With Single Rotor Magnet And Plural Stators Patents (Class 310/156.35)
  • Patent number: 7167364
    Abstract: A cooler for cooling of electronic components comprises at least two heatsinks thermally connected with each other by heat spreading means, and a double inlet centrifugal blower comprises a casing with two inlets and an outlet, a radial impeller with an axle and an electric drive. The cooler thermally connected with the electronic component. Each of the heatsinks comprises inflow and outflow openings, and thermally connected heat exchanging means and a base. The impeller comprises radial blades located from both sides of an impeller disk. The double inlet centrifugal blower is located between the heatsinks thus each of the outflow openings is coincided with the closest inlet, so cooling air flows through the inflow openings, the heat exchanging means, the outflow openings and the inlets of the blower in a series way.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: January 23, 2007
    Assignee: Rotys Inc.
    Inventors: Edward Lopatinsky, Lev Fedoseyev, Saveliy Rosenfeld, Daniel Schaefer
  • Patent number: 7034427
    Abstract: An axial gap dynamoelectric machine comprises first and second stators disposed coaxially with an intermediate rotor. The stators are selectively aligned with an axial offset between the positions of their respective teeth and slots. The stators comprise toroidal cores having laminated layers composed of a material selected from the group consisting of amorphous and nanocrystalline metals and optimized Fe-based alloy. Optionally, the machine further comprises misalignment means for adjusting the offset of the stators. Adaptive adjustment permits the machine to be operated to in a mode that reduces the back EMF of the motor, allowing constant voltage to be maintained as speed is increased. Reducing back EMF also allows a wider range of operating speed, especially in combination with use of high pole counts. Alternatively, the machine can be operated, e.g. at lower speed, in a constant torque mode. The machine may exploit the high pole count achievable by use of improved soft magnetic materials.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: April 25, 2006
    Assignee: Light Engineering, Inc.
    Inventor: Andrew D. Hirzel
  • Patent number: 6995494
    Abstract: A dual stator axial gap DC brushless machine is provided with first and second stators having equal pole counts, a given pole arc, and a given slot arc. A rotor is disposed between the first and second stators, having a pole count greater than the first and second stators. The pole count ratio between each stator and the rotor is six to eight. The second stator has a given degree of angular displacement relative to the first stator less than, ¾, ½ or ¼ the pole arc of the stators, but not less than the slot arc of the stators. Where the first and second stators each have a pole count of 18 and the rotor has a pole count of 24, the stator pole arc is 20 degrees, the rotor pole arc is 15 degrees, and the given degree of angular displacement is less than 20 degrees, 15 degrees, 10 degrees, or 5 degrees.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 7, 2006
    Assignee: Deere & Company
    Inventors: Oyvin Haugan, Bernard B. Poore
  • Patent number: 6930433
    Abstract: An electromotive machine having a stator element and a rotor element, the stator element including at least one set of N preferably toroidally shaped electromagnetic members, the electromagnetic members arranged along an arc a predetermined distance apart defining a stator arc length. Each of the members has a slot, and the rotor element includes a disc adapted to pass through the slots. The disc contains a plurality of permanent magnet members spaced side by side about a periphery thereof and arranged so as to have alternating north-south polarities. These permanent magnet members are sized and spaced such that within the stator arc length the ratio of stator members to permanent magnet members is N to N+1, where N is the number of electrical excitation phases applied to the electromagnets. The electromagnetic members are energized to create high torque and smooth operation.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: August 16, 2005
    Assignee: Apex Drives Laboratories, Inc.
    Inventors: John E. Bales, Tom Long, J. Lynn Saunders, Mohamed Sabri
  • Patent number: 6845617
    Abstract: An electric assisted turbocharger has an electric motor with a stator and a rotor that is coupled to a turbocharger shaft carried by a bearing assembly. The stator has a left-hand winding and a right hand-winding each projecting axially outwardly therefrom. The winds each extend a different distance radially along the motor (and are thus asymmetrical with respect to one another), thereby forming a radial gap along an axial end of the stator. The so-formed stator is disposed within a motor housing and together, the stator and motor housing, facilitate placement center housing axial end therein to minimize turbocharger axial length. The rotor is configured to prevent migration of oil into the motor housing, to improve dynamic balance, and comprises an integral thrust washer for placement against the bearing assembly.
    Type: Grant
    Filed: December 20, 2003
    Date of Patent: January 25, 2005
    Assignee: Honeywell International Inc
    Inventors: John F. Allen, Gerhard E. Delf
  • Patent number: 6713926
    Abstract: There are provided a rotor having plural magnetic poles disposed in a circumferential shape, and a stator including a stator core having plural magnetic pole teeth that are outside a circumference of the rotor and face the rotor, a coil being wound around each of the magnetic pole teeth, wherein the stator is provided in a range within 180 degrees with respect to a center of the rotor, the magnetic pole teeth are set so that the value of at least one of angles each formed by extensions of adjacent magnetic pole teeth is smaller than an angle formed by lines each connecting a tip center of one of adjacent magnetic pole teeth and a rotation center of the rotor.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: March 30, 2004
    Assignee: Alps Electric Co., Ltd.
    Inventor: Tomokuni Wauke
  • Patent number: 6707208
    Abstract: An electric motor utilizing permanent magnets, wherein the permanent magnets produce a flux circuit in a first direction and shunt elements whereby the magnets and shunt elements rotate relative to each other wherein the shunt elements sequentially interrupt the magnet flux circuit to minimize generated flux circuits tending to rotate the motor in a direction opposite to the primary direction of motor rotation.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: March 16, 2004
    Inventors: Gary L. Durham, Harold S. Durham
  • Patent number: 6552460
    Abstract: An electromotive machine having a stator element and a rotor element, the stator element including at least one set of four toroidally shaped electromagnetic members, the electromagnetic members arranged along an arc a predetermined distance apart defining a stator arc length. Each of the members has a slot, and the rotor element includes a disc adapted to pass through the slots. The disc contains a plurality of permanent magnet members spaced side by side about a periphery thereof and arranged so as to have alternating north-south polarities. These permanent magnet members are sized and spaced such that within the stator arc length the ratio of stator members to permanent magnet members is about four to six. Thc electromagnetic members are energized in a four phase push-pull fashion to create high torque and smooth operation.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: April 22, 2003
    Assignee: Motile, Inc.
    Inventor: John E. Bales
  • Patent number: 6509663
    Abstract: A stepping motor comprises a stator (3) with at least two magnetic circuits and a rotor (2) that is rotatably mounted on the stator through a single ball bearing having four contact points. The rotor comprises a mutipolar magnet (5) essentially in the form of a disc having a central opening (6). One rotor portion (7) is fixed at one radially external portion of the magnet (5), while one radially internal portion of the magnet is arranged within the air gap of said magnetic circuits.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: January 21, 2003
    Assignee: API Portescap
    Inventor: Magdi Laoun
  • Patent number: 6459185
    Abstract: An electric machine comprising the following features: (a) an outer, first stator part and an inner, second stator part, the two stator parts being coaxial and being radially spaced apart by an intermediate space; (b) each stator part has, facing the intermediate space, a circumferential series of stator poles, at least a partial number of which carries a winding; (c) a rotor part disposed in the intermediate space; (d) the rotor part has a circumferential series of alternating permanent magnets and magnetic flux conducting pieces, said permanent magnets being magnetized in circumferential direction; (e) the width of the permanent magnets—measured in circumferential direction—is larger on the central radius of the rotor part than radially outside and radially inside on the rotor part and the width of the magnetic flux conducting pieces—measured in circumferential direction—is correspondingly smaller on the central radius of the rotor part than radially outside and radially inside on th
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 1, 2002
    Assignee: Magnet-Motor Gesellschaft fur Magnetmotorische Technik MBH
    Inventors: Peter Ehrhart, Christian Lucas
  • Patent number: 6455969
    Abstract: A single-stator-double-rotor rotating motor has one upper-layer rotor, one intermediate-layer armature and one lower-layer rotor. The upper-layer rotor and lower-layer rotor are embedded with the same number of magnets to form a magneto type magnetic pole, stator electrodes of the same number as the number of magnets are disposed on the intermediate-layer armature to form an electro type magnetic pole. A skew symmetry exists between an upper-layer rotor and a corresponding lower-layer rotor, and the upper-layer rotor and the lower-layer rotor are rotated in opposite directions by commutation of the current flowing through exciting coils of the stator electrodes every T/N of time, wherein T is a rotation period of the upper-layer rotor, and N is the number of the magnets.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: September 24, 2002
    Assignee: Chung-Shan Institute of Science & Technology
    Inventor: Ping-Ho Chen
  • Publication number: 20020125781
    Abstract: An electromotive machine comprises a stator element and a rotor element, the stator element including at least one set of four toroidally shaped electromagnetic members, the electromagnetic members arranged along an arc a predetermined distance apart defining a stator arc length. Each of the members has a slot, and the rotor element comprises a disc adapted to pass through the slots. The disc contains a plurality of permanent magnet members spaced side by side about a periphery thereof and arranged so as to have alternating north-south polarities. These permanent magnet members are sized and spaced such that within the stator arc length the ratio of stator members to permanent magnet, members is about four to six. The electromagnetic members are energized in a four phase push-pull fashion to create high torque and smooth operation.
    Type: Application
    Filed: March 8, 2001
    Publication date: September 12, 2002
    Inventor: John E. Bales
  • Patent number: 6445105
    Abstract: An axial flux machine includes a rotatable shaft; at least one rotor disk coupled to the rotatable shaft; at least one permanent magnet supported by the at least one rotor disk; at least one stator extension positioned in parallel with the at least one rotor disk; at least two molded iron pole elements attached to the at least one stator extension and facing the at least one permanent magnet; and at least two electrical coils, each wrapped around a respective one of the at least two molded iron pole elements.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: September 3, 2002
    Assignee: General Electric Company
    Inventors: Gerald Burt Kliman, Charles Michael Stephens, Patrick Lee Jansen
  • Patent number: 6348751
    Abstract: An electric motor is provided with active hysteresis-based control of winding current. The motor has an efficient stator winding arrangement, as well as at least one adjustable air gap. Also provided is a stator, windings and air gap adjustment mechanism, as well as a method and system for controlling the torque produced by the motor using active hysteresis-based control of the motor's winding currents. The stator has its windings distributed among arc sections, the windings in each arc section being associated with only one phase of the motor. The hysteresis-based control of winding current is active in that a bandwidth or spread of the hysteresis band is adjusted depending on at least one of several selectively determined factors. The motor and its associated components are particularly well-suited for use in an electrically powered vehicle, as well as in hybrid vehicles using both electric power from a battery and electric power derived from a fuel-burning engine.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: February 19, 2002
    Assignee: New Generation Motors Corporation
    Inventors: Joel B. Jermakian, Stephen G. Crain, Cory D. Knudtson, Robert F. D. Piacesi