Plural Diverse Slot Shapes Patents (Class 310/216.071)
  • Patent number: 12132363
    Abstract: A rotor including: a drive shaft rotating about an axis of rotation, a plurality of annular rotor plates, identical to each other, mounted on the drive shaft, superposed along the axis of rotation and including a plurality of openings, a pair of closing plates which are located at the ends of said plurality of rotor plates, a plurality of bars, passing through at least part of said plurality of openings of the plurality di rotor plates, a pair of short-circuit rings located a the ends of said plurality of bars and wherein an active ratio between a first area occupied by the plurality of openings and a total area of the rotor plate is greater than or equal to 0.30, that is, R1=A1/AT?0.30.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: October 29, 2024
    Assignee: MOTOVARIO S.P.A.
    Inventors: Davide Pagliaro, Antonio Scozzafava
  • Patent number: 12126224
    Abstract: A rotor assembly comprises a rotor core comprising a first end and an opposing second end, and an outwardly facing peripheral surface having a set of rotor teeth projecting outwardly therefrom to define a set of rotor slots therebetween. Each rotor tooth can comprise a first rotor tooth wall, an opposing second rotor tooth wall, and a distal tip between the first rotor tooth wall and second rotor tooth wall. Each respective rotor slot can be defined by a respective first rotor tooth wall of a first rotor tooth, and a respective second rotor tooth wall of a second rotor tooth, and includes a first rotor core conduit extending axially along a length of the first rotor tooth. The first rotor core conduit can comprise a first rotor core conduit inlet at the rotor core first end and a first rotor core conduit inlet at the rotor core second end, the rotor core conduit defining a first taper that is narrower at first rotor core conduit inlet than the first rotor core conduit outlet.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: October 22, 2024
    Assignee: GE Aviation Systems LLC
    Inventors: Xiaochuan Jia, Balamurugan Sridharan, Ami Hatim, Anirban Chatterjee
  • Patent number: 12040672
    Abstract: A motor for a rotary compressor, and a compressor and an air conditioner having the motor, are disclosed. The motor includes a stator core and a rotor core. The stator core has a through-hole in a center thereof. The stator core is provided with a plurality of circumferentially spaced stator teeth, and the number of stator teeth is M. The rotor core is rotatably disposed in the through-hole. The rotor core is provided with a plurality of circumferentially spaced rotor slots, and the number of the rotor slots is N, wherein 2?N?M?6. A cross-sectional area of the stator core is denoted as S, and a distance between two endpoints of two radially opposite curved segments of an outer edge of the cross section is denoted as L, wherein 0.93?(4*S)/(3.14*L2)?0.96.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 16, 2024
    Assignee: GUANGDONG MEIZHI COMPRESSOR CO., LTD.
    Inventors: Xiaohua Qiu, Dong Xiang, Zunmu Zhang, Dejin Zhang
  • Patent number: 11742736
    Abstract: A 2-phase bipolar step motor has a rotor and a stator, the rotor having a plurality of equally spaced rotor poles of alternating north and south magnetic polarities, and the stator having at least eight stator poles extending radially from a stator yoke and terminating in pole shoes interacting radially across an air gap with the rotor poles to cause the rotor to rotate step-by-step when windings around the stator poles are driven by a succession of energized states of the stator. The stator poles divided into four equal groups having a specified drive phase A or B, adjacent poles of a group having alternating drive polarities of the same drive phase A and ?, or B and B. Adjacent poles in the same group are separated by a center-to-center angle one-half of the rotor tooth pitch or up to 20% larger. Adjacent poles of different groups have a larger separation than that between poles of the same group.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 29, 2023
    Assignee: Lin Engineering, Inc.
    Inventor: Ted T. Lin
  • Patent number: 10170946
    Abstract: An apparatus includes a motor having a rotor; and a stator, where the rotor is located at least partially in a rotor receiving area of the stator, where the stator includes at least one coil winding and teeth, where the at least one coil winding is located on at least some of the teeth, where the teeth include a first set of the teeth and a second set of the teeth, where the teeth of the first set of teeth are longer in a radial direction from the rotor receiving area than the teeth of the second set of teeth.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 1, 2019
    Assignee: Persimmon Technologies Corporation
    Inventors: Jayaraman Krishnasamy, Martin Hosek, Dennis Poole
  • Patent number: 8760023
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 24, 2014
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek
  • Patent number: 8680738
    Abstract: A universal motor includes a stator and a rotor rotatably installed in the stator. The stator includes a stator core having a yoke, n primary poles with windings wound thereon and n auxiliary poles. The primary poles and auxiliary poles are alternately arranged on the radially inner side of the yoke in a circumferential direction thereof. When the windings are electrified, n primary magnetic poles and n auxiliary magnetic poles are formed at the primary poles and auxiliary poles respectively, n being an integer greater than 1. All the primary magnetic poles have the same polarity and the polarity of each auxiliary magnetic poles is opposite the polarity of the primary magnetic poles.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 25, 2014
    Assignee: Johnson Electric S.A.
    Inventors: Bao Ting Liu, Ji Dong Chai, Ji Cheng Pan
  • Patent number: 8680740
    Abstract: A stator for an electrical machine, the stator including a plurality of stator teeth distributed in a non-uniform pattern with a short and long tooth spans along a circumference of the stator, wherein each stator slot between two stator teeth distanced by a long tooth span including an intermediate tooth for carrying a magnetic flux.
    Type: Grant
    Filed: August 27, 2011
    Date of Patent: March 25, 2014
    Assignee: ABB Research Ltd.
    Inventor: Robert Chin
  • Patent number: 8575878
    Abstract: An energy converter includes a magnetism generation mechanism unit that generates a magnetic field when connected to an AC electrical power source, and a rotating mechanism unit having a single turn coil array member in which a plurality of single turn coils is disposed at a predetermined interval and a soft magnetic metal plate disposed on a side of the single turn coil array member opposite to the magnetism generation mechanism unit. The rotating mechanism unit is structured such that the single turn coil array member faces the magnetism generation mechanism unit across a predetermined magnetic gap and rotary driven by the magnetic field. Here, a drive signal period of the electrical power source is a period that maximizes an eddy current generated in the soft magnetic metal plate.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: November 5, 2013
    Assignee: TBK Co., Ltd
    Inventors: Tetsuo Sekiya, Kiyotsugu Narita
  • Patent number: 8466597
    Abstract: To provide an indication motor rotor capable of improving motor performance by concentrating portions under magnetic saturation conditions of rotor teeth. The rotor 1 of an induction motor of this invention may include slots 3 formed approximately in the shape of a T. The slots 3 may be formed so that top slots 3a are arranged on an outer peripheral portion of a rotor core 1a, and bottom slots 3b are arranged on an inner side of the top slots 3a. The width in the circumferential direction of the top slot 3a is wider than the width in the circumferential direction of the bottom slot 3b, and the width in the circumferential direction of a rotor tooth 4 between adjacent top slots 3a is narrower than the width in the circumferential direction of the rotor tooth 4 between adjacent bottom slots 3b.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: June 18, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yabe, Hayato Yoshino, Kazuhiko Baba, Tomoaki Oikawa, Takahiro Tsutsumi
  • Patent number: 8344581
    Abstract: To provide an indication motor rotor capable of improving motor performance by concentrating portions under magnetic saturation conditions of rotor teeth. The rotor of an induction motor of this invention may include slots formed approximately in the shape of a T. The slots may be formed so that top slots are arranged on an outer peripheral portion of a rotor core, and bottom slots are arranged on an inner side of the top slots. The width in the circumferential direction of the top slot is wider than the width in the circumferential direction of the bottom slot, and the width in the circumferential direction of a rotor tooth between adjacent top slots is narrower than the width in the circumferential direction of the rotor tooth between adjacent bottom slots.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 1, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yabe, Hayato Yoshino, Kazuhiko Baba, Tomoaki Oikawa, Takahiro Tsutsumi
  • Publication number: 20120319526
    Abstract: An electric machine comprises a rotor (200) equipped with permanent magnets (204, 206, 208, 210), and a stator (100) equipped with electromagnetic poles. The electric machine is characterized in that several adjacent electromagnetic poles respectively constitute an electromagnetic pole group in which the adjacent electromagnetic poles are spaced apart at a first electromagnetic pole spacing, that adjacent electromagnetic poles belonging to different electromagnetic pole groups are spaced apart at an electromagnetic pole spacing greater than said first electromagnetic pole spacing, that each electromagnetic pole group has an even number of electromagnetic poles, and that adjacent electromagnetic poles of an electromagnetic pole group are linked to each other so as to generate magnetic fields of opposite direction in operation.
    Type: Application
    Filed: November 29, 2010
    Publication date: December 20, 2012
    Inventors: Roland Hagenlocher, Jens Steffen, Anton Müller, Peter Ehrhart
  • Patent number: 8222786
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: July 17, 2012
    Assignee: Motor Excellence LLC
    Inventors: David G. Calley, Daniel S Cole, John M. Dyer, Thomas F. Janecek
  • Patent number: 8222790
    Abstract: There are provided a tubular stator core having a plurality of tooth portions which protrude radially inwards and slots which are defined between the respective tooth portions and coils which are disposed on circumferences of the tooth portions. An insulator is attached to the stator core from an axial direction thereof for isolating the coils from the stator core. A radius of curvature of a corner portion of the insulator around which the coil is wound decreases continuously as the tooth portion extends from a root portion to a distal portion thereof.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 17, 2012
    Assignee: JTEKT Corporation
    Inventor: Takatoshi Sakata
  • Patent number: 8207648
    Abstract: A dual-rotor motor in which inner slot angle ?i is larger than outer slot angle ?o. An inner notched portion is provided on both circumferential ends of an inner head. This inner notched portion provides a broader space between the inner head and an inner rotor toward both utmost ends of the inner head. An outer notched portion is provided on both circumferential ends of an outer head. This outer notched portion provides a broader space between the outer head and the outer rotor toward both utmost ends of the outer head.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: June 26, 2012
    Assignee: Panasonic Corporation
    Inventors: Hu Li, Yuichi Yoshikawa, Hiroshi Murakami
  • Patent number: 8207646
    Abstract: To provide an indication motor rotor capable of improving motor performance by concentrating portions under magnetic saturation conditions of rotor teeth. The rotor 1 of an induction motor of this invention may include slots 3 formed approximately in the shape of a T. The slots 3 may be formed so that top slots 3a are arranged on an outer peripheral portion of a rotor core 1a, and bottom slots 3b are arranged on an inner side of the top slots 3a. The width in the circumferential direction of the top slot 3a is wider than the width in the circumferential direction of the bottom slot 3b, and the width in the circumferential direction of a rotor tooth 4 between adjacent top slots 3a is narrower than the width in the circumferential direction of the rotor tooth 4 between adjacent bottom slots 3b.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: June 26, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yabe, Hayato Yoshino, Kazuhiko Baba, Tomoaki Oikawa, Takahiro Tsutsumi
  • Patent number: 8183735
    Abstract: The present invention provides a rotating electrical machine including a rotor core that does not produce narrow areas in rotor slots even if circumferential ends of fan-shaped segment cores are displaced radially outwardly and circumferentially during operation. In the present invention, slots near circumferential ends of the fan-shaped segment cores are made larger than slots in circumferential intermediate portions of the segment cores. With such a configuration, even if the circumferential ends of the segment cores are displaced radially outwardly and circumferentially during operation, the circumferential ends of the segment cores forming the large slots do not protrude into the slots formed in the circumferential intermediate portions of axially adjacent segment cores, thereby preventing narrow areas from being produced in the rotor slots.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: May 22, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Yukiyoshi Yanagisawa, Takeshi Kuwahara
  • Patent number: 8138653
    Abstract: A rotating electric machine is provided, where a generator has an increased capacity and a reduced size achieved by electromagnetically effectively utilizing that parts of a rotor core which are outside the narrowest parts of magnetic poles of the rotor core to permit large field current and suppress an increase in temperature of rotor coils. The rotating electric machine includes a stator constructed by winding armature coils around a stator core (1), and a hollow circular cylindrical rotor. The rotor has at least one pair of magnetic poles (2), non-polar portions (3) between the magnetic poles, and interpolar portions (6) arranged in the non-polar portions. In the non-polar portions (3), a plurality of rotor slots (4) are arranged at predetermined intervals. Field windings are wound in each rotor slot (4).
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Taniyama, Yasuo Kabata, Masafumi Fujita, Tadashi Tokumasu, Norio Takahashi, Masanori Arata, Ken Nagakura
  • Patent number: 8125114
    Abstract: A locking wedge for a slot of a dynamoelectric machine is provided. The locking wedge includes a main body extending in an axial direction. The main body has a top surface and a bottom surface with a greater surface area than the top surface, and a first end surface and a second end surface opposed to the first end surface. First and second locking slots extend in the axial direction into a portion of the main body. The first locking slot begins in the first end surface and the second locking slot begins in the second end surface. A first locking member is disposed to fit into the first locking slot, and a second locking member is disposed to fit into the second locking slot. The first and second locking members can be inserted into the first and second locking slots, respectively, to lock the locking wedge in the slot.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 28, 2012
    Assignee: General Electric Company
    Inventors: Brock M. Lape, Benjamin A. Mancuso, Michael C. Villani
  • Patent number: 8102093
    Abstract: A polyphase motor, for example for applications for driving pumps or ventilators in the automobile industry, including a stator part excited by electric coils and a rotor exhibiting N pairs of poles that are magnetized radially in alternate senses, the stator part exhibiting wide teeth and narrow teeth extending radially from an annular ring. The wide teeth carry the coil windings and the distance between a wide tooth and a narrow tooth is greater than the width of a narrow tooth.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: January 24, 2012
    Assignee: Moving Magnet Technologies (MMT)
    Inventor: Daniel Prudham
  • Patent number: 8089192
    Abstract: This invention relates to a three-phase square-wave permanent magnet brushless DC motor for solving problems of the existing square-wave permanent Magnet Motor and sine-wave permanent magnet motor. In this invention, the number 2P of magnetic poles on the said rotor core is 8; the slot number Z of the said stator core is 12, accordingly there are 12 teeth, including three big teeth, three medium teeth and six small teeth; the ratio of their mechanical angles is 50° (±5°) for big teeth: 40° (±5°) for medium teeth: 15° (±5°) for small teeth, and the sum of the mechanical angles of one big tooth, one medium tooth and two small teeth must be 120°. Three-phase concentrated windings are respectively wound on the big teeth and the medium teeth, in which there are only two concentrated windings for each phase, thus there are only 6 concentrated windings for the three-phase motor.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 3, 2012
    Assignee: Shenzhen Academy of Aerospace Technology
    Inventors: Tiecai Li, Yamei Qi, Zhaoyong Zhou, Xiang Kong, Weilong Lan, Feipeng Xu
  • Publication number: 20110316368
    Abstract: An electrical machine is provided, comprising a stator (7) and a rotor (8) which can be moved relative to the stator (7). The stator comprises slots (1, 2) for receiving electrical windings (+A, ?A). In operation of the electrical machine, an operating wave of the magnetomotive force differs from a fundamental wave of the magnetic flux. A mechanical barrier for the fundamental wave of the magnetic flux is provided in at least one portion of the stator.
    Type: Application
    Filed: October 30, 2009
    Publication date: December 29, 2011
    Applicant: FEAAM GmbH
    Inventor: Gurakuq Dajaku
  • Patent number: 8022588
    Abstract: It is an object to obtain a highly efficient and low-cost single-phase motor by producing the motor in a form that allows a proper material layout, with securing a magnetic path of a coreback of a stator iron core.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: September 20, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hayato Yoshino, Yoshio Takita, Koji Yabe, Tomoaki Oikawa, Takahiro Tsutsumi
  • Patent number: 8022587
    Abstract: Electric machines which are excited with permanent magnets are to be improved in terms of their smoothness of operation and their loss properties. For this purpose, an electric machine is proposed comprising a first active part (40) on which one electric magnet (41, 42) and at least one permanent magnet (44) are mounted, and a second active part (43) which has a multiplicity of pole teeth (45, 46) and which interacts magnetically with the first active part (40). The pole teeth (45, 46) are spaced apart from one another in a non-uniform fashion in the direction (3) of the movement of the electric machine and/or have different average widths from one another, with the respective width of a tooth being measured in the direction (3) of movement and being averaged in terms of the extent of the tooth in the transverse direction with respect to the direction of travel. The geometry of the tooth causes the harmonics of the magnetic field to be influenced in a selective fashion.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: September 20, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventor: Thomas Hoppe
  • Publication number: 20110210686
    Abstract: An electric machine including: a first part, being a stator or rotor/runner, including a first segment with a first number of mutually spaced poles; a second part, being a rotor/runner or stator, including a second segment with a second number of mutually spaced poles arranged to transduce between electrical and mechanical energy by magnetic interaction with the poles of the first segment, the second segment having substantially the same length as the first segment; and permanent magnets in the poles of the first or second parts, wherein the second number differs from the first number by one to substantially reduce the magnetic interference forces in the direction of motion, wherein gap depths in gaps between the poles of each part are sufficiently deep to substantially attenuate magnetic interactions between a body of each part and the poles of the other part, thereby reducing magnetic interference forces between the first part and the second part, and wherein each part is symmetrical in a direction transver
    Type: Application
    Filed: November 10, 2009
    Publication date: September 1, 2011
    Inventor: Chanty Sengchanh
  • Patent number: 7990012
    Abstract: A locking wedge for a slot of a dynamoelectric machine is provided. The locking wedge has a main body extending in an axial direction, and includes a top and a bottom surface. The bottom surface has a greater surface area than the top surface. A first end surface faces towards an axial-inward direction and a second end surface faces towards an axial-outward direction. A locking slot extends in the axial direction into a portion of the main body, and begins in the second end surface and extends axially inward. A locking member is disposed to fit into the locking slot, and is inserted into the locking slot to lock the locking wedge in the slot.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Brock M. Lape, Benjamin A. Mancuso, Michael C. Villani
  • Patent number: 7969058
    Abstract: Permanent magnet motors with improved torque ripple and methods for designing the same have been provided. The permanent magnet motor can include a stator having a hollow core and defining a plurality of slots; a winding disposed in each of the slots; a rotor rotatably disposed inside the hollow core of the stator; and a plurality of permanent magnets supported by the rotor. Each of the slots has a slot opening, and at least one of the slot openings can be off-center with respect to the respective slot.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: June 28, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Khwaja M. Rahman, Peter J. Savagian, Matthew D. Laba
  • Patent number: 7898139
    Abstract: A magnetic actuator, comprising, an inner ring, an outer ring disposed around the inner ring, a first pair of inner teeth disposed on the inner ring that partially define a gap between the first pair of inner teeth having a first angular dimension, a second pair of inner teeth disposed on the inner ring that partially define a gap between the second pair of inner teeth having a second angular dimension, a first pair of outer teeth disposed on the outer ring that partially define a gap between the first pair of outer teeth having a third angular dimension and a second pair of outer teeth disposed on the outer ring that partially define a gap between the second pair of outer teeth having a fourth angular dimension.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 1, 2011
    Inventors: Mohammad S. Islam, Joel E. Birsching, Tomy Sebastian
  • Patent number: 7893575
    Abstract: The depth from the open end of a rotor slot closest to a magnetic pole of a rotary core to a slot bottom or the bottom of a subslot provided as a coolant ventilation path on a rotor slot bottom is made less than the depth of slots at and after a second slot counted from the magnetic pole side in the direction of internal circumference, and when a shortest distance between the bottoms of the rotor slots opposed to each other through a magnetic pole or a shortest distance between the bottoms of the subslots is assumed to be a magnetic pole width of the slots, a magnetic pole width Wp1 of a slot closest to the magnetic pole side is set to 85% or more of a magnetic pole width Wp2 of a second slot counted from the magnetic pole side in the direction of internal circumference.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masafumi Fujita, Tadashi Tokumasu, Yasuo Kabata, Mikio Kakiuchi, Masanori Arata, Takashi Ueda
  • Patent number: 7859164
    Abstract: A DC motor, has a stator housing accommodating a permanent magnet stator; a rotor, rotatably mounted confronting the stator, the rotor having a shaft, a rotor core fitted to the shaft and having asymmetric laminations, a commutator fitted to the shaft adjacent one end of the rotor core, and windings wound about poles of the rotor core and terminated on the commutator; and brush gear comprising brushes in sliding contact with the commutator for transferring electrical power to the windings, wherein the cogging torque order for the motor is greater than twenty. Preferably, the cogging torque order is 28, 36 or 44.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: December 28, 2010
    Assignee: Johnson Electric S.A.
    Inventors: Ray Qin, Jiyu Liang
  • Publication number: 20100277026
    Abstract: A rotary electric machine comprising a rotor (30A) including a plurality of permanent magnets having magnetic poles and a stator (20A) including a plurality of tooth sections each having a front end portion which faces the rotor, wherein the rotor (30A) has a skew structure having a change section in which boundaries between the magnetic poles change with respect to a rotation axis direction, and the front end portion of each of the plurality of tooth sections of the stator (20A) has an auxiliary slot (24A) which is selectively formed in an extending manner at one portion of the front end portion in the rotation axis direction such that substantially a center of the auxiliary slot in the rotation axis direction is opposed to a center of the change section in the rotation axis direction, and no auxiliary slot is formed at portions located on extensions of the auxiliary slot in the rotation axis direction.
    Type: Application
    Filed: December 1, 2008
    Publication date: November 4, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinichi Yamaguchi, Hisashi Otsuka, Haruyuki Hasegawa
  • Patent number: 7821172
    Abstract: A device includes a stator lamination of a stator for a motor with a first set of stator teeth and a second set of stator teeth, a first set of windings with wire having a first diameter on the first set of stator teeth and a second set of wire windings with wire having a second diameter. The second diameter is greater than the first diameter. The first and seconds sets of stator teeth are divided among at least two phases of the motor. Each phase includes an equal number of stator teeth from the first set of stator teeth and an equal number of stator teeth from the second set of stator teeth.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Seagate Technology LLC
    Inventor: Xu Mo
  • Patent number: 7777388
    Abstract: A distributed coil stator (102) for external rotor electric motors includes a core having a cylindrical surface bounded by a first end surface and a second end surface, wherein a first set of openings (110) aligned in a first circular path (111) extends within the core from the first end surface to the second end surface, a second set of openings (114) aligned in a second circular path (115) positioned concentrically within the first circular path extends within the core from the first end surface to the second end surface, and a third set of openings (118) aligned in a third circular path (119) positioned concentrically within the second circular path extends within the core from the first end surface to the second end surface.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 17, 2010
    Assignee: Hunter Fan Company
    Inventor: Vinay Mehta
  • Patent number: 7732969
    Abstract: A brushless motor according to the present invention is provided with: a tubular stator case; a stator core; and a rotor. The stator core includes a tubular yoke portion and a plurality of split cores. A plurality of dovetail grooves are formed in an inner peripheral surface of the yoke portion; each split core has a coil bobbin which has a mounting hole so as to penetrate in a radial direction, and a split teeth which is mounted into the mounting hole of the coil bobbin. The coil bobbin has a winding portion, and flange portions, and a clearance portion into which a winding starting end of the coil is strayed from the winding portion is formed on the inside of the one of the flange portions by reducing the thickness of the flange portion such that.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: June 8, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Ishizeki, Tohru Yumoto, Hisashi Ishida, Susumu Miyazaki, Kazushi Hamaya
  • Patent number: 7709992
    Abstract: A stator assembly adapted for use in an electric motor. The assembly includes a stator core having an annular rim and a plurality of teeth extending radially inward from the rim. The stator core has an outer diameter, a root tooth diameter and an inner diameter. Each tooth has a root, a neck extending inward from the root, a head opposite the root, and a length measured from its root to its head. The neck has a width. Each adjacent pair of teeth define a slot having an area. The assembly also includes a winding having aluminum and/or copper wrapped around at least three teeth of the stator core. The stator core and winding have four, six or eight magnetic dipoles. The stator core outer diameter is in a range from about 5.1 inches to about 5.9 inches. The stator core inner diameter is less than about 3.0 inches.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: May 4, 2010
    Assignee: Emerson Electric Co.
    Inventors: John H. Hussey, Alan D. Crapo, Thomas M. Bourquin
  • Publication number: 20100026146
    Abstract: An electrical motor includes: a rotor; a stator including a stator core that is formed with a plurality of first slot units and a plurality of second slot units which are alternately disposed with the first slot units, each of the first slot units including at least two first slots, each of the second slot units including at least two second slots, the stator core being further formed with a plurality of first poles each disposed between the first slots of a respective one of the first slot units, and a plurality of second poles each disposed between the second slots of a respective one of the second slot units, the depth of each first slot being deeper than that of each second slot; a first winding that is wound on the first poles; and a second winding that is wound on the second poles.
    Type: Application
    Filed: September 15, 2009
    Publication date: February 4, 2010
    Applicant: ASIA VITAL COMPONENTS CO., LTD.
    Inventors: Jen-Chieh Wu, Te-Min Kuo
  • Patent number: 7646131
    Abstract: According to the invention, an improved copper filling in the slots (4) of a permanently-stimulated synchronous motor (2) may be achieved, whereby such a motor is disclosed, comprising a stator (1), with parallel-edged slots (4), provided with a winding system of flat wires (5), whereby the flat wires (5) each enclose a tooth (3) and are embodied as a tooth coil (6). The flat wires (5) are wound edgewise such that the narrower side of the flat wire (5) faces the tooth (3) and each tooth coil (6) comprises at least two layers of flat wires (5).
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: January 12, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus Georg, Holger Schunk, Albrecht Storath
  • Publication number: 20090315429
    Abstract: The present invention provides a rotating electrical machine including a rotor core that does not produce narrow areas in rotor slots even if circumferential ends of fan-shaped segment cores are displaced radially outwardly and circumferentially during operation. In the present invention, slots near circumferential ends of the fan-shaped segment cores are made larger than slots in circumferential intermediate portions of the segment cores. With such a configuration, even if the circumferential ends of the segment cores are displaced radially outwardly and circumferentially during operation, the circumferential ends of the segment cores forming the large slots do not protrude into the slots formed in the circumferential intermediate portions of axially adjacent segment cores, thereby preventing narrow areas from being produced in the rotor slots.
    Type: Application
    Filed: May 6, 2009
    Publication date: December 24, 2009
    Applicant: HITACHI, LTD.
    Inventors: Yukiyoshi YANAGISAWA, Takeshi KUWAHARA
  • Publication number: 20090289521
    Abstract: It is an object to obtain a highly efficient and low-cost single-phase motor by producing the motor in a form that allows a proper material layout, with securing a magnetic path of a coreback of a stator iron core.
    Type: Application
    Filed: March 30, 2006
    Publication date: November 26, 2009
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hayato Yoshino, Yoshio Takita, Koji Yabe, Tomoaki Oikawa, Takahiro Tsutsumi
  • Publication number: 20090236929
    Abstract: The invention concerns a rotor of an electrical machine, particularly a driving motor for a hermetically enclosed refrigerant compressor with a body (4) comprising a magnetically conductive material, the rotor having a plurality of axially extending slots (5, 6), which are filled with an electrically conductive material. It is endeavoured to achieve a good performance.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 24, 2009
    Applicant: Danfoss Compressors GmbH
    Inventor: Niels Christian Weihrauch