Spirally Wound Patents (Class 310/216.046)
  • Patent number: 9784558
    Abstract: Mechanical apparatus includes a base and a moving element, which is mounted to rotate about an axis relative to the base. A capacitive rotation sensor includes at least one first electrode disposed on the moving element in a location adjacent to the base and at least one second electrode disposed on the base in proximity to the at least one first electrode. A sensing circuit is coupled to sense a variable capacitance between the first and second electrodes.
    Type: Grant
    Filed: January 4, 2015
    Date of Patent: October 10, 2017
    Assignee: APPLE INC.
    Inventor: Raviv Erlich
  • Patent number: 8968501
    Abstract: A method for building a magnetic core including laminations bound into packs for an electrical machine comprises steps of: stacking a group of laminations one on top of the other to build the core; binding into a pack the group building the core by locking members that axially compress the group with a predetermined clamping force; pre-compressing, before clamping the pack by the locking members, the group by a pre-compression press that is independent and separate from the locking members; measuring an axial length of the group while the group is being compressed by the pre-compression press; initially forming the group with a normally lacking number of laminations to initially have the measured length that is lower than or substantially equal to a desired length; and adding, after having completed pre-compression, an additional number of laminations to the group determined according to a difference between the desired and measured lengths.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 3, 2015
    Assignee: Magneti Marelli S.p.A.
    Inventors: Franco Ciampolini, Vincenzo Giorgianni, Patrick Giuliani
  • Patent number: 8937422
    Abstract: The magnetic iron core includes an amorphous foil strip wound to form the magnetic iron core. Preferably, the magnetic iron core is filled with resin, the resin being disposed by using a spacer between pluralities of windings of the amorphous foil strip. Preferably, the magnetic iron core is covered with resin integrated with and continuous to the resin disposed between pluralities of windings of the amorphous foil strip.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: January 20, 2015
    Assignees: Hitachi Industrial Equipment Systems Co., Ltd., Hitachi Appliances, Inc.
    Inventors: Yuji Enomoto, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi
  • Patent number: 8680736
    Abstract: An armature core includes a core portion formed of a lamination of plural non-crystalline metallic foil bands, wherein the armature core is provided with at least two cut surfaces with respect to the lamination layers. Amorphous metal is used as the iron base of the non-crystalline metallic foil bands. The cut surfaces are perpendicular to the lamination layers of the non-crystalline foil bands. Still further, the stator includes a stator core holding member in a disc form, the stator having a plurality of holes or recessions that are substantially in the same shape as a cross-sectional shape of the stator cores and wherein the stator cores are inserted in the holes or recessions of the stator core holding member and held by fixing in vicinities of respective central portions thereof, the central portions being with respect to the axial direction thereof.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 25, 2014
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Zhuonan Wang, Yuji Enomoto, Shigeki Morinaga, Ryoso Masaki, Shigeho Tanigawa, Hiromitsu Itabashi, Motoya Ito
  • Patent number: 8638021
    Abstract: A rotating electrical machine includes a rotor and a stator including an annular stator core formed by helically stacking a plurality of core pieces that are connected to each other by connecting portions, the rotor being disposed inside an inner periphery of the stator core. The connecting portions are linearly arranged along a stacking direction of the stator core so that grooves that extend in the stacking direction of the stator core are formed in an outer peripheral surface of the stator core at positions where the connecting portions are provided.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventor: Hiroshi Tsumagari
  • Patent number: 8558428
    Abstract: A windingly laminated core of a rotary electric machine, having a first number of magnetic poles in total and configured by unit cores, each of which is formed in an arc and thin plate shape and has a second number of magnetic poles, wherein a winding lamination is applied to the unit cores in a circumferential direction and in a spiral manner so as to form a cylindrical shape and a lamination thickness in an axial direction of the winding lamination is set to a predetermined thickness, includes an adjustment unit core having magnetic poles whose number is less than the second number, wherein the adjustment unit core is arranged at a start or an end of the winding lamination, in a circumferential direction, in order to align a rotational phase of the start of the winding lamination to a rotational phase of the end of the winding lamination.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 15, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Toshiya Sugiyama, Yasutoshi Yamada
  • Publication number: 20130043744
    Abstract: An electrical rotating machine having a stator or a rotor with a core that includes a plurality of tapered pole pieces is a low loss electrical machine that results in improvements such as higher output power, higher torque and higher efficiency than a machine that does not have tapered pole pieces. The stator or the rotor with tapered pole pieces may be applied to a power train in automobiles, power tools, and various appliances. A method of constructing the core includes winding an iron-based amorphous magnetic alloy ribbon to form a cylinder-shaped core, then heating, impregnating with resin, and machining the cylinder-shaped core to form a plurality of tapered pole pieces being separated in an alternating manner by a plurality of slots. The cores having an outside diameter in a range of 50 mm-1200 mm, a tapered angle in a range of 10°-45°, and a slot depth in a range of 10 mm-210 mm are advantageous.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: GLASSY METAL TECHNOLOGY LTD.
    Inventors: John Andrew GAYLER, Stephen Robert Kloeden, Nesimi Ertugrul, Ryusuke Hasegawa
  • Patent number: 8373326
    Abstract: An axial gap motor includes a stator having stator teeth, and also includes a rotor opposed to the stator with a gap in an axial direction of the stator. Each of the stator teeth includes a stator tooth body, a stator tooth end joined to at least one axial-direction end of the stator tooth body, and a stator coil disposed around the stator tooth body. The stator tooth body includes a wound core comprised of a multi-layered amorphous foil strip winding. The stator tooth end is formed by a compact including a powder magnetic core, and the stator tooth end includes a surface opposed to the rotor. A cross-sectional area of the stator tooth end perpendicular to an axis of the amorphous foil strip winding is larger than a cross-sectional area of the stator tooth body perpendicular to the axis of the amorphous foil strip winding.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 12, 2013
    Assignees: Hitachi Metals, Ltd., Hitachi Appliances, Inc.
    Inventors: Yuji Enomoto, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi, Kazumasa Ide
  • Patent number: 7952254
    Abstract: A stator of an outer rotor type motor is provided. The stator may include a helical core having stacked layers formed by winding a single metal sheet having a predetermined shape in a helical direction, a base and teeth that protrude from the base. The stator may also include an insulator made of electrical insulation material that surrounds the helical core, recesses formed in the base of the helical core that reduce stress due to the winding of the single metal sheet and disposed under the teeth, and auxiliary recesses formed in a bottom of the recesses.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 31, 2011
    Assignee: LG Electronics Inc.
    Inventors: Hung Myong Cho, Min Kyu Lim
  • Patent number: 7919897
    Abstract: An axial gap type motor 10 includes: a rotor 11 having a rotor core 13, the rotor core 13 including: multiple main magnet pieces 41 respectively magnetized in a direction of the rotation axis O of the rotor, and multiple main magnet piece storing hole portions 15 respectively for holding associated main magnet pieces; and a pair of stators 12 to be mounted onto the rotor 11, wherein the rotor core 13 is structured by winding a tape-shaped magnetic plate 14, and includes a first winding layer and a second winding layer; and in portions of the first and second winding layers that are situated in the same phase from the center of rotation of the rotor core 13, the first winding layer includes an outside magnetic flux short preventive portions 62, and the second winding layer includes an outside connecting portions 61.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: April 5, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shigeru Tajima, Keiichi Yamamoto
  • Patent number: 7893591
    Abstract: A stamping step of forming a plurality of band-shaped core sheets (11), (12) having arc-shaped segment core sheets (15), (15a), the adjacent segment core sheets (15), (15a) connected together by narrow-width connecting portions (16), (16a) provided therebetween, the segment core sheets (15), (15a) having a plurality of pole sections (13), (14), (13a), (14a) protruding radially outward; and an annular shape forming step of winding the plurality of band-shaped core sheets (11), (12) in a spiral form while bending the band-shaped core sheets (11), (12) at the connecting portions (16), (16a) and superimposing the pole sections (13), (14), (13a), (14a) vertically one on another, thereby laminating the band-shaped core sheets (11), (12); wherein in the stamping step, notches (23a), (23) to be positioned in correspondence with the connecting portions (16), (16a) bent in the annular shape forming step are formed at radially outward sides of joining portions (22a), (22), the joining portions joining the adjacent pole
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Mitsui High-Tec, Inc.
    Inventor: Iwao Myojin