: 20110121642
    Abstract: A brake control system for motor vehicles includes a stability system for stabilizing the vehicle from the standpoint of driving dynamics during braking, a triggering unit for the automatic output of a braking demand as a function of the traffic situation, a braking unit which converts the braking demand into a braking action, and a control unit for modifying the braking demand prior to its implementation as a function of the state of the stability system.
    Type: Application
    Filed: January 20, 2005
    Publication date: May 26, 2011
    Inventors: Martin Heinebrodt, Martin Randler
  • Patent number: 7949455
    Abstract: A brake control apparatus which is used in a vehicle having wheels on left and right sides, and controls a braking force provided to each wheel is disclosed. The brake control apparatus is provided with a vehicle body speed calculating section, a steering angle calculating section, and an ECU. A braking force is provided to a wheel on the inner side with respect to the vehicle turning direction in the case where the absolute value of the steering angle is equal to or greater than the preset threshold value of the steering angle. In the case where the vehicle body speed is less than the preset speed threshold value, the braking force becomes smaller than the braking force in the case where the vehicle body speed is equal to or greater than the speed threshold value.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: May 24, 2011
    Assignee: Advics Co., Ltd.
    Inventor: Masaru Kamikado
  • Patent number: 7946394
    Abstract: The system and method for monitoring wear of one or more aircraft parts, such as an aircraft brake, an aircraft tire, a standby system, and landing gear. One or more sensors are provided for sensing a parameter of usage, and an estimate of usage of the part can be determined based upon the signal indicating the sensed value of the parameter of usage of the aircraft part. A plurality of sensors can be provided for sensing usage of a plurality of parts of the aircraft, and the estimate of usage of the part can be stored for access of the estimate by ground personnel. As applied to monitoring wear of an aircraft brake, a linear brake wear indicator attached to the brake moves a discrete distance when the brake is actuated, and a linear position encoder measures the distance traveled by the linear brake wear indicator as an indication of brake usage.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 24, 2011
    Assignee: Hydro-Aire, Inc.
    Inventor: Garrett H. DeVlieg
  • Publication number: 20110109152
    Abstract: The invention relates to a brake system for a vehicle, with a main brake cylinder, a fluid control unit, and at least one wheel brake. The fluid control unit has, for brake pressure modulation in at least one brake circuit a switchover valve, an intake valve and a recirculating pump for each brake circuit. According to the invention, the fluid control unit has, for each brake circuit, a sliding valve which is connected into a suction line between the recirculating pump and the main brake cylinder. The sliding valve restricts the effective pressure on a suction side of the recirculating pump to a predeterminable maximum pressure value. In this case, the sliding valve can be arranged in series with or parallel to the intake valve.
    Type: Application
    Filed: July 7, 2008
    Publication date: May 12, 2011
    Inventors: Rene Schepp, Norbert Alaze
  • Patent number: 7920952
    Abstract: A turning control apparatus for a vehicle to improve turning ability and to avoid degradation of acceleration ability is provided. The turning control apparatus comprises a first yaw controller for adjusting at least one of driving torque of a left wheel and a right wheel; a second yaw controller for adjusting a speeds difference between a front wheel and a rear wheel; and an integrated yaw controller for controlling yaw momentum of the vehicle by managing the first and second yaw controller, wherein when the yaw of the vehicle should be reduced, the integrated yaw controller controls the first yaw controller so as to decrease the driving torque of a inside wheel, which is one of the right and left wheel and is near to a center axis of turning, and the second yaw controller so as to decrease the speeds difference between the front and rear wheel.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 5, 2011
    Assignee: Mitsubishi Jidosha Kabushiki Kaisha
    Inventors: Takami Miura, Keiji Suzuki
  • Patent number: 7909416
    Abstract: According to the present invention, when at least one of a target braking/driving force and a vehicle target yaw moment required to a vehicle cannot be achieved by a braking/driving forces of wheels, a target braking/driving force after a modification and a target yaw moment after a modification are calculated to be values attainable by the braking/driving forces of the wheels. When the magnitudes of the target braking/driving force after a modification and the target yaw moment after the modification exceed the corresponding limit value, these magnitudes are limited to the limit values. Alternatively, when the magnitudes of rates of change of the target braking/driving force after a modification and the target yaw moment after the modification exceed the corresponding limited rates of change, these magnitudes of the rates of change are limited to the limited rates of change.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: March 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Kazuya Okumura, Michitaka Tsuchida, Yoshio Uragami, Kensuke Yoshizue, Satoshi Ando, Koji Sugiyama
  • Patent number: 7894958
    Abstract: A traction control system (30) for a machine (10) includes a driven wheel (22) operated by a motor that is controlled by an electronic controller (54). A speed sensor (44) measures the speed of the driven wheel (22), and communicates a wheel (22) speed to the electronic controller (54). A travel speed sensor (44) measures the travel speed of the machine (10) and communicates it to the electronic controller (54). A steering sensor (44) measures a displacement of the machine (10)'s steering system (28), and communicates a steering angle to the electronic controller (54). The electronic controller (54) calculates a speed ratio, based on the wheel (22) speed and the travel speed, and an expected slip ratio, based on the steering angle. The speed ratio is corrected by application of the expected slip ratio to yield a corrected speed ratio that is indicative of a slip condition. The operation of the motor is then adjusted to address the slip condition.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 22, 2011
    Assignee: Caterpillar Inc
    Inventors: William J. Tate, Jill Trumper
  • Patent number: 7871135
    Abstract: This apparatus is applied to a vehicle brake apparatus provided with a hydraulic booster operated by utilizing an accumulator hydraulic pressure that is adjusted to a predetermined high pressure (not less than a lower limit value) by a drive control of a hydraulic pump. This apparatus executes an automatic pressurization control by controlling plural solenoid valves with the use of the accumulator hydraulic pressure. The increasing slope of the brake hydraulic pressure during the automatic pressurization control is determined on the basis of the vehicle motion state. The increasing slope is restricted to be not more than a predetermined restriction value, in the case where the accumulator hydraulic pressure at the time of starting the automatic pressurization control is less than “a reference hydraulic pressure that is greater than a minimum value of the accumulator hydraulic pressure necessary for assisting the brake operation by the hydraulic booster and smaller than the lower limit value”.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: January 18, 2011
    Assignee: Advics Co., Ltd.
    Inventors: Akitaka Nishio, Tatsuya Yano, Seiichi Kojima, Kiyohito Takeuchi, Hirohisa Tanaka
  • Patent number: 7860623
    Abstract: A process for increasing the stability of a vehicle upon acceleration on a roadway with a non-homogenous coefficient of friction, whereby a drive wheel is acted on by a braking force on a side with a low coefficient of friction by means of a drive slip regulation. A value (pASR) is determined which corresponds to the braking force (FB,ASR) set by the drive slip regulation (ASR). The value determined (pASR) is used for the determination of a disrupting yaw momentum (MZ), and a control portion (??Z) of a supplemental steering angle (??) is determined in dependence on the disrupting yaw momentum (MZ). An apparatus for the implementation of the process is also provided.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 28, 2010
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Urs Bauer, Georg Roll, Schahrad Schafiyha, Stephan Capellaro, Michael Gille, Matthias Muntu
  • Publication number: 20100320833
    Abstract: A method is proposed for stabilizing a vehicle including a braking system that can be actuated by a driver of the vehicle for applying a braking force to at least two vehicle wheels. A braking force corresponding to driver specifications is applied at a first vehicle wheel of an axle, and a braking force that is smaller than the driver specifications is applied to a second vehicle wheel of the axle during a braking actuation by the driver when it is determined that an activation criterion is met. This provides a comfortable stabilization of the vehicle without an active buildup of braking force.
    Type: Application
    Filed: February 13, 2009
    Publication date: December 23, 2010
    Inventor: Ivica Batistic
  • Patent number: 7848864
    Abstract: A system and method for estimating vehicle states, such as vehicle roll-rate, vehicle roll angle, vehicle lateral velocity and vehicle yaw-rate, for use in rollover reduction. The system includes an extended Kalman filter observer responsive to a steering angle signal, a yaw-rate signal, a roll-rate signal, a speed signal and a lateral acceleration signal that calculates an estimated yaw-rate signal, an estimated roll-rate, an estimated roll angle and an estimated lateral velocity. The system also includes a lateral velocity estimation processor responsive to the roll-rate signal, the estimated roll angle signal, the estimated lateral velocity signal and the lateral acceleration signal that calculates a modified lateral velocity estimation signal when the vehicle is operating in a non-linear region.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: December 7, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Jihua Huang
  • Publication number: 20100295364
    Abstract: The invention relates to a brake system, comprising at least one piston-cylinder unit for producing a pressure in at least one working chamber, the working chamber being connected to at least one wheel brake via at least one hydraulic line, and the brake system comprising at least one drive device and an actuating device, particularly in the form of a brake pedal, and the drive device during normal operation acting on the at least one first piston of the piston-cylinder unit for building pressure and reducing pressure by way of a first force transmission means, and in the event of failure of the drive device the actuating device acting mechanically on the piston by way of a second force transmission means, wherein the adjustment of the second force transmission means disengages the connection between the first force transmission means and the piston by means of the actuating device.
    Type: Application
    Filed: November 8, 2007
    Publication date: November 25, 2010
    Inventors: Heinz Leiber, Valentin Unterfrauner
  • Patent number: 7797094
    Abstract: The turning control apparatus for a vehicle has a driving torque controlling mechanism adjusting driving torque of left and right wheels. The apparatus includes a maximum-yaw momentum value calculating means having means for estimating an outside-wheel gripping capacity, which is capacity of adhesive friction between the outside-wheel and a road surface, and an inside-wheel gripping capacity, which is capacity of adhesive friction between the inside-wheel and the road surface, and means for calculating a torque adjustment limiting value indicating an adjustment amount of driving torque by the driving torque controlling mechanism so that the adjustment amount does not exceed the gripping capacity. The maximum-yaw momentum value calculating means sets the maximum-yaw momentum value indicating possible yaw momentum, which is estimated if the driving torque is adjusted along with the torque-adjustment-limit value calculated by the torque adjustment limiting value calculating means.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 14, 2010
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventor: Takami Miura
  • Publication number: 20100201184
    Abstract: A method for dimensioning the admission pressure at a first, analogized, electromagnetically actuated hydraulic valve for sensitively regulating the pressure in a pressure circuit in which the admission pressure at the first valve can be set by the delivery capacity of an engine pump assembly which is connected to the first valve via a pump-outlet-side pressure line, in particular in a hydraulic motor vehicle brake system, wherein the admission pressure is set by electronically evaluating the tappet reaction of the first valve or of a further hydraulic valve which is also actuated electromagnetically and is connected to the pump-outlet-side pressure line. An electronically controlled motor vehicle brake pressure control device with which the above method can be carried out is also described.
    Type: Application
    Filed: May 15, 2008
    Publication date: August 12, 2010
    Applicant: CONTINENTAL TEVES AG & CO. OHG
    Inventor: Erhard Beck
  • Patent number: 7769519
    Abstract: A motion control device for a vehicle is configured so that a hydraulic unit mounting therein a pump for generating a controlled hydraulic pressure applied to respective wheel cylinders of the vehicle is integrated with a control unit provided with a yaw rate sensor for detecting a yaw rate of the vehicle and capable of controlling the hydraulic unit. The pump is composed of a pump drive section, drivingly rotated by a motor, and pumping sections which perform a pump function with the rotation of the pump drive section. The yaw rate sensor, the motor and the pump are arranged to satisfy a positional relation that the extending direction of a detection axis of the yaw rate sensor does not coincide with both of the extending directions of a rotational axis of the motor and a rotational axis of the pump drive section.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: August 3, 2010
    Assignee: Advics Co., Ltd.
    Inventors: Masahiko Kamiya, Tadayoshi Usami
  • Patent number: 7761208
    Abstract: An adjustment unit identifies a front-rear driving force distribution control unit and a braking force control unit, and calculates based on the current vehicle state, a target yaw moment required for each of the front-rear driving force distribution control unit and braking force control unit. Then, based on the current operating state of each of the control units, a control correction value for each unit is calculated in consideration of the maximum value, and outputted.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: July 20, 2010
    Assignee: Fuji Jukohyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Keisuke Hosokawa, Koichi Inoue, Shigeo Usui, Yuji Kubota, Eiji Shibata, Hiroyuki Sekiguchi, Masaru Kogure
  • Patent number: 7751960
    Abstract: A vehicle stability enhancement system that is adapted for an estimated driver workload. The system includes a driver workload estimation processor that estimates the driver workload based on certain factors, such as the vehicle speed or driver-behavior factors. The driver workload estimation is used to adjust the damping ratio and natural frequency in dynamic filters in a command interpreter to adjust a desired yaw rate signal and a desired side-slip signal. The driver workload estimation is also used to generate a yaw rate multiplication factor and a side-slip multiplication factor that modify a yaw rate stability signal and a side-slip stability signal in a feedback control processor that generates a stability control signal.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: July 6, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Yilu Zhang, William C. Lin, Jing Zhang, Yuen-Kwok Chin
  • Patent number: 7743859
    Abstract: A trailer includes a pair of wheels rotatably coupled to a trailer frame. A motor is operable to provide drive torque to at least one of the wheels. The energy storage device is mounted to the frame and operable to selectively provide energy to the motor. A load sensor is operable to output a signal indicative of the magnitude of a load being transferred between the trailer and a tow vehicle. A controller is operable to generate control signals in response to the sensor signal. The control signals control operation of the motor.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Magna Powertrain USA, Inc.
    Inventor: John R. Forsyth
  • Patent number: 7739014
    Abstract: A method of controlling a vehicle includes determining a front lateral tire force, a rear lateral tire force, and determining a lineal sideslip angle from the front lateral tire force and the rear lateral tire force. The method also includes determining a load transfer correction. The method also includes determining a final linear lateral velocity in response to the linear sideslip angle and the load transfer correction and controlling the vehicle in response to the final linear lateral velocity.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: June 15, 2010
    Assignee: Ford Global Technolgies
    Inventors: Jianbo Lu, Joseph C. Meyers
  • Patent number: 7734405
    Abstract: A method for providing enhanced stability, control and management for a prime mover connected to an auxiliary vehicle is disclosed. An auxiliary vehicle is connected to a prime mover with an auxiliary stability enhancing system and an electronic stability enhancing system, including at least one processor with a memory having computer instructions stored thereon. The processor communicates with a plurality of sensors to detect force values and motions values, and communicates with database storage containing specifications and characteristics representing the prime mover and auxiliary vehicle to compare the force and motion values with the specifications to determine if any values exceed known preset threshold values for the prime mover and auxiliary vehicle. A calculated response, and a location for applying the response, is determined by using a computer model of the prime mover and auxiliary vehicle to reduce the detected force or motion value that exceeds the preset threshold value.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: June 8, 2010
    Assignee: Tandy Engineering & Associates, Inc.
    Inventors: Donald Frank Tandy, Jr., Donald Frank Tandy, Sr.
  • Patent number: 7734404
    Abstract: A deceleration control apparatus for a vehicle including a controller that performs deceleration control based on a first target deceleration set based on a distance to a starting point of an upcoming curve, when the deceleration control for the curve is started at a position distant from the starting point of the curve; and that performs the deceleration control based on a second target deceleration set based on a lateral acceleration that is estimated to be detected when the vehicle passes the starting point of the curve, when the deceleration control for the curve is started at a position close to the starting point of the curve. With this apparatus, it is possible to perform the deceleration control that provides drive assist according to the intention of the driver and that enhances driving convenience for the driver.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: June 8, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Shiiba, Kunihiro Iwatsuki, Yukihiro Ikeda, Masayoshi Hoshino, Akira Matsui
  • Patent number: 7734406
    Abstract: A method, computer usable medium including a program, and a system for braking a vehicle during brake failure. The method and computer usable medium include the steps of determining a brake force lost corresponding to a failed brake, and determining a brake force reserve corresponding to at least one non-failed brake. At least one commanded brake force is determined based on the brake force lost and the brake force reserve. Then at least one command brake force is applied to the at least one non-failed brake wherein at least one of an undesired yaw moment and a yaw moment rate of change are limited to predetermined values. The system includes a plurality of brake assemblies wherein a commanded brake force is applied to at least one non-failed brake.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael W. Oppenheimer, David B. Doman, Aleksander B. Hac
  • Patent number: 7734407
    Abstract: A center-of-gravity-position lateral acceleration acquisition apparatus of the invention is applied to a vehicle equipped with a lateral acceleration sensor which is installed at a position remote from the center of gravity of the vehicle and which detects lateral acceleration of the vehicle at that position. The apparatus acquires lateral acceleration of the vehicle at the center of gravity of the vehicle by correcting the detected lateral acceleration by making use of two relationships; i.e., a first relationship which holds among yaw rate of the vehicle, the lateral acceleration of the vehicle at the center of gravity of the vehicle, and the detected lateral acceleration, and a second relationship which holds between the yaw rate of the vehicle and the lateral acceleration of the vehicle at the center of gravity of the vehicle during a predetermined stable travel.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 8, 2010
    Assignee: Advics Co., Ltd.
    Inventor: Kenji Asano
  • Patent number: 7706945
    Abstract: A vehicle lateral control system that integrates both vehicle dynamics and kinematics control. The system includes a driver interpreter that provides desired vehicle dynamics and predicted vehicle path based on driver input. Error signals between the desired vehicle dynamics and measured vehicle dynamics, and between the predicted vehicle path and the measured vehicle target path are sent to dynamics and kinematics control processors for generating a separate dynamics and kinematics command signals, respectively, to minimize the errors. The command signals are integrated by a control integration processor to combine the commands to optimize the performance of stabilizing the vehicle and tracking the path. The integrated command signal can be used to control one or more of front wheel assist steering, rear-wheel assist steering or differential braking.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 27, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Weiwen Deng, Yong H. Lee
  • Patent number: 7698034
    Abstract: An integrated vehicle control system includes a first control system having a maximum authority to selectively operate a first vehicle sub-system and a second control system to selectively operate a second vehicle sub-system. A controller is adapted to monitor a first parameter associated with the first vehicle sub-system and a second parameter associated with the second vehicle sub-system. The controller is operable to control the first and second parameters by selectively invoking operation of the second control system when the first control system exceeds the maximum authority and the second parameter exceeds an upper threshold.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: April 13, 2010
    Inventor: Youssef A Ghoneim
  • Patent number: 7693639
    Abstract: A vehicle dynamics control (VDC) apparatus for an automotive vehicle with a differential limiting device capable of limiting at least one of a differential motion between front and rear wheel axles and a differential motion between left and right wheel axles, includes a VDC system that controls a braking force of at least one of road wheels to control vehicle cornering behavior depending on a vehicle's turning condition independently of a driver's braking action. The VDC system advances a VDC initiation timing used in a differential limited state in which at least one of the front-and-rear wheel axle differential motion and the left-and-right wheel axle differential motion is limited, in comparison with a VDC initiation timing used in a differential non-limited state in which the front-and-rear wheel axle differential motion and the left-and-right wheel axle differential motion are allowed.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: April 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hidetoshi Suzuki, Nobuyuki Tanaka
  • Patent number: 7690737
    Abstract: A system and method of controlling an automotive vehicle and trailer includes determining the presence of a trailer and applying brake-steer to the vehicle in response to the trailer to reduce the turning radius of the vehicle and the trailer.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: April 6, 2010
    Assignee: Ford Global Technologies
    Inventor: Jianbo Lu
  • Patent number: 7681960
    Abstract: A method for a Sensitive Electronic Stability Program (SESP) presents a general approach for the correction of maneuvers of turning into a bend at low speed. It integrates existing methods as well as subsequent extensions. SESP supplements the standard active yaw control (AYC) function. This allows the SESP to use variables and mechanisms of AYC, on the one hand. On the other hand, AYC continues operating unimpeded in the background and will intervene as usual when SESP cannot stabilize the vehicle appropriately. When the standard AYC intervenes, SESP control operations are forbidden, or running SESP control operations are stopped. This stop can take place either abruptly or (which is more comfortable) by way of a moderate decrease of the correcting variables.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 23, 2010
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Peter Wanke, Torsten Herrmann, Mario Roszyk, Thorsten Wickenhöfer, Matthias Pank, Jochen Konanz