Combined Stationary And Rotary Patents (Class 310/199)
  • Patent number: 11336133
    Abstract: A stator (1) for an electric motor has a modular stator body (2) with at least two stator cores (10, 20) arranged axially in series. Each core (10, 20) is form from a plurality of stacked electrical laminations (11, 21). This forms winding poles (16, 26) with radially extending winding webs (17, 27). The stator cores (10, 20) each have a separate overmolding (U1, U2).
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: May 17, 2022
    Assignee: ebm-papst Mulfingen GmbH & Co. KG
    Inventors: Michael Sturm, Werner Mueller, Thomas Ehrler
  • Patent number: 9866080
    Abstract: A compressor includes a motor which includes a stator assembly configured to include a stator in which a hollow is formed, a plurality of coils formed by a winding wound on the stator, and an insulator for insulating the stator from the coils, and a rotor inserted into the hollow, configured to rotate about a rotation axis. The rotor includes a plurality of poles, and a curvature radius of an outer circumference of a center part of the poles is different from a curvature radius of an outer circumference of an edge part of the poles. A method for fabricating a motor includes coupling a stator hook formed in a busbar assembly having a plurality of busbars to a hook engaging part formed in the stator assembly having the plurality of coils, and fusing a winding onto a folded plate connected to the plurality of busbars.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: January 9, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hong Seok Kim, Jong Jin Park, Byoung Soo Ko, Dong Woo Kang, Kang Rib Kim, Young Kwan Kim
  • Patent number: 9608492
    Abstract: A relay conductor of a rotating electrical machine is provided with: a coil connector that is connected to a coil on one side of a rotating shaft and further to the outside in the radial direction than the coil; a power line connector that is connected to an external power line on the other side of the rotating shaft; and relays that extend in the axial direction of the rotating shaft, and link the coil connector and the power line connector. At least a portion of the power line connector is positioned closer to the inner diameter side of the rotating electrical machine than the outer peripheral surface of a stator.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 28, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Toshiyuki Nagumo
  • Publication number: 20150015126
    Abstract: According to an embodiment, a rotating electrical machine includes a rotor and a stator. The rotor includes a first coil, first magnetic poles and second magnetic poles. The stator includes a second coil, third magnetic poles and fourth magnetic poles. One of a first magnetic pole and a second magnetic pole opposite to the first magnetic pole is formed such that a leading end of the one of the first magnetic pole and the second magnetic pole lies opposite a central portion of an opposite surface of the stator. One of a third magnetic pole and a fourth magnetic pole opposite to the third magnetic pole is formed such that a leading end of the one of the third magnetic pole and the fourth magnetic pole lies opposite a central portion of an opposite surface of the rotor.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventor: Yasuhito UEDA
  • Patent number: 8726493
    Abstract: It is described a clamping system (30) of special conductors (S1, S2, S3) for a stator or rotor bar winding (U1, S1, S2, S3) for an electric machine, such as connection terminals (S1), jumpers (S2), neutrals or star points (S3), etc. The system (30) allows the special conductors (S1, S2, S3) to be clamped during a twisting step and/or a step of picking up such conductors from a twisting device (250). The system comprises a system axis (T-T), a plurality of grippers (10) aligned or able to be aligned along a circumference lying on a plane substantially perpendicular to the system axis (T-T) and actuation elements (50, 60, 70, 80, 90) of the grippers (10). Each gripper includes a pair of jaws (32, 33) mounted so as to be mobile in a plane transversal to said system axis (T-T).
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: May 20, 2014
    Assignee: Tecnomatic S.p.A.
    Inventor: Sante Guercioni
  • Patent number: 8371020
    Abstract: A plurality of shaped wires, which are obtained by shaping electric wires, are assembled to form a wire assembly 47. The wire assembly 47 is then rolled around a core member 6 with aligning members 7 being inserted into spaces 472 formed between adjacent ones of straight superposed parts 471 of the wire assembly 47.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: February 12, 2013
    Assignee: Denso Corporation
    Inventors: Tetsuya Gorohata, Keigo Moriguchi, Akito Akimoto, Masahiro Takada, Masaomi Dobashi, Youichi Kamakura, Shuzo Muraki, Atsuo Ishizuka
  • Patent number: 8302286
    Abstract: A stator winding is manufactured by a forming step, a winding step, and a expanding step. In the forming step, an S-shaped offset shape is formed on a conductor part corresponding to a coil end part. Thereby, in a coil end part, it is possible to provide an expected shape stably at the coil end part. The conductor is wound around a bobbin in the winding step. In the winding step, a twisted shape is given to the conductor parts to be the inclined part of the coil end and the conductor part to be accommodated in a slot. In the expanding step, a preform product removed from the bobbin is expanded into a shape of the stator winding.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 6, 2012
    Assignee: Denso Corporation
    Inventor: Takashi Tokizawa
  • Patent number: 8228020
    Abstract: An apparatus and method for controlling a hybrid motor, The hybrid motor, uses a permanent magnet instead of a field coil for a rotor, winds a coil round a stator in a multi-phase independent parallel manner, fixes a rectifying type encoder to the rotor and connects a sensor to a driving circuit. The apparatus comprises: an encoder attached to a rotor in cooperation with a pole sensor a speed input unit for generating a speed instruction signal a power switching circuit to generate motor driving signals; a drive module receiving the speed instruction signal and the sensor signal and outputting the speed instruction signal synchronized with the sensor signal as a driving motor signal; a power supply for applying a DC voltage to the power switching circuit; A logic power supply for converting the DC voltage into a logic voltage, and applying logic voltage to the drive module. The motor has n phases, n power switching circuits and n drive modules.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: July 24, 2012
    Assignee: Eni Co., Ltd.
    Inventors: Dong-Ryul Shin, Pyeong-Hun Cho
  • Patent number: 8196286
    Abstract: A coil-holding assembly for an electrical machine has coil holders made of plastic and on which coils of a stator can be wound. The coil holders are formed and pivotal on an outer edge of a planar central plastic support by integral film hinges between a winding position parallel to a plane of the support and a bent-up position perpendicular to the plane. Thus the coils can be wound on the holders in the parallel position thereof and the holders are then moved into the bent-up position for use in the electric machine.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: June 12, 2012
    Assignee: Wilo AG
    Inventors: Thomas Materne, Guenter Strelow, Uwe Dreihaus, Stephan Hoheisel
  • Patent number: 8056215
    Abstract: A first tool set holds a wire covered with an insulation film at a bending point of the wire to protrude the wire from the first tool set. A second tool set holds the protruded portion of the wire. The second tool set is rotated about the first tool set to bend the wire along a wall of the first tool set and to form a boundary corner in the wire at the same radius of curvature as the wall. The wire is released from the second tool set and is moved to place the first tool set at another bending point while protruding from the first tool set. The second tool set is placed at the protruded portion of the wire. When the wire is bent at a predetermined number of bending points and is rounded, a stator coil formed in a corrugated shape is manufactured.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 15, 2011
    Assignee: Denso Corporation
    Inventors: Masahiro Takada, Kuniharu Teshima, Hideji Shimaoka, Toshiaki Oohara
  • Patent number: 7990008
    Abstract: The electric rotating machine includes a fixed stator fixed to the inner circumferential side of a housing, a moving stator rotatably supported on the inner circumferential side of the housing, a rotor disposed concentrically on the inner circumferential side of the fixed stator and the moving stator, and a moving stator drive formed of a gear and a motor for rotating the moving stator by a predetermined angle. The moving stator drive is detachable with respect to the housing. Coil leader lines are stored in an internal part of the housing so that the moving stator is capable of rotating by a predetermined angle.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: August 2, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichirou Yoshida, Akira Hashimoto, Kouki Naka, Masao Morita
  • Patent number: 7891082
    Abstract: A method of manufacturing a coil assembly unit comprises steps of coil forming, weaving, compressing steps. In the forming step, each coil wire is formed which provides linear portions and turn portions each connecting linear portions, during which bent portions are formed at both ends of each linear portion, the bent portions being bent so that mutually adjacent linear portions are deviated from each other. In the weaving step, the coil wires are mutually woven in turn, in which the turn portions intersect in turn. All the coil wires are subjected to the weaving step in turn to produce a woven coil assembly. In the compressing step, the woven coil assembly is compressed by compressing the woven coil so that each bent portion is deformed to be linear to allow the mutually adjacent linear portions to come closer to each other, thus producing the coil assembly unit.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: February 22, 2011
    Assignee: Denso Corporation
    Inventor: Akito Akimoto
  • Publication number: 20080174199
    Abstract: A rotating machinery is to be provided wherein coils can be wound round a stator core in a minimized state of connected parts. In a rotating machinery comprising a stator formed annularly and a rotor disposed rotatably on the inner periphery side of the stator, the stator comprises a stator core, the stator core having in the circumferential direction a plurality of slots each having a coil inserting portion on the inner periphery side, and coils wound by lap winding within the slots, at least the lap-wound winding portion of the coils in each slot being constituted by a continuous line and wound at a coil end so as to straddle the inner periphery side and the outer periphery side of the slot. According to this construction there is no increase in the number of connected parts even if the number of turns in the winding portion is increased.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 24, 2008
    Applicant: Hitachi, Ltd.
    Inventors: Takashi ISHIGAMI, Takashi Naganawa, Kenichi Nakayama, Tsuyoshi Goto
  • Patent number: 6870293
    Abstract: To provide a motor which can suppress vibration and noise during an operation of a concentrated winding motor and can achieve low vibration and low noise with high efficiency. Skew is formed on at least one of a stator (10) provided with concentrated windings and a rotor (20), and the windings (13—13) of different phases in a groove (19) for windings are brought into contact with each other directly or via an insulating material.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 22, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisakazu Kataoka, Hiroshi Murakami, Hideharu Hiwaki, Sunao Hashimoto, Yasuharu Odachi, Hirohito Hayashi
  • Publication number: 20040174085
    Abstract: In electric machines, core losses limit, at high fundamental frequency, the permissible full-load power. The aim of the invention is to develop a design which enables a high power density at high magnetic reversal frequencies and which is easy to produce. To this end, the primary part comprises coils which, for the majority of their length, run in the direction of movement and which are surrounded in this area on three sides by soft magnetic material. In the direction of movement, at least two coils are arranged one behind the other. Coils of different phase are arranged perpendicular to the direction of movement inside different running tracks. In the secondary part, at least two oppositely magnetized hard magnets with three collector segments, which are flatly adjacent in a manner that is perpendicular to the direction of movement, form magnet poles having a high flux concentration.
    Type: Application
    Filed: March 4, 2003
    Publication date: September 9, 2004
    Inventor: Wolfgang Hill
  • Patent number: 6750629
    Abstract: A motor driving system for driving an induction motor with a rotation frequency detector. The induction motor drives a load, and the rotation frequency detector detects a rotation frequency of the induction motor. The motor driving system includes a variable speed driving unit and an inverter control unit. The variable speed driving unit is connected to the induction motor and has a capacitance at output. The variable speed driving unit rectifies first 3-phase AC power to produce DC power, and converts the DC power into second 3-phase AC power with a frequency, and drives the induction motor with the second 3-phase AC power. The inverter control unit generates a frequency instruction and a temporary current instruction based on the detected rotation frequency and a rotation frequency instruction at least.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: June 15, 2004
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tetsuro Shigemizu, Mitsuyuki Nonaka, Yoshio Kayuki, Noriyuki Akasaka, Osamu Kawabata, Hisanobu Shinoda
  • Patent number: 6583529
    Abstract: An electrical machine having a plurality of pole pieces surrounded by bobbins and upon which individual coil windings are formed. The bobbins are formed by a insulating material in which are embedded electrical connectors that have terminal ends that afford connection to the coil windings and to an external connection for either deriving electrical power in the case the machine operates as a generator or receiving power in the event the device operates as a motor. In addition the individual coils are arranged in groups that can be connected together through internal connections in such a way to provide different electrical outputs without internal taps or redesign of the machine. Thus, cost is reduced and at the same time the device is more compact and has greater efficiency and wider utility.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: June 24, 2003
    Assignee: Moriyama Kogyo Kabushiki Kaisha
    Inventors: Hitoshi Suzuki, Masaki Morimatsu
  • Patent number: 6380655
    Abstract: A variable-speed electromechanical energy converter includes a wound-type induction motor and a power rectifier connected to a secondary winding of the motor to convert AC power produced by the motor into DC power. A chopper is connected to an output of the power converter to control the output thereof according to a control signal and a capacitor is connected through a rectifier device to the chopper. A power inverter converts DC power stored in the capacitor into AC power which is fed back to an AC system connected to the motor. The motor includes a cage rotor disposed between a wound rotor and a rotor shaft, the cage rotor being separated from the rotor shaft by an inner gap and separated from the wound rotor by a middle gap so as to rotate independently of the rotor shaft.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: April 30, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Kazumasa Ide, Miyoshi Takahashi, Mamoru Nemoto, Seiji Takahashi
  • Patent number: 4910421
    Abstract: A P-bar excitation system employs a generator having means for adjusting the voltage and current available from the P-bars. In some installations, the direct output of the P-bars can be connected directly to the rectifier and control circuit for development of dc excitation power. This permits elimination of the conventional excitation transformer and overall simplification of the excitation system. The voltage and current are adjusted using paired P-bars per phase, wherein each pair of P-bars is connected in series, and angularly displaced from each other about the inner circumference of the armature to attain a vector sum of voltages yielding and desired voltage per phase. In another embodiment, the generator magnetic flux, or equivalently, the number of armature turns is adjusted to yield the desired P-bar voltage and current.
    Type: Grant
    Filed: November 7, 1988
    Date of Patent: March 20, 1990
    Assignee: General Electric Company
    Inventors: Thomas E. VanSchaick, George M. Cotzas