Laminated Pole Patents (Class 310/216.057)
  • Patent number: 11522426
    Abstract: A twin radial air gap permanent-magnet-on-rotor brushless motor with a rotor comprising two magnet rings and a stator comprising individual iron-core-based stator pole modules containing a wound stator pole element with outward facing and inward facing radial pole surfaces, co-planar with the two magnet rings across the twin radial motor operating air gaps. Pole modules are mounted in a circular array upon an insulating surface or printed circuit board in automatic assembly operations interconnecting field coil windings in the desired pattern and including other electrical control components, with pole modules centered on the motor rotation axis and predominantly enclosed by the rotor. Field coil windings are supported by insulating bobbins located around the radial extent of the stator pole elements between the outer and inner facing radial pole surfaces with electrical means for connection to the electrical interconnection function supplied with the insulating surface or circuit board.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: December 6, 2022
    Assignee: Petersen Technology Corporation
    Inventor: Christian C. Petersen
  • Patent number: 11374443
    Abstract: A rotary electric machine is provided including: a stator having a stator core having an annular shape; a rotor disposed facing the stator in a radial direction, including one pair or a plurality of pairs of magnetic poles along a circumferential direction; and a housing having a cylindrical shape, in which the stator core is fixed to an inner periphery surface thereof, in which the stator core includes a back yoke having an annular shape fixed to the inner periphery surface of the housing, and a teeth provided along the radial direction from an inner periphery of the back yoke; a cutout that opens outwards the radial direction is provided in an outer periphery of the back yoke; and the cutout is provided to overlap a range of the teeth in the circumferential direction.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: June 28, 2022
    Assignee: DENSO CORPORATION
    Inventors: Akihito Naito, Katsuya Fujisaki
  • Patent number: 11316388
    Abstract: Groove holes capable of positioning each of the segment cores with respect to a winding jig in an arc attitude with wide gaps between the teeth edges of respective pole teeth are respectively formed in yoke parts positioned at both end parts of each of the segment cores in a longitudinal direction.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: April 26, 2022
    Assignee: SHINANO KENSHI KABUSHIKI KAISHA
    Inventors: Keita Higashiyama, Masayoshi Hoshino
  • Patent number: 11239711
    Abstract: An armature molded structure includes a cylindrical iron core used for a molded structure of a motor armature; a winding; and molding resin, wherein the iron core includes first core sheets and second core sheets, the first core sheet includes first magnetic poles placed along a circumferential direction of the iron core, tip portions, on an inner peripheral side of the iron core, of adjacent first magnetic poles form a coupling portion coupling the adjacent first magnetic poles, the second core sheet includes second magnetic poles placed along the circumferential direction of the iron core, tip portions, on the inner peripheral side of the iron core, of adjacent second magnetic poles form a non-coupling portion separating the adjacent second magnetic poles, the first and second core sheets are laminated along a central axis direction of the iron core in such a manner that the coupling portions coincide with each other, the non-coupling portions coincide with each other, the coupling portion and the non-coupl
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 1, 2022
    Assignee: SANYO DENKI CO., LTD.
    Inventors: Manabu Horiuchi, Hiroki Sagara, Jun Kitajima, Mai Shimizu, Takashi Matsushita
  • Patent number: 10855122
    Abstract: Provided is a stator for rotating electrical machine that can avoid the sagging of teeth stacked at the distal ends under the self-weight. A stator core is a laminate of metal foil members stacked in a direction of a rotation axis of the rotating electrical machine. Each tooth has a pair of side walls facing the neighboring teeth in the circumferential direction. The stator includes a pair of insulating reinforcing members so as to become a bridge between the corresponding tooth and a part of the yoke and sandwich the corresponding tooth from both sides in the direction of the rotation axis while exposing the pair of side walls; insulating fixing members, each fixing member fixing the corresponding pair of reinforcing members to the corresponding tooth while wrapping around the pair of reinforcing members and tooth; and coils formed as distributed windings at the teeth fixed with the fixing members.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kensuke Komori, Hisamitsu Toshida, Kazuaki Haga
  • Patent number: 10749386
    Abstract: A stator core is a stack body of plural plates. Each plate includes an annular back yoke part, plural top-connected tooth parts, plural top-separated tooth parts, plural magnetic path parts and plural top open parts. The top-connected tooth part and the top-separated tooth part protrude from the back yoke part in a radial direction. The top magnetic path part connects top ends of two top-connected tooth parts. The top open part is open to a rotor side at both sides of the top end of the top-separated tooth part. The stator core includes a back yoke, plural teeth, plural partially-connected parts and plural open parts. Each partially-connected part is formed of plural top magnetic path parts and top open parts, which extend in an axial direction. Each open part is formed of only the plural top open parts, which extend continuously in the axial direction.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: August 18, 2020
    Assignee: DENSO CORPORATION
    Inventors: Asuka Tanaka, Katsuya Fujisaki
  • Patent number: 10734854
    Abstract: A rotor includes a rotary shaft having a non-magnetic body, a plurality of rotor cores, and a plurality of permanent magnets disposed between the plurality of rotor cores, wherein a concave section extending in an axial direction is formed in any one of the non-magnetic body and a base end of the rotor core, and a convex section fitted into the concave section is formed at the other, the concave section is formed by a key groove section and a dovetail groove section in communication with each other, the convex section is formed by a key section configured to fit into the key groove section and a dovetail protrusion configured to fit into the dovetail groove section, the key section and the dovetail protrusion being integrally formed with each other, and a gap is formed between the dovetail groove section and the dovetail protrusion in the circumferential direction.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 4, 2020
    Assignees: MITSUBA CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Yosuke Fujii, Tohru Yumoto, Taichi Yamamoto, Susumu Miyazaki
  • Patent number: 10658885
    Abstract: A motor includes a rotor that rotates centered on a central axis extending in an axial direction, and a stator. The stator includes a stator iron core in which a plurality of laminated iron cores each including a tooth portion extending in a radial direction are arranged in a circumferential direction, and coils wound around the tooth portion. The laminated iron core includes a plurality of flat plate-shaped iron core pieces laminated in a plate thickness direction. The iron core piece is made of a non-oriented electromagnetic steel plate. A rolling direction of the iron core piece is inclined with respect to the radial direction. The laminated iron core is preferably formed by laminating the iron core pieces to be arranged with a same inclination. At least a pair of the laminated iron cores adjacent to each other in the circumferential direction has inclinations opposite to each other.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: May 19, 2020
    Assignee: Nidec Corporation
    Inventors: Tomoya Ueda, Hiroshi Kitagaki, Takeshi Honda
  • Patent number: 10566876
    Abstract: To significantly improve a heat dissipation property of an axial gap rotary electric machine within a size necessary for configuring a motor. In an axial gap rotary electric machine comprising a stator and a rotor in an axial direction, the stator has a plurality of stator cores arranged in a circumferential direction and coils wound around the stator cores, and a heat pipe obtained by filling an inside of a metal hollow pipe with a refrigerant is arranged in a gap between adjacent coils formed in an outer diameter portion of the stator in a radial direction and a housing with a necessary insulation distance between the coils and the heat pipe. The heat pipe extends in a direction of a rotation axis and an opposite output side, and is in contact with a heat dissipating fin outside an end bracket on the opposite output side.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: February 18, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Yuji Enomoto, Hirooki Tokoi, Naoki Sakurai, Hisashi Tanie, Kenta Deguchi
  • Patent number: 10536055
    Abstract: An encasement of an electric machine of an electrified vehicle is provided. The encasement may include a base sidewall, an inner sidewall, and an outer sidewall. The inner sidewall may extend in a circular pattern about the base sidewall. The outer sidewall may extend from the base sidewall and may be spaced apart from the inner sidewall to define a coolant channel at least partially surrounding end windings of a stator of the electric machine. The base sidewall may define features between the sidewalls to promote turbulence of coolant flowing through the coolant channel. The base sidewall may define a meandering trough between the sidewalls to form a predetermined coolant path relative to a location of the end windings.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 14, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Prasad Dev Hanumalagutti, Michael W. Degner, Franco Leonardi
  • Patent number: 10418869
    Abstract: A rotor structure of synchronous reluctance motor which includes at least one rotor sheet is provided in the present invention. The rotor sheet has a center hole and includes a plurality of reluctance units surrounded the center hole. The reluctance units have an inner through-hole pair and an outer through-hole pair. In an inner through hole of the inner through-hole pair and an outer through hole of the outer through-hole pair, an inner tangent extension and an outer tangent extension are extended along a tangent extension direction. Two oblique extensions are extended from the inner tangent extension and the outer tangent extension along a turning direction which is oblique to the tangent extension direction respectively. An oblique included angle of the outer through hole is smaller than an oblique included angle of the inner through hole.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 17, 2019
    Assignee: TECO ELECTRIC & MACHINERY CO., LTD.
    Inventors: Lian-Shin Hung, Hsiang-Chun Chen, Ming-Te Ho
  • Patent number: 10236732
    Abstract: The inductor type rotary motor of m-phase (m represents an integer of 2 or more) includes a stator in which distal ends of teeth are circularly disposed, and a rotor having an inductor tooth that faces each of the distal ends of the teeth through a constant gap. The stator includes k·m teeth (k represents an integer of 1 or more), at least one permanent magnet is disposed at each of the teeth, and adjacent permanent magnets, which belong to teeth adjacent to each other, are disposed in such a manner that different polarities face each other.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 19, 2019
    Assignee: SANYO DENKI CO., LTD.
    Inventors: Satoshi Sugita, Yuqi Tang, Yasushi Misawa, Shigenori Miyairi
  • Patent number: 9680339
    Abstract: A stator made from a ribbon of metal having multiple layers of slit metal, and motors made therefrom are described. A ribbon having multiple layers of metal is formed into a stator such as by flattening or pleating the ribbon to form each pole of a stator having a plurality of stator teeth, or poles. The stator formed from the metal ribbon may be configured into any suitable type of motor, such as an axial transverse flux motor. A magnetic flux return may also be made out of metal ribbon.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: June 13, 2017
    Assignee: Moog Inc.
    Inventor: David Calley
  • Patent number: 9030076
    Abstract: An electrical rotary machine comprises a stator having a plurality of split cores arranged in an annular shape and a holding ring capable of retaining the plurality of split cores on an inner circumferential surface so that a surface pressure is applied to an outer circumferential surface of the split cores. The electrical rotary machine further comprises a rotor provided radially inside of the stator facing the split cores in a radial direction and rotatable relative to the stator. Each of the split cores includes a tooth portion extending in an radial direction and a back yoke portion extending in a circumferential direction. Each of the split cores further includes a slit penetrating an outer circumferential periphery of the back yoke portion except for either circumferential end of the back yoke portion.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: May 12, 2015
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Tomohiro Sato
  • Patent number: 9013086
    Abstract: A stator for an electric motor includes a stator core including a yoke and a plurality of arms extending radially from the yoke. The stator includes an end piece secured to a radial end of each arm of the stator core. The stator core has a length defined along a longitudinal axis of the stator, and each end piece has a length defined along the longitudinal axis of the stator. The length of each end piece is greater than the length of the stator core.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 21, 2015
    Assignee: Whirlpool Corporation
    Inventors: Luiz V. Dokonal, Evandro J. Meurer, Marcelo N. Schlickmann, Orlando Starke, Rodrigo S. Teixeira
  • Patent number: 8994243
    Abstract: An electrical machine stator assembly comprises: an electroconductive coil arranged circumferentially with respect to the rotational axis; a plurality of pairs of side lamination assemblies arranged circumferentially with respect to the rotational axis; a plurality of pairs of switch lamination assemblies arranged circumferentially with respect to the rotational axis and positioned adjacent ends of side lamination assemblies proximal the rotor; and at least one tooth associated with each switch lamination assembly and proximal the rotor. Each switch lamination assembly comprises a first group of laminated materials aligned generally circumferentially and generally in a first direction with respect to the rotational axis, the first direction being one selected from the group consisting of the axial and radial directions with respect to the rotational axis.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Electric Torque Machines Inc
    Inventors: David G. Calley, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Publication number: 20150076955
    Abstract: A stator formed of a dual-out stator lamination is disclosed. The stator comprises a generally annular core including a plurality of arcuately spaced apart teeth. Each of the teeth includes a generally radially extending leg and a head extending generally arcuately relative to the leg to present opposite head ends spaced from the leg. The head presents a tooth head height measured in at least a substantially radial direction. Each adjacent pair of said heads is spaced apart by a generally arcuate slot opening distance defined between the adjacent ends of the pair of heads. The ratio of each tooth head height to each adjacent slot opening distance is at least about twenty-eight hundredths (0.28).
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: Nidec Motor Corporation
    Inventor: Keith I. Hoemann
  • Publication number: 20150042200
    Abstract: A rotor (24) of an interior permanent magnet motor and an interior permanent magnet motor (20) are disclosed. The rotor (24) of the interior permanent magnet motor includes a rotor iron core (25); a plurality of permanent magnets (27), where the plurality of permanent magnets (27) are spaced apart inside the rotor iron core (25); and a plurality of air slots (30), disposed at end portions of adjacent permanent magnets (27) and close to an outer circumference of the rotor, and adapted to generate air gap flux density between the outer circumference of the rotor and an inner circumference of a stator of the interior permanent magnet motor, and the air gap flux density being in an analogous sinusoidal shape.
    Type: Application
    Filed: November 23, 2012
    Publication date: February 12, 2015
    Inventors: Li Yao, Wanzhen Liu, Zhenyu Wang, Yan Lin
  • Patent number: 8896179
    Abstract: A motor comprising a stator having a plurality of magnetic poles disposed in a circumferential direction along an outer periphery thereof, a rotor disposed rotatably around the outer periphery of the stator, and a magnet disposed in a circumferential direction along an inner periphery of the rotor. The stator is formed by laminating sheet-like plates. A plurality of the sheet-like plates including an outermost layer of this laminated body comprises a flat portion substantially perpendicular to the magnet, and an extended portion bent to a direction substantially parallel to the magnet. A part of the sheet-like plate having the extended portion disposed to the outermost side is formed into a thickness smaller than thicknesses of the other parts.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Yuichi Yoshikawa, Hiroshi Murakami, Atsuyoshi Koshiba, Haruki Kato, Yasuo Kunishige, Koji Kadowaki, Hiroyuki Asai
  • Patent number: 8878415
    Abstract: Permanent magnet synchronous machines (100) are described having good efficiency, as well as corresponding methods for making a stator (110) or stator teeth (114) for such machines. A method for fabricating a stator (110) for an axial flux permanent magnet synchronous machine is for example described comprising obtaining several sets of substantially identical laminates (302), and stacking the sets of substantially identical laminates (302) so that a subsequent laminate has a part overlapping (304) the previous laminate and a part not overlapping (306) the previous laminate. Alternatively, a method of manufacturing a stator (110) is described wherein the method comprises obtaining a set of laminates (302) connected to each other with a thin strip (402) of material and creating a stack by folding the laminates (302) along the thin strip (402) of material.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 4, 2014
    Assignee: Universiteit Gent
    Inventors: Alex Van Den Bossche, Peter Sergeant
  • Patent number: 8736135
    Abstract: Teeth are arranged annularly around a rotation axis. The yoke has through holes. The through holes open in a radial direction around the rotation axis and in an axial direction along the rotation axis. The teeth are inserted through the through holes. A metal plate is arranged to face the yoke in the axial direction. A reinforcing plate is fixed to the teeth.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 27, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Yoshinari Asano, Nobuyuki Kifuji, Tomonori Kikuno, Shin Nakamasu, Ryuuji Yasumoto
  • Publication number: 20140132108
    Abstract: There is provided a synchronous generator rotor pole assembly having a plurality of mutually displaced pole assembly segments which respectively have a plurality of identical pole assembly plates. Each pole assembly plate has a pole shank having a first center line, and a pole head having a second center line. The first and second center lines can be different from each other in adjacent pole assembly segments.
    Type: Application
    Filed: June 5, 2012
    Publication date: May 15, 2014
    Applicant: WOBBEN PROPERTIES GMBH
    Inventors: Torsten Jepsen, Matthias Dutsch
  • Publication number: 20140035428
    Abstract: A stator of a rotary electric machine, in which an insulating capacity higher than or equal to an insulating capacity of a flat portion of a stator core can be maintained at edge portions of the stator core. The stator of the rotary electric machine includes a core-sheet laminate that is formed by laminating a plurality of core sheets made of metal plates; a coating film that is made of an insulating paint coated on a surface of the core-sheet laminate; a stator coil that is made of a conductive wire wound around the core-sheet laminate via the coating film; and bobbins made of an insulating material, which are inserted between the coating film and the stator coil and prevent the conductive wire of the stator coil from contacting the coating film that is coated on edge portions of the core-sheet laminate, or relieve pressure caused by the contact.
    Type: Application
    Filed: February 25, 2011
    Publication date: February 6, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masahiro Yuya, Daisuke Shijo, Hiroyuki Akita, Haruyuki Hasegawa, Takenori Aomi, Ryoko Komaki
  • Patent number: 8638012
    Abstract: A rotor for a synchronous reluctance machine wherein a torque ripple behaviour of the machine is optimized by altering the geometry of insulating barriers of the rotor. A q-axis pitch angle is used as a design variable instead of setting its value equal to the rest of the rotor slot pitches or binding its value to the stator slot pitch. The resulting rotor has a non-regular slot pitch across the q-axis and substantially regular slot pitch otherwise. Synchronous reluctance machines that employ rotor discs and rotor assemblies in accordance with the present invention may exhibit low torque ripple without sacrificing high torque values.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: January 28, 2014
    Assignee: ABB Research Ltd.
    Inventor: Reza Rajabi Moghaddam
  • Patent number: 8552612
    Abstract: A stator core 10 and its manufacturing method, the stator core 10 including laminated stator core sheets 17, each of the stator core sheets 17 punched out from a magnetic metal sheet 32, a central portion of the magnetic metal sheet 32 previously punched out to form a rotor core sheet 36, the stator core 10 including a thin section 24 formed in a magnetic pole piece 19 of each of the stator core sheets 17, the thin section 24 formed by pressing both sides of the magnetic pole piece 19 in a thickness direction and radially-inwardly elongating the magnetic pole piece 19. The present invention prevents the magnetic pole piece 19 from being curved and improves interlocking accuracies and dimensional accuracies in blanking the rotor core sheet 36 and the start core sheet 17 from one magnetic metal sheet 32.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 8, 2013
    Assignee: Mitsui High-Tec, Inc.
    Inventors: Akihiro Hashimoto, Yusuke Hasuo
  • Patent number: 8456057
    Abstract: A laminated stator core 10, formed by laminating stator core sheets 17, each of the stator core sheets 17 punched out from a magnetic metal sheet 32 so as to have a common axis with a rotor core sheet 36 which punched out from the magnetic metal sheet 32 before the stator core sheet 17 is punched out; the stator core sheet 17 including a thin section 24 in a magnetic pole shaft piece 20; the thin section 24 formed by pressing a part or a whole of a magnetic pole shaft piece 20 in a thickness direction, and elongating the same in a radially inward direction; and further the thin section 24 having a thickness within 50-95% of that of the magnetic metal sheet 32 and a radial length within 30-100% of that of the magnetic pole shaft piece 20. This enables a magnetic pole piece 19 to be elongated to form the thin section 24 without adverse effect on magnetic characteristics thereof, and improves caulking accuracy and dimensional accuracy for blanking both of the core sheets 17, 36 from one magnetic metal sheet 32.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 4, 2013
    Assignee: Mitsui High-Tec, Inc.
    Inventors: Yusuke Hasuo, Kazunori Ouchi
  • Patent number: 8347484
    Abstract: A rotary actuator includes an outer enclosure having an inner diameter surrounding a hollow interior. A stack of stator laminations, each having a stator diameter greater than the inner diameter of the outer enclosure when in an unflexed state, are also included in the rotary actuator. Each of the stator laminations is configured to flex into a shape so as to be positionable within the outer enclosure and substantially conform to the inner diameter. The stator lamination thus forms a line-to-line fit with at least a portion of the outer enclosure to form an interface having a desirable reluctance.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: January 8, 2013
    Inventor: Kevin Allen Bischel
  • Patent number: 8319380
    Abstract: Electrodymamic machine rotating mass, including for example induction motor rotors, stiffness tuning methods include selective orientation and compression of modular tie rod assemblies into through bores formed in the rotor lamination core outboard of the rotor shaft during motor manufacture, repair or refurbishment. Stiffness tuning enables a motor manufacturer to tune a rotor's rotordynamic stability, and hence the assembled motor's critical vibration speed. Electrodynamic machine rotating mass tuning can be adjusted in response to machine physical design, operational application and manufacturing variation attributes that impact the assembled machine's critical vibration frequency. Thus the present invention offers a systematic, holistic approach to motor vibration refinement through use of a simple kit of modular tie rod assemblies oriented and tightened in a selected array. Rotor stiffness tuning can be tested virtually on computer work stations.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 27, 2012
    Assignee: Siemens Industry, Inc.
    Inventor: Sumit Singhal
  • Patent number: 8310124
    Abstract: A compact, rugged, variable reluctance, variable speed, electric motor capable of producing high torque at high electrical energy conversion efficiencies is provided. The present invention provides for a multi-stage motor design having a number of discreet rotor and stator elements on a common shaft. This configuration provided the simplest of magnetic structures and produces a powerful magnetic flux modeling design technique that is used to further optimize the motor design and subsequent control logic. Thermal mapping of the magnetic mass provides for advanced cooling techniques that are used to insure long in-service life in the most extreme of industrial applications. The electric motor inherently provides low vibration thereby greatly reducing noise; low turn to turn voltage potential thereby eliminating costly phase to phase shorting potential; efficient motor operation through the reduction in switching and copper losses in both the machine and its control.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: November 13, 2012
    Assignee: Sunco Investments Limited
    Inventors: John A Davis, Iain C Davis, Feisal A Hurzook
  • Patent number: 8310126
    Abstract: A radial flux permanent magnet AC motor/generator employs a flat circular stator plate having a plurality of separately-formed electromagnets mounted in a ring pattern on a top surface thereof. A circular flux ring fabricated of powdered metal is mounted to the stator plate outside the ring of electromagnets. A plurality of permanent magnets are mounted in a ring pattern on the outer cylindrical surface of a steel rotor. The stator plate and rotor are axially and diametrically aligned such that the ring of permanent magnets rotates in close proximity to and inside the ring of electromagnets. The electromagnets utilize powder metal cores shaped to have rounded corners and flat sides that permit the use of heavier gauge windings and eliminate the air gaps that exist between the core and windings of prior art electromagnets.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: November 13, 2012
    Assignee: Motor Patent Licensors, LLC
    Inventors: Thomas H. Hopkins, Nicholas R. Bries, Scott T. Graham, Howard F. Hendricks, Patrick J. Stoever
  • Patent number: 8198778
    Abstract: A rotary actuator includes a stator assembly positioned within an outer enclosure. A rotor assembly is positioned adjacent to the stator and is configured to rotate relative thereto and about a centerline axis of the rotary actuator. Each of the outer enclosure, the stator assembly, and the rotor assembly are arranged to carry a magnetic flux therethrough and form a flux path loop, such that as a magnetic flux flows through the outer enclosure, the stator assembly, and the rotor assembly, a torque is generated by rotation of the rotor assembly relative to the stator assembly.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: June 12, 2012
    Assignee: Woodward, Inc.
    Inventor: Kevin Allen Bischel
  • Patent number: 8018110
    Abstract: An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 13, 2011
    Assignee: General Electric Company
    Inventors: James Pellegrino Alexander, Ayman Mohamed Fawzi EL-Refaie, Murtuza Lokhandwalla, Manoj Ramprasad Shah, Jeremy Daniel VanDam
  • Patent number: 8004140
    Abstract: An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: August 23, 2011
    Assignee: General Electric Company
    Inventors: James Pellegrino Alexander, Ayman Mohamed Fawzi EL-Refaie, Murtuza Lokhandwalla, Manoj Ramprasad Shah, Jeremy Daniel VanDam
  • Patent number: 7994668
    Abstract: An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: William Dwight Gerstler, Ayman Mohamed Fawzi El-Refaie, Murtuza Lokhandwalla, James Pellegrino Alexander, Owen Scott Quirion, Pepe Palafox, Xiaochun Shen, Lembit Salasoo
  • Patent number: 7973445
    Abstract: A rotary actuator includes a stator assembly positioned within an outer enclosure. A rotor assembly is positioned adjacent to the stator and is configured to rotate relative thereto and about a centerline axis of the rotary actuator. Each of the outer enclosure, the stator assembly, and the rotor assembly are arranged to carry a magnetic flux therethrough and form a flux path loop, such that as a magnetic flux flows through the outer enclosure, the stator assembly, and the rotor assembly, a torque is generated by rotation of the rotor assembly relative to the stator assembly.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Woodward Controls Inc.
    Inventor: Kevin Allen Bischel
  • Patent number: 7960889
    Abstract: A first laminated body includes first and second laminated groups including respective convex parts alternately disposed. A second laminated body includes third and fourth laminated groups including respective concave parts alternately disposed. The convex part of the first laminated group is shaped to not be inserted into the concave part of the third laminated group and to be inserted into the concave part of the fourth laminated group, from a lamination horizontal direction. The convex part of the second laminated group is shaped to be inserted into the concave part of the third laminated group and the concave part of the fourth laminated group, from the lamination horizontal direction. The convex part of the first laminated group is press-inserted in the concave part of the third laminated group, and the convex part of the second laminated group is inserted in the concave part of the fourth laminated group.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 14, 2011
    Assignee: Mitsubishi Electronic Corporation
    Inventor: Kazuyuki Yamamoto
  • Patent number: 7952252
    Abstract: Disclosed herein is an inner rotor type permanent magnet excited transverse flux motor, in which a laminated structure in an axial direction or in a radial shape is applied to a stator iron core so as to employ a small amount of permanent magnets compared with a conventional outer rotor type permanent magnet excited transverse flux motor, thus providing high output power, increasing the efficiency of power generation, and reducing noise and vibration.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 31, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Do Hyun Kang, Jung Hwan Chang, Ji Young Lee, Ji Won Kim, Shi Uk Chung
  • Patent number: 7952253
    Abstract: A rotary actuator includes an outer enclosure having an inner diameter surrounding a hollow interior. A stack of stator laminations, each having a stator diameter greater than the inner diameter of the outer enclosure when in an unflexed state, are also included in the rotary actuator. Each of the stator laminations is configured to flex into a shape so as to be positionable within the outer enclosure and substantially conform to the inner diameter. The stator lamination thus forms a line-to-line fit with at least a portion of the outer enclosure to form an interface having a desirable reluctance.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 31, 2011
    Assignee: Woodward, Inc.
    Inventor: Kevin Allen Bischel
  • Patent number: 7923887
    Abstract: Disclosed herein is a brushless motor that is simply constructed based on a vernier type motor to achieve high torque without the increase in size and complication thereof. The brushless motor includes a rotor having magnetized surfaces alternately magnetized as N and S poles and a stator having salient poles. The salient poles have tip end surfaces opposite to the magnetized surfaces in the radial direction. Grooves and protrusions are alternately formed at the tip end surfaces of the salient poles in the rotational direction. The grooves and the protrusions extend in the axial direction and have a width in the rotational direction approximately equal to that of the N pole or the S pole. Magnetic bodies are disposed in gaps defined between the grooves and the magnetized surfaces in a non-contact fashion. A magnetic connection member is spaced apart from the stator to interconnect the magnetic bodies.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yukinori Nakagawa
  • Patent number: 7723892
    Abstract: A synchronous motor includes multiple coil segments, each of which has an iron core in the form of a core stack that is wound with a coil. The coil segments are characterized in that the coils press fastening elements having at least two legs against two opposite surfaces of the substantially right parallelepiped iron core. In each case, at least one leg of the fastening element abutting against the iron core is pressed against the iron core, and at least one free leg of the fastening element projects away from the iron core. The free legs are fastened to connecting elements that connect multiple coil segments to one another.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 25, 2010
    Assignee: Etel S.A.
    Inventors: Vincent Cardon, Jean-Pierre Morel
  • Patent number: 7646130
    Abstract: A stator assembly is provided for an electric motor having a longitudinal axis. The stator assembly includes at least one stator segment having a first end member having a stator tooth and at least one of a stator shoe and a back iron. A second end member is positioned with respect to the first end member and has a stator tooth and at least one of a stator shoe and a back iron. A winding generally circumscribes the stator tooth of the first end member and the stator tooth of the second end member. The first and second end members have a parting line generally perpendicular to the longitudinal axis of the motor. A motor incorporating the stator assembly of the present invention is disclosed. Additionally, a method of forming the stator assembly of the present invention is described.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 12, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Alan G. Holmes, Richard A. Ordo, Ahmed M. El-Antably
  • Patent number: 7626304
    Abstract: There is provided a stator in which a plurality of divided stators are annularly combined with each other, and each divided stator includes: a divided lamination iron core having teeth portion and a yoke portion, and constructed by laminating electromagnetic steel sheets divided by the teeth unit; insulating bodies provided at the divided lamination iron core; and concentrated winding wound around the divided lamination iron core through the insulating body. In this case, the divided lamination iron core is held by the insulating bodies and the concentrated winding.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: December 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Masayuki Morioka, Yasuaki Matsushita, Yoshihiro Kira, Shinya Tamura
  • Publication number: 20090160287
    Abstract: Disclosed herein is a brushless motor that is simply constructed based on a vernier type motor to achieve high torque without the increase in size and complication thereof. The brushless motor includes a rotor having magnetized surfaces alternately magnetized as N and S poles and a stator having salient poles. The salient poles have tip end surfaces opposite to the magnetized surfaces in the radial direction. Grooves and protrusions are alternately formed at the tip end surfaces of the salient poles in the rotational direction. The grooves and the protrusions extend in the axial direction and have a width in the rotational direction approximately equal to that of the N pole or the S pole. Magnetic bodies are disposed in gaps defined between the grooves and the magnetized surfaces in a non-contact fashion. A magnetic connection member is spaced apart from the stator to interconnect the magnetic bodies.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Yukinori NAKAGAWA