Discharge Devices Having An Electrode Of Particular Material Patents (Class 313/311)
  • Patent number: 8604681
    Abstract: Described herein are improved ion thruster components and ion thrusters made from such components. Further described are methods of making and using the improved ion thruster components and ion thrusters made therefrom. An improved cathode includes an emitter formed from a plurality of vertically aligned carbon nanotubes. An ion thruster can include the improved cathode.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: William Judson Ready, Mitchell L. R. Walker, II
  • Patent number: 8598774
    Abstract: A field emission device includes an insulating substrate, a number of first electrode down-leads, a number of second electrode down-leads, and a number of electron emission units. The first electrode down-leads are set an angle relative to the second electrode down-leads to define a number of cells. Each electron emission unit is located in each cell and includes a first electrode, a second electrode, and a plurality of electron emitters. The second electrode extends surrounding the first electrode. The plurality of electron emitters located on and electrically connected to at least one of the first electrode and the second electrode. A field emission display is also provided.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 3, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8593048
    Abstract: Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 26, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Toshiyuki Morishita
  • Patent number: 8593049
    Abstract: A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 26, 2013
    Assignees: Samsung Electronics Co., Ltd., Korea University Research and Business Foundation
    Inventors: Yoon-chul Son, Yong-chul Kim, Jeong-na Heo, Woo-sung Cho, Byeong-kwon Ju
  • Patent number: 8587188
    Abstract: An infrared radiation emitting element is provided. A carbonized conducting filament is formed from an insulating substrate material. Passing current through the filament produces radiation in the infrared band. The radiation emitted is tuned by altering the physical or chemical characteristics of the filament. A substrate is optionally doped prior to filament formation. Alternatively, or in addition, a post-filament formation doping process is used. The light-emitting element is a durable, low power IR emitter that is operable as a marker.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 19, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: John M. Ingram, Augustus W. Fountain, III, Thomas M. Spudich
  • Patent number: 8581481
    Abstract: A thermionic emission assembly includes a Wehnelt cap that has a cap beam aperture and a cavity within which a cathode is supported. Electrical energy applied to the cathode causes it to reach a sufficiently high temperature to emit a beam of electrons that propagate through the cap beam aperture. An anode having an anode beam aperture is positioned in spatial alignment with the cap beam aperture to receive the electrons. The anode accelerates the electrons and directs them through the anode beam aperture for incidence on a target specimen. A ceramic base forms a combined interface that electrically and thermally separates the Wehnelt cap and the anode. The interface thermally isolates the Wehnelt cap from the anode to allow the cathode to rapidly reach the sufficiently high temperature to emit the beam of electrons.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Physics Technologies, Inc.
    Inventors: Gerald Magera, William Mackie, Larry Southall, Gary Cabe, Cory Fast
  • Patent number: 8575832
    Abstract: The present invention relates to a field emission display, which includes: a base substrate; a plurality of cathode strips, disposed over the base substrate; an insulating layer, disposed over the cathode strips and having a plurality of openings, therewith the openings corresponding to the cathode strips; a plurality of anode strips, disposed over the insulating layer, where the cathode strips and the anode strips are arranged into a matrix and the anode strips individually have at least one impacted surface; and a plurality of subpixel units, individually including: an emissive region having a phosphor layer disposed over the impacted surface; and at least one emissive protrusion, corresponding to the emissive region and disposed in the openings to electrically connect to the cathode strips and protrude out of the openings. Accordingly, the present invention can enhance light utilization efficiency of a field emission display.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Tatung Company
    Inventors: Tzung-Han Yang, Chi-Tsung Lo
  • Patent number: 8569941
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 29, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Patent number: 8557213
    Abstract: A novel carbon nanotube (64) is featured in that it has the highest Raman scattering intensity in the vicinity of 1580 cm?1 in its Raman spectrum. Carbon nanotubes can be grown on and from the catalytic fine particles (63) which consist of ultra-fine particles of cobalt oxide catalyst onto a substrate comprising a conductive substrate (62) and fine particles (63) of catalyst formed on a surface thereof. An electron emission device (60) so configured as to emit electrons by applying a voltage to apical ends (64a) of such carbon nanotubes (64) can be reduced in driving voltage and can achieve a current such as to emit a fluorescent material on the market for low-velocity electron beams. The electron emission device (60) needs no gate and can thus simplify the structure and reduce the cost of a surface light-emitting device for which the element is used.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: October 15, 2013
    Assignees: National Institute for Materials Science, Toppan Printing Co., Ltd.
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hidenori Gamo
  • Patent number: 8552381
    Abstract: An infrared (IR) scene projector device includes a light emitter and a thermal emitter. The light emitter is configured to selectably provide visible light. The thermal emitter includes a vertically aligned carbon nanotube (VACN) array. The VACN array includes a plurality of carbon nanotubes disposed proximate to a thermally conductive substrate, such that a longitudinal axis of the carbon nanotubes extends substantially perpendicular to a surface of the substrate. The thermal emitter absorbs the visible light from the light emitter and converts the visible light from the light emitter into IR radiation.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 8, 2013
    Assignee: The Johns Hopkins University
    Inventors: Raul Fainchtein, David M. Brown, Christopher C. Davis
  • Patent number: 8547007
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: October 1, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ayae Nagaoka, Tadashi Iwamatsu, Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8545599
    Abstract: A thermal management apparatus includes an electrohydrodynamic fluid accelerator in which an emitter electrode and another electrode are energizable to motivate fluid flow. One of the electrodes includes a solid solution formed of a solvent metal having a first performance characteristic and a solute material having a second performance characteristic. The first and second performance characteristics are exhibited substantially independently in the electrode as the solvent metal and solute material remain substantially pure within the solid solution. A method of making an EHD product includes providing an electrode with such a solid solution and positioning the electrode relative to another electrode to motivate fluid flow when energized.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 1, 2013
    Assignee: Tessera, Inc.
    Inventor: Giles Humpston
  • Patent number: 8535109
    Abstract: A method for making an incandescent light source display is disclosed. Electrode pairs connected to the driving circuit are formed on a substrate. The electrode pairs are spaced from each other and located on pixel locations. Each electrode pair includes a first electrode and a second electrode. The electrode pairs are covered with a drawn carbon nanotube film. The drawn carbon nanotube film suspends between the first electrode and the second electrode and has the plurality of carbon nanotubes substantially aligned an X direction from the first electrode to the second electrode in each electrode pair. The drawn carbon nanotube film is then cut along the X direction to form at least one carbon nanotube strip in each pixel location. The drawn carbon nanotube film between any adjacent two pixel locations are broken off. The carbon nanotube strip is shrunk into a carbon nanotube wire.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 17, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8519608
    Abstract: Provided is an electron source which outputs a stable electron beam even when vibration is applied from the external to an apparatus which uses the electron source. The electron source is provided with an insulator (5); two conductive terminals (4) arranged at an interval on the insulator (5); a long filament (3) stretched between the conductive terminals (4); and a needle-like cathode (1) having an electron emitting section attached to the filament (3). The vertical cross-section shape of the filament (3) in the axis direction has a long direction and a short direction, and the maximum length in the long direction is 1.5 times or more but not more than 5 times the maximum length in the short direction.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Yoshinori Terui
  • Patent number: 8502439
    Abstract: An electrode for a discharge lamp, wherein the electrode comprises a pin and a mass arranged on an end of the pin by melting over an electrode coil. The pin consists of tungsten with microstructure-stabilizing additives, wherein the concentration of the microstructure-stabilizing additives is greater than or equal to 30 ppm. The electrode coil consists of pure tungsten, which has additives at most up to a concentration of 20 ppm.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 6, 2013
    Assignee: OSRAM Gesellschaft mit beschrankter Haftung
    Inventor: Markus Stange
  • Patent number: 8487521
    Abstract: An electron emitting element of the present invention includes: an electrode substrate; a thin-film electrode; and an electron acceleration layer sandwiched between the electrode substrate and the thin-film electrode, the electron acceleration layer including (i) conductive fine particles, (ii) insulating fine particles having an average particle diameter greater than an average particle diameter of the conductive fine particles, and (iii) a crystalline electron transport agent. The crystalline electron transport agent is crystallized in the acceleration layer.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8481860
    Abstract: A conductive paste composition is provided. The conductive paste composition includes 20 to 70 weight % of silver nanoparticles having an average particle size of 1 nm to 250 nm based on a total weight of the conductive paste composition, and 0.01 to 2 weight % of silver-decorated carbon nanotubes based on the total weight of the conductive paste composition.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 9, 2013
    Assignee: LS Cable & System, Ltd
    Inventors: Yoon-Jin Kim, Chang-Mo Ko, Ho-Souk Cho
  • Patent number: 8482189
    Abstract: A display device is provided with a Cu alloy film having high adhesiveness to a transparent substrate and a low electrical resistivity. The Cu alloy film for the display device is directly brought into contact with the transparent substrate, and the Cu alloy film has the multilayer structure, which includes a first layer (Y) composed of a Cu alloy containing, in total, 2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb, and Mn, and a second layer (X) which is composed of pure Cu or substantially a Cu alloy having Cu as the main component and has an electrical resistivity lower than that of the first layer (Y). The first layer (Y) is brought into contact with the transparent substrate.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 9, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Goto, Aya Miki, Katsufumi Tomihisa, Mototaka Ochi, Takashi Onishi, Toshihiro Kugimiya
  • Publication number: 20130169142
    Abstract: A device includes an anode, a cathode, and a grid configured to modulate a flow of electrons from the cathode to anode. The grid is made of graphene material which is substantially transparent to the flow of electrons.
    Type: Application
    Filed: September 12, 2012
    Publication date: July 4, 2013
    Applicant: ELWHA LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Lowell L. Wood
  • Publication number: 20130162136
    Abstract: An apparatus for a first electrode and a second electrode. The first and second electrode support an arc that conducts electric current between the first and second electrode. A shape of at least one of the first and second electrode, after an arc is established between the first and second electrode, expand at least one of an arc footprint of the arc on at least one of the first and second electrode and an arc column of the arc between the first and second electrode as the electric current between the first and second electrode increases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 27, 2013
    Inventors: David A. Baldwin, Kevin L. Brown, Carson R.L. Brown
  • Patent number: 8456076
    Abstract: An electron emitting source capable of preventing increase in an inter-terminal resistance and a manufacturing method of the electron emitting source. The electron emitting source comprises an electron emitting chip made of rare-earth hexaboride, and a heater constituted by a carbonaceous member for holding and heating the electron emitting chip, wherein an electrically conductive substance is provided in a gap between the electron emitting chip and the heater.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: June 4, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Toshiyuki Morishita, Yoshinori Terui
  • Patent number: 8436522
    Abstract: A carbon nanotube slurry consists of carbon nanotubes, glass powder, and organic carrier. The field emission device includes an insulative substrate, a cathode conductive layer, and an electron emission layer. The cathode conductive layer is located on a surface of the insulative substrate. The electron emission layer is located on a surface of the cathode conductive layer. The electron emission layer consists of a glass layer and a plurality of carbon nanotubes electrically connected to the cathode conductive layer.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: May 7, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Qi Cai, Xing Zhang, Hai-Yan Hao, Shou-Shan Fan
  • Patent number: 8436332
    Abstract: An electron emission element has an electron emission layer that emits an electron from a surface emission portion, a focusing electrode layer that is film-formed on a surface of the electron emission layer via a first insulation layer and focuses the emitted electron, a gate electrode layer that is film-formed on a surface of the focusing electrode layer via a second insulation layer, an emission concave portion that penetrates the gate electrode layer, the second insulation layer, the focusing electrode layer and the first insulation layer and opens in a concave shape on a surface of the surface emission portion, a carbon layer that is film-formed from a surface of the gate electrode layer over an inner peripheral surface of the emission concave portion, and a partial insulation portion that insulates the focusing electrode layer from the carbon layer.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 7, 2013
    Assignees: Pioneer Corporation, Pioneer Micro Technology Corporation
    Inventor: Masaki Yoshinari
  • Patent number: 8427039
    Abstract: In an optically controlled cold-cathode electron tube, the emitters 1, of nanometer and/or micron size and of elongate shape, have a structure comprising a first material (4) of sp2-bonding carbon type and a metallic second material (3), said first material being in contact with and surrounding said second material at its top and over the entire length of the emitter or at least part of said length starting from its top toward the base (b). The second material has a plasma frequency substantially equal to or greater than the frequency of the optical control wave.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: April 23, 2013
    Assignee: Thales
    Inventors: Pierre Legagneux, Ludovic Hudanski, Jean-Philippe Schnell, Dominique Dieumegard, Pierrick Guiset, Alfredo De Rossi
  • Patent number: 8421323
    Abstract: An external light-shielding layer, a display filter including the external light-shielding layer and a display apparatus including the display filter to enhance brightness, a viewing angle, and a contrast ratio. The external light-shielding layer including: a base substrate including a transparent resin; and wedge-shaped light-shielding patterns spaced apart from each other in a surface of the base substrate at predetermined intervals, and made of a resin including a coloring agent having a concentration of about 0.5% to about 1.5% by weight.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 16, 2013
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Dae Chul Park, Jin Seo, Jae Young Choi, Tae Soon Park, Jin Woo Yeo
  • Patent number: 8421326
    Abstract: An electrode including metal oxides and a plurality of 12CaO.7Al2O3 particles, a method of preparing the electrode, an electronic device including the electrode, and, in particular, an organic light emitting device including the electrode. The electrode has low resistance, high optical transmittance, and a low work function.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Won-Jong Kim, Yong-Tak Kim, Jong-Hyuk Lee, Dae-Ho Yoon, Seok-Gyu Yoon, Hosono Hideo
  • Patent number: 8421327
    Abstract: An emitter includes an electrode, and a number of carbon nanotubes fixed on the electrode. The carbon nanotubes each have a first end and a second end. The first end is electrically connected to the substrate and the second end has a needle-shaped tip. Two second ends of carbon nanotubes have a larger distance therebetween than that of the first ends thereof, which is advantageous for a better screening affection. Moreover, the needle-shaped tip of the second ends of the carbon nanotube has a lower size and higher aspect ratio than the conventional carbon nanotube, which, therefore, is attributed to bear a larger emission current.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: April 16, 2013
    Assignees: Tsingua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Peng Liu, Liang Liu, Shou-Shan Fan
  • Patent number: 8414757
    Abstract: The disclosure relates to processes for the electrochemical modification of electron emitting materials such as carbon nanotubes. The processes improve the oxidation resistance of the electron emitting materials when they are fired in an oxygen-containing atmosphere such as air. The disclosure also relates to the preparation of cathodes or cathode assemblies, for use in a field emission device, wherein are contained an electron field emitter made from such electron emitting material.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 9, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Steven Dale Ittel, Gillian Althea Maria Reynolds, Ming Zheng
  • Publication number: 20130082588
    Abstract: A field emission device includes a cathode and a carbon nanotube (CNT) gate electrode. The CNT gate electrode which is electrically insulated from the cathode includes a CNT layer and a dielectric layer. The CNT layer which has a surface includes a number of micropores. The dielectric layer is coated on the surface of the CNT layer and an inner wall of each of the micropores.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Inventors: PENG LIU, SHOU-SHAN FAN, YANG WEI
  • Patent number: 8405294
    Abstract: A field emission electron source for emitting electrons under applied electric field includes a cold cathode having molecules of an aromatic compound vapor-deposited thereon at a pointed end of said cold cathode.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 26, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Takahiro Matsumoto, Yoichiro Neo
  • Patent number: 8400052
    Abstract: A field emission cathode device includes a substrate, a metal plate attached to the substrate, at least one electron emitter electrical connected with the metal plate, and a filler. The metal plate defines at least one through hole extending through the metal plate. The at least one electron emitter is fixed between the substrate and the metal plate and extends through the at least one through hole. The filler is filled into the at least one through hole to fix the at least one electron emitter.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 19, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Hai-Yan Hao, Shou-Shan Fan
  • Patent number: 8395309
    Abstract: The present disclosure provides an electron emitter. The electron emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks. The present disclosure also provides an electron emission element. The electron emission element comprises a conductive base and a carbon nanotube pipe. The carbon nanotube pipe includes a first end electrically connected with the conductive base and a second end opposite to the first end. The second end defines an opening and includes a plurality of tapered carbon nanotube bundles located around the opening.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8388400
    Abstract: The following method is provided: a method of readily fabricating an electron-emitting device, coated with a low-work function material, having good electron-emitting properties with high reproducibility such that differences in electron-emitting properties between electron-emitting devices are reduced. Before a structure is coated with the low-work function material, a metal oxide layer is formed on the structure.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 5, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naofumi Aoki, Shoji Nishida
  • Patent number: 8384281
    Abstract: A matrix-type cold-cathode electron source device includes: an emitter array (3b) in which a plurality of emitters are arranged, and a gate electrode (5) opposed to the emitter array (3b). The gate electrode (5) includes: an emitter area gate electrode (5c) opposed to the emitter array (3b); a gate address electrode (5a) connecting the emitter area gate electrode (5c) to a gate signal wire (8a); and a high-resistance area (5b) disposed between the gate address electrode (5a) and the emitter area gate electrode (5c).
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: February 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Makoto Yamamoto, Keisuke Koga
  • Patent number: 8344607
    Abstract: An electron-emitting device includes an electroconductive member and a lanthanum boride layer on the electroconductive member and further includes an oxide layer between the electroconductive member and the lanthanum boride layer. The oxide layer can contain a lanthanum element. The lanthanum boride layer can be overlaid with a lanthanum oxide layer.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naofumi Aoki, Shoji Nishida
  • Patent number: 8344606
    Abstract: A field emission device includes a substrate including a groove; a metal electrode disposed on a bottom surface of the groove; and a carbon nanotube (“CNT”) emitter. The CNT emitter includes an intermetallic compound layer disposed on the metal electrode and CNTs disposed on the intermetallic compound layer.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-chul Son, Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Patent number: 8343384
    Abstract: Disclosed herein is a composition for electrodes that enables a firing process in air at a temperature of 600° C. or less and does not cause an increase in absolute resistance and a substantial variation of the resistance even when the composition is repeatedly subjected to the firing process. The composition for electrodes comprises: about 5 to about 95% by weight of aluminum powder, the aluminum powder having a particle size distribution of about 2.0 or less as expressed by the following Equation (1) and having D50 in the range of about 0.1 ?m?D50?about 20 ?m; about 3 to about 60% by weight of an organic binder; and the balance of a solvent: Particle size distribution=(D90?D10)/D50??(1) wherein D10, D50, and D90 represent particle diameters at 10%, 50% and 90% points on an accumulation curve of a particle size distribution when the total weight is 100%. An electrode and a PDP fabricated using the composition are also disclosed.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 1, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Jae Hwi Cho, Kuninori Okamoto, Yong Hyun Kim, Hyun Don Kim
  • Patent number: 8339027
    Abstract: A field emission display includes an insulating substrate, a number of first electrode down-leads, a number of second electrode down-leads, and a number of electron emission units. The first electrode down-leads are set an angle relative to the second electrode down-leads to define a number of cells and a number of intersections. Each electron emission unit is located at one of the plurality of intersections and in at least two adjacent cells. The electron emission unit includes a first electrode, a second electrode, and a plurality of electron emitters. The second electrode extends surrounding the first electrode. The plurality of electron emitters located on and electrically connected to at least one of the first electrode and the second electrode. A field emission display is also provided.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 25, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8339022
    Abstract: A field emission electron source having carbon nanotubes includes a CNT string and a conductive base. The CNT string has an end portion and a broken end portion. The end portion is contacted with and electrically connected to the surface of the conductive base. The CNTs at the broken end portion form a tooth-shape structure, wherein some CNTs protrude and higher than the adjacent CNTs. Each protruded CNT functions as an electron emitter.
    Type: Grant
    Filed: November 27, 2010
    Date of Patent: December 25, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Zhuo Chen, Liang Liu, Shou-Shan Fan
  • Publication number: 20120313504
    Abstract: A film-forming device includes: a shield part placed so as to surround the sides of the target; a rod-shaped magnetic field generation unit for generating a magnetic field, the magnetic field generation unit being placed toward the back surface of the target; and a drive unit for reciprocatingly driving the magnetic field generation unit in a linear manner along a drive direction, which is a direction perpendicular to the length direction of the magnetic field generation unit, in a horizontal plane, which is a plane perpendicular to the front/back direction of the target. When the magnetic field generation unit is located at the end of the range within which it is driven by the drive unit, the distance in the drive direction between the magnetic field generation unit and the projection when the shield part is projected perpendicularly to the horizontal plane is 10 mm or more.
    Type: Application
    Filed: March 14, 2012
    Publication date: December 13, 2012
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Hiroshi SASAKI, Takanori Sonoda
  • Patent number: 8319415
    Abstract: A pixel tube for field emission display includes a sealed container, an anode, a phosphor, and a cathode. The sealed container has a light permeable portion. The anode is located on the light permeable portion. The phosphor layer is located on the anode. The cathode is spaced from the anode and includes a cathode emitter. The cathode emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 27, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8314539
    Abstract: A field electron emitter includes a thin film layer including a carbon nanotube (“CNT”) disposed on a substrate, wherein the thin film layer includes nucleic acid.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 20, 2012
    Assignees: Samsung Electronics Co., Ltd., Korea University Industrial & Academic Collaboration Foundation
    Inventors: Yoon-chul Son, Yong-chul Kim, Jeong-na Heo, Byeong-kwon Ju
  • Patent number: 8294354
    Abstract: The present invention relates to a field emission light source device, which includes: a base substrate; at least one cathode strip, disposed over the base substrate; at least one emissive protrusion, disposed over the cathode strip and electrically connected to the cathode strip; an insulating layer, disposed over the cathode strip and having at least one opening to allow the emissive protrusion to protrude out of the opening; at least one anode strip, disposed over the insulating layer, where the cathode strip and the anode strip are arranged into an m×n matrix and the at least one anode strip individually has an impacted surface corresponding to the emissive protrude; and a phosphor layer disposed over the impacted surface. Accordingly, the present invention can enhance light utilization efficiency of a field emission light source device.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 23, 2012
    Assignee: Tatung Company
    Inventors: Tzung-Han Yang, Chi-Tsung Lo
  • Patent number: 8252165
    Abstract: This invention relates to the electrochemical deposition of carbon nanotubes (“CNTs”) on a substrate using an electrochemical cell. A dispersion of a complex of CNTs and an anionic polymer is neutralized and thereby caused to deposit on the anode plate of the cell.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 28, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Ming Zheng, Lap-Tak Andrew Cheng
  • Patent number: 8253314
    Abstract: An ion source using a field emission device is provided. The field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 28, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Duan-Liang Zhou, Pi-Jin Chen, Zhao-Fu Hu, Cai-Lin Guo, Bing-Chu Du, Shou-Shan Fan
  • Publication number: 20120212153
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 23, 2012
    Applicants: The Regents of the University of California, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Wanli YANG, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Publication number: 20120206033
    Abstract: Plasma uniformity can be improved. An upper electrode 105 for use in a parallel plate type plasma processing apparatus includes a base 105a made of a dielectric material; and a conductive layer 110 formed on at least a part of a surface of the base 105a facing a lower electrode 210 provided in the plasma processing apparatus. Further, the conductive layer 110 having a dense and sparse pattern such that the dense and sparse pattern at an outer portion of the surface of the base 105a facing the lower electrode 210 is denser than at an inner portion thereof.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Shoichiro Matsuyama
  • Patent number: 8242676
    Abstract: A field emission device, a field emission display device, and a method for manufacturing the same are disclosed. The field emission device includes: i) a substrate; ii) an electrode positioned on the substrate; iii) a mask layer positioned on the electrode and including one or more openings; and iv) a plurality of nanostructures positioned on the electrode via the openings and formed to extend radially. The plurality of nanostructures may be applied to emit an electron upon receiving a voltage from the electrode.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: August 14, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Yong-Jin Kim, Jin-Kyoung Yoo, Young-Joon Hong, Gyu-Chul Yi, Chul-Ho Lee
  • Patent number: 8217565
    Abstract: A stable cold field electron emitter is produced by forming a coating on an emitter base material. The coating protects the emitter from the adsorption of residual gases and from the impact of ions, so that the cold field emitter exhibits short term and long term stability at relatively high pressures and reasonable angular electron emission.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 10, 2012
    Assignee: FEI Company
    Inventors: Theodore Carl Tessner, II, Gregory A. Schwind, Lynwood W. Swanson
  • Patent number: 8217366
    Abstract: Provided are a carbon ion generating device and a tumor treatment apparatus using the same. The carbon ion generating device includes a carbon nanostructure, a carbon emitting structure, an ionizing structure, and an accelerator. The carbon emitting structure is configured to induce an emission of carbon atoms from one end of the carbon nanostructure. The ionizing structure is configured to ionize the emitted carbon atoms. The accelerator is configured to accelerate the ionized carbon atoms.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 10, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon-Youn Jung, Nam Soo Myung, Hyun Woo Song, Hyeon-Bong Pyo