Damper Cage Around Magnet Patents (Class 310/156.77)
  • Patent number: 10491065
    Abstract: A permanent magnet synchronous motor includes a stator with a stator winding, a rotor with a rotor core rotatable relative to the stator, and a magnetic structure with at least one permanent magnet mounted to the rotor core. The magnetic structure produces a magnetic flux that flows between different magnetic poles of the magnetic structure through a main magnetic flux path that passes through the stator winding of the stator via an air gap and a leakage magnetic flux path that is located within the rotor core about an end portion of the permanent magnet near the air gap. The stator, the rotor and the magnetic structure being further configured to satisfy predetermined relationships in regards to the magnetic resistance of the main magnetic flux path and the leakage magnetic flux path, the magnetomotive force of the magnets and the stator.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: November 26, 2019
    Assignees: Nissan Motor Co., Ltd., Wisconsin Alumni Research Foundation
    Inventors: Kensuke Sasaki, Takashi Fukushige, Takashi Kato, Robert D. Lorenz, Apoorva Athavale
  • Patent number: 9219388
    Abstract: The present invention relates to synchronous motor comprising a cylindrical rotor (4) provided with permanent magnets (3) located inside a cylindrical stator provided with a winding (U, V, W), characterized in that the rotor is provided with protuberances (41) facing the said winding.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 22, 2015
    Assignee: Infranor Holding SA
    Inventors: Giampiero Tassinario, Ivan Flotats, Francesc Cruellas
  • Patent number: 9166450
    Abstract: A permanent magnet rotor has a rotor core positioned about a rotation shaft. The permanent magnet rotor also has permanent magnet embedment slots located at equally spaced positions from the rotation shaft, with permanent magnets inserted into each of the respective permanent magnet embedment slots. The permanent magnet embedment slots each have both a magnet storing portion, and a buffer and other members storing portion which extends to the magnet storing portion. Once a permanent magnet is stored inside the magnet storing portion, a buffer member, and a pushing member are used to secure the permanent magnet inside the rotor core.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: October 20, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masashi Nakamura, Hirohisa Yokota, Shogo Okamoto, Masaya Inoue
  • Patent number: 9093878
    Abstract: An electric machine that includes a rotor core made of magnetic steel; a stator configured with stationary windings therein; openings disposed within or on the rotor core; and a rotor circuit that is configured to introduce saliency based on an orientation of part of the rotor circuit in relationship to a pole location of the electric machine, where the rotor circuit is made of a conductive, non-magnetic material. A rotor component and various embodiments of electric machines are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: July 28, 2015
    Assignee: General Electric Company
    Inventors: Kum Kang Huh, Patel Reddy, Ayman Mohamed Fawzi El-Refaie, Patrick Lee Jansen, Roy David Schultz, Lembit Salasoo
  • Patent number: 9013083
    Abstract: Provided is a permanent magnet type motor including: a rotor including a rotor core and a plurality of permanent magnets; a conducting circuit including a first electric conductor extending in an axial direction of the rotor and being disposed between permanent magnets in a circumferential direction of the rotor and a second electric conductor for connecting the first electric conductors electrically; and a stator disposed so as to be opposed to the rotor, including a stator core and an armature winding. A rotation angle is detected by measuring current flowing in the armature winding. The stator core is formed to have a shape in which, a slot pitch is defined by ?s=(2×?×Rs)/Ns, where an inner radius of the stator is represented by Rs and a number of slots is represented by Ns, a value Wsn obtained by dividing a slot opening width Ws by the slot pitch ?s satisfies “0.08?Wsn”.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: April 21, 2015
    Assignee: Mitsubishi Electic Corporation
    Inventors: Yusuke Morita, Masatsugu Nakano, Sachiko Kawasaki
  • Patent number: 8796898
    Abstract: According to one embodiment, a rotor is configured by a rotor core and magnetic poles. Two or more types of permanent magnets are used such that each product of coercivity and thickness in the magnetization direction becomes different. A stator is located outside the rotor with air gap therebetween and configured by an armature core winding. At least one permanent magnet is magnetized by a magnetic field by a current of the armature winding to change a magnetic flux content thereof irreversibly. A short circuited coil is provided to surround a magnetic path portion of the other permanent magnet excluding the magnet changed irreversibly and a portion adjacent to the other permanent magnet where the magnetic flux leaks. A short-circuit current is generated in the short circuited coil by the magnetic flux generated by conducting a magnetization current to the winding. A magnetic field is generated by the short-circuit current.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 5, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Hashiba, Kazuto Sakai, Norio Takahashi, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Motoyasu Mochizuki, Tadashi Tokumasu
  • Patent number: 8749103
    Abstract: A permanent magnet rotor assembly for an electric machine includes a rotor core including one or more axially-extending openings and one or more permanent magnets located in the one or more axially-extending openings defining one or more gaps between the one or more permanent magnets and the one or more axially-extending openings. One or more thermally-conductive bars are located in the one or more gaps to transfer thermal energy from an interior of the rotor assembly toward an axial end of the rotor assembly.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: June 10, 2014
    Assignee: Remy Technologies, L.L.C.
    Inventor: Michael D. Bradfield
  • Patent number: 8653710
    Abstract: A rotor has rotor cores divided in the axial direction. A permanent magnet is mounted at the position of each of the magnetic poles of cores. The permanent magnet of each magnetic pole is configured by a single tabular member that penetrates the two divided cores in the axial direction. Convex parts are respectively provided on the outer peripheries of the respective magnetic poles of the rotor cores along the axial direction of the rotor. The convex parts are provided to positions that are displaced for each of the two divided cores. The magnetic flux density increases in the convex parts, which becomes the magnetic pole center. Since the convex parts positions are displaced to each other, a skew function can be exhibited even if the permanent magnet is mounted at the same position.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takahashi, Kazuto Sakai, Yutaka Hashiba, Kazuaki Yuuki, Masanori Arata, Yusuke Matsuoka, Tadashi Tokumasu
  • Patent number: 8631907
    Abstract: An example elevator machine frame assembly (30) includes a plurality of support plates (32) configured to support at least selected portions of an elevator machine including a traction sheave (24). The support plates each comprise a plurality of mounting surfaces (50) that are aligned within a plane that intersects with an axis of rotation (56) of a traction sheave that is supported by the frame assembly. A plurality of support rods (36) are connected to the support plates (32). The support rods maintain a desired spacing between the plates and a desired alignment of the plates relative to each other. In a disclosed example, the support rods include a sound dampening material (44) such as sand in an interior of the rods.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 21, 2014
    Assignee: Otis Elevator Company
    Inventors: Zbigniew Piech, Stephen R. Nichols, Patricia L. Driesch, Pawel Witczak, Benjamin J. Watson
  • Patent number: 8283833
    Abstract: A rotor for an electric rotary machine and a method of manufacturing the same are disclosed wherein none of permanent magnets is fixed to a magnetic supporting segment of a magnet support ring in advance and each permanent magnet is assembled separately of the magnet support ring. Prior to the assembling of the permanent magnets, the magnet support ring is preliminarily located on claw-shaped magnetic poles at inner peripheral sides thereof under a state combined with a pair of field iron cores, after which the permanent magnets are inserted to magnet insertion spaces in longitudinal directions. The rotor includes positioning and restricting means for precluding the occurrence of positional displacement of each permanent magnet with respect to each magnet supporting segment of the magnet support ring.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: October 9, 2012
    Assignee: Denso Corporation
    Inventors: Koji Kondo, Yoshinori Hayashi
  • Patent number: 7709991
    Abstract: A rotor for an electric machine includes a shaft that is rotatable about an axis and defines a first diameter normal to the axis. A first core portion defines a first aperture having a first aperture diameter that is larger than the first diameter. The first core portion is positioned adjacent the shaft to define a first space. A second core portion defines a second aperture having a second aperture diameter that is larger than the first diameter. The second core portion is positioned adjacent the shaft to define a second space. A damping member is positioned in the first space and the second space. The damping member at least partially interconnects the shaft, the first core portion, and the second core portion.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 4, 2010
    Assignee: A. O. Smith Corporation
    Inventors: Dan M. Ionel, Stephen J. Dellinger, Robert J. Heideman, Alan E. Lesak
  • Patent number: 7687957
    Abstract: Holder anchoring grooves are arranged on the outer periphery of a rotor core so as to extend axially. A holder arm having a substantially T-shaped cross section is fitted to each of the holder anchoring grooves. The holder arm has a main body section, an engaging projection and magnet holding pieces. The engaging projection is engaged with the corresponding one of the holder anchoring grooves. Each of the magnet holding pieces includes a first contact section, a second contact section and a non-contact area. A magnet containing section is defined by the magnet holding pieces that are located vis-à-vis relative to each other of any two adjacently located holder arms and the outer peripheral surface of the rotor core. In the magnet containing sections, a rotor magnet is press fitted and anchored from the shaft direction. Thus, there is provided a magnet fixing structure that can accurately anchor magnets to a rotor core or the like at low cost.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: March 30, 2010
    Assignee: Mitsuba Corporation
    Inventors: Takayuki Ochiai, Satoru Negishi