Damper In Pole Pieces Patents (Class 310/156.76)
  • Patent number: 11303174
    Abstract: Various embodiments may include a rotor for an electric machine, the rotor comprising: a first shaft journal; a second shaft journal; a laminated rotor core; a filler body cast onto the laminated rotor core wherein the filler body and the laminated rotor core rotate conjointly; and a cooling duct extending through the shaft journals and the filler body along an axis of the filler body and the rotor core. The filler body rotates with the shaft journals and a torque applied to the shaft journals is transmitted to the laminated rotor core.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: April 12, 2022
    Assignee: VITESCO TECHNOLOGIES GMBH
    Inventors: Holger Fröhlich, Isao Fukumoto
  • Patent number: 10312783
    Abstract: An electric machine assembly for an electrified vehicle including a stator core, a rotor, a first pair of magnets, a second pair of magnets, and a variable flux magnet is provided. The stator core defines a cavity. The rotor is disposed within the cavity for rotation and includes a bridge. Each of the first pair of magnets may be mounted to the rotor and spaced from one another on either side of a first D-axis. Each of the second pair of magnets may be mounted to the rotor and spaced from one another on either side of a second D-axis. The first D-axis and the second D-axis are spaced from one another on either side of a Q-axis. The variable flux magnet is embedded in the bridge and located on the rotor to influence current associated with the Q-axis to control torque output of the rotor, and to pulse D-axis current to control a magnetization of the bridge.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 4, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Jacob Krizan
  • Patent number: 9455604
    Abstract: A wound-field synchronous machine includes a stator and a rotor. Around the rotor is a rotor sleeve including a damper bar assembly forming an amortisseur circuit.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 27, 2016
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Roy D. Rasmussen, William Louis Wentland, John F. Bangura
  • Patent number: 9450459
    Abstract: A pole shoe element for an electrical machine is described. The electrical machine has a stator, a rotor and an air gap between the stator and the rotor. The pole shoe element contains a magnet receiving section which extends in a longitudinal direction of the pole shoe element, in which the pole shoe element in a peripheral direction of the rotor has a first width in a first radial inner position and in the peripheral direction has a second width in a second radial outer position. The second width is smaller than the first width.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 20, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Silvio Semmer, Xavier Tourde, Adriana Cristina Urda
  • Patent number: 9373992
    Abstract: According to one embodiment, a rotor is configured by a rotor core and magnetic poles. Two or more types of permanent magnets are used such that each product of coercivity and thickness in the magnetization direction becomes different. A stator is located outside the rotor with air gap therebetween and configured by an armature core winding. At least one permanent magnet is magnetized by a magnetic field by a current of the armature winding to change a magnetic flux content thereof irreversibly. A short circuited coil is provided to surround a magnetic path portion of the other permanent magnet excluding the magnet changed irreversibly and a portion adjacent to the other permanent magnet where the magnetic flux leaks. A short-circuit current is generated in the short circuited coil by the magnetic flux generated by conducting a magnetization current to the winding. A magnetic field is generated by the short-circuit current.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: June 21, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yutaka Hashiba, Kazuto Sakai, Norio Takahashi, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Motoyasu Mochizuki, Tadashi Tokumasu
  • Patent number: 8796898
    Abstract: According to one embodiment, a rotor is configured by a rotor core and magnetic poles. Two or more types of permanent magnets are used such that each product of coercivity and thickness in the magnetization direction becomes different. A stator is located outside the rotor with air gap therebetween and configured by an armature core winding. At least one permanent magnet is magnetized by a magnetic field by a current of the armature winding to change a magnetic flux content thereof irreversibly. A short circuited coil is provided to surround a magnetic path portion of the other permanent magnet excluding the magnet changed irreversibly and a portion adjacent to the other permanent magnet where the magnetic flux leaks. A short-circuit current is generated in the short circuited coil by the magnetic flux generated by conducting a magnetization current to the winding. A magnetic field is generated by the short-circuit current.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 5, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Hashiba, Kazuto Sakai, Norio Takahashi, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Motoyasu Mochizuki, Tadashi Tokumasu
  • Patent number: 8653710
    Abstract: A rotor has rotor cores divided in the axial direction. A permanent magnet is mounted at the position of each of the magnetic poles of cores. The permanent magnet of each magnetic pole is configured by a single tabular member that penetrates the two divided cores in the axial direction. Convex parts are respectively provided on the outer peripheries of the respective magnetic poles of the rotor cores along the axial direction of the rotor. The convex parts are provided to positions that are displaced for each of the two divided cores. The magnetic flux density increases in the convex parts, which becomes the magnetic pole center. Since the convex parts positions are displaced to each other, a skew function can be exhibited even if the permanent magnet is mounted at the same position.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takahashi, Kazuto Sakai, Yutaka Hashiba, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Tadashi Tokumasu
  • Publication number: 20110304235
    Abstract: According to one embodiment, a rotor is configured by a rotor core and magnetic poles. Two or more types of permanent magnets are used such that each product of coercivity and thickness in the magnetization direction becomes different. A stator is located outside the rotor with air gap therebetween and configured by an armature core winding. At least one permanent magnet is magnetized by a magnetic field by a current of the armature winding to change a magnetic flux content thereof irreversibly. A short circuited coil is provided to surround a magnetic path portion of the other permanent magnet excluding the magnet changed irreversibly and a portion adjacent to the other permanent magnet where the magnetic flux leaks. A short-circuit current is generated in the short circuited coil by the magnetic flux generated by conducting a magnetization current to the winding. A magnetic field is generated by the short-circuit current.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 15, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Hashiba, Kazuto Sakai, Norio Takahashi, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Motoyasu Mochizuki, Tadashi Tokumasu
  • Patent number: 8063598
    Abstract: The invention relates to a synchronous motor (12) with a number of stator coils (15), with a rotor (16) with at least one permanent magnet (17), which induces a rotor magnetic field in a useful flux direction and with at least one coil winding (20), which is fitted on the rotor in order to induce a resultant magnetic field as a result of an alternating magnetic fields which is applied with the aid of the stator coils, in the direction of a winding axis of the coil winding, so that a resultant inductance of the stator coils (15) with respect to a direction of the winding axis is different given different positions of the rotor (16).
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: November 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dietmar Stoiber, Bernd Wedel
  • Patent number: 7709991
    Abstract: A rotor for an electric machine includes a shaft that is rotatable about an axis and defines a first diameter normal to the axis. A first core portion defines a first aperture having a first aperture diameter that is larger than the first diameter. The first core portion is positioned adjacent the shaft to define a first space. A second core portion defines a second aperture having a second aperture diameter that is larger than the first diameter. The second core portion is positioned adjacent the shaft to define a second space. A damping member is positioned in the first space and the second space. The damping member at least partially interconnects the shaft, the first core portion, and the second core portion.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 4, 2010
    Assignee: A. O. Smith Corporation
    Inventors: Dan M. Ionel, Stephen J. Dellinger, Robert J. Heideman, Alan E. Lesak
  • Patent number: 7064465
    Abstract: Motors for fans are provided. The motor includes a stator and a rotor. The stator includes a plurality of magnetic poles. The rotor is coupled to the stator and includes a magnetic structure with a plurality of magnetic poles. Each magnetic pole has an interpolar portion. A uniform gap is formed between the stator and the magnetic structure.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: June 20, 2006
    Assignee: Delta Electronics, Inc.
    Inventors: Shih-Ming Huang, Lee-Long Chen, Wen-Shi Huang