Phosphor On Envelope Wall Patents (Class 313/485)
  • Patent number: 11963421
    Abstract: A display device includes a plurality of pixels. At least one of the pixels includes a green light wavelength conversion layer, a color filter layer and a light path. The light path passes through the green light wavelength conversion layer and then passes through the color filter layer. The color filter layer includes a green pigment and a yellow pigment.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: April 16, 2024
    Assignee: InnoLux Corporation
    Inventors: Hsiao-Lang Lin, Tsung-Han Tsai
  • Patent number: 11945987
    Abstract: In one aspect of the present disclosure, there is provided an optical wavelength conversion member including a polycrystalline ceramic sintered body containing, as main components, Al2O3 crystal grains and crystal grains represented by formula X3Al5O12:Ce. In the optical wavelength conversion member 9, atoms of element X are present also in an Al2O3 crystal grain adjacent to the interface between the Al2O3 crystal grain and an X3Al5O12:Ce crystal grain.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 2, 2024
    Assignee: NITERRA CO., LTD.
    Inventors: Shohei Takaku, Yusuke Katsu, Tsuneyuki Ito, Toshiaki Kurahashi, Hideto Yamada
  • Patent number: 11898712
    Abstract: A white light emitting device, a light bar and a light apparatus. A relative spectrum of the white light emitting device is ?(?). A relative spectrum of a black body radiation with a corresponding color temperature is S(?). An area normalization is performed on ?(?) and S(?) to convert an equal energy spectrum ??(?) of the white light emitting device and an equal energy spectrum S?(?) of the black body radiation with the corresponding color temperature. A degree of similarity R of the equal energy spectrum of the white light emitting device and the equal energy spectrum of the black body radiation satisfies the following formula: R = 1 - ? ? ? ? i ? ? n ? ? S ? ? ( ? ) - ? ? ? ( ? ) ? ? ? ? i ? ? n ? S ? ? ( ? ) , when ?i is 380 nm, ?n is 680 nm, R?85%.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 13, 2024
    Assignee: FOSHAN NATIONSTAR OPTOELECTRONICS CO., LTD
    Inventors: Jinhui Zhang, Yikai Yuan, Long Zhao, Chuyi Li, Cheng Li
  • Patent number: 11690914
    Abstract: A method of enhancing penetration of a topical composition of 5-aminolevulinic acid (ALA) into tissue for photodynamic therapy includes topically applying ALA to a treatment area to be treated with photodynamic therapy. The method further includes, after the ALA is applied to the treatment area, covering the treatment area with a low density polyethylene barrier. The treatment area is covered with the low density polyethylene barrier prior to light treatment to minimize transepidermal water loss from the treatment area.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: July 4, 2023
    Assignee: DUSA Pharmaceuticals, Inc.
    Inventors: Scott Lundahl, Michael Guttadauro
  • Patent number: 11654208
    Abstract: A lighting assembly includes a lightbulb, sleeve, motor assembly, a control circuit, power source, first state, and second state. The control circuit is communicatively coupled to the power source, the lightbulb, and the motor assembly. The lightbulb emits ultra violet (“UV”) radiation. The sleeve converts UV radiation to visible light, is circumferentially positioned about the lightbulb, and is rotatably coupled to the lightbulb via the motor assembly. The motor assembly is mechanically coupled to the sleeve, and selectively rotates the sleeve about the lightbulb and thereby positions the lighting assembly in the first state or the second state. The sleeve includes a slit that emits the UV radiation from the lightbulb. In the first state, the lighting assembly emits UV radiation towards a surface. In the second state, the lighting assembly emits visible light towards the surface.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: May 23, 2023
    Inventor: Rajasekhar Rayaprol
  • Patent number: 11641009
    Abstract: A light-emitting device including a solid-state light source that emits light having a peak wavelength in the range of 480 nm or less and a fluorescent film that covers the solid-state light source and includes at least one kind of phosphor, wherein the fluorescent film includes at least one kind of near-infrared phosphor that is excited by light from the solid-state light source, has a peak wavelength in the range exceeding 700 nm, and has an emission spectrum with a full width at half maximum of 100 nm or more in a range including the peak wavelength.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 2, 2023
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, PHOENIX ELECTRIC CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takashi Fukuda, Tetsuya Gouda, Yuta Sakimoto, Naoto Hirosaki, Kohsei Takahashi
  • Patent number: 11456401
    Abstract: A light emitting diode package including a light emitting diode chip, a phosphor layer disposed to cover an upper portion of the light emitting diode chip, the phosphor layer being configured to convert a wavelength of light emitted from the light emitting diode chip, and a color filter layer disposed to cover an upper portion of the phosphor layer, the color filter being configured to block light having a predetermined wavelength range from being emitted through the phosphor layer.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 27, 2022
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Seung Sik Hong, Motonobu Takeya
  • Patent number: 11380823
    Abstract: Provided is a backlight module including a light source, a light guide plate, and a composite color-conversion layer. The light source emits a blue light. The light guide plate is optically coupled to the light source and the blue light transmits through the light guide plate. The composite color-conversion layer is disposed on the light guide plate. The composite color-conversion layer includes at least three different populations of quantum dots. The at least three different populations of quantum dots at least include a plurality of cyan quantum dots or a plurality of yellow quantum dots.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: July 5, 2022
    Assignee: Unique Materials Co., Ltd.
    Inventors: Huan-Wei Tseng, Chun-Wei Chou, Ting-Chia Yang, Yi-Lin Yu
  • Patent number: 11212889
    Abstract: The present disclosure provides methods for generating white light. The methods use a plurality of LED strings to generate light with color points that fall within blue, yellow/green, red, and cyan color ranges, with each LED string being driven with a separately controllable drive current in order to tune the generated light output.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 28, 2021
    Assignee: Ecosense Lighting Inc.
    Inventors: Raghuram L. V. Petluri, Paul Kenneth Pickard
  • Patent number: 11168250
    Abstract: The present disclosure provides methods for generating tunable white light with controllable circadian energy performance. The methods use a plurality of LED strings to generate light with color points that fall within blue, yellow/green, red, and cyan color ranges, with each LED string being driven with a separately controllable drive current in order to tune the generated light output. Different light emitting modes can be selected that utilize different combinations of the plurality of LED strings in order to tune the generated white light. One or more of the LED strings can have ultraviolet or violet LEDs.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 9, 2021
    Assignee: Ecosense Lighting Inc.
    Inventors: Raghuram L. V. Petluri, Paul Kenneth Pickard
  • Patent number: 11134659
    Abstract: The present disclosure proposes an improved apparatus and method for counting of sea lice by providing a stable and controlled light environment which ensures counting of sea lice reliably and independent of weather conditions and an optimized spectral power distribution and intensity of the light for improved observation (detectability) of sea lice with respect to fish skin. An embodiment of the disclosed light system comprises multiple LEDs, at least two LEDs providing a light colour with peaks in the range 490-540 nm (Cyan/Green) respectively 620-660 nm (Red).
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: October 5, 2021
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Cristina Tanase, Cornelis Teunissen
  • Patent number: 11076833
    Abstract: Provided are an ultrasound imaging apparatus and method for displaying an ultrasound image. The ultrasound imaging apparatus includes: a display; and a processor configured to set, from among a plurality of scan lines, a plurality of scan line groups respectively corresponding to a plurality of subframes constituting a first frame, control the display to display the first frame, set, from among the plurality of scan lines, a plurality of scan line groups respectively corresponding to a plurality of subframes constituting a second frame, and control the display to display the second frame subsequently to the first frame. The processor may set the plurality of scan line groups such that a position of a boundary line between adjacent ones of the plurality of subframes in the first frame does not overlap a position of a boundary line between adjacent ones of the plurality of subframes in the second frame.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 3, 2021
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Seok-lai Park, Rae-Eun Kim, Sun-joong Lee
  • Patent number: 11028988
    Abstract: A light source device includes a semiconductor light-emitting device which emits coherent excitation light, and a wavelength conversion element which is spaced from the semiconductor light-emitting device, generates fluorescence by converting the wavelength of the excitation light emitted from semiconductor light-emitting device, and generates scattered light by scattering the excitation light. The wavelength conversion element includes a support member, and a wavelength converter disposed on the support member. The wavelength converter includes a first wavelength converter, and a second wavelength converter which is disposed around the first wavelength converter to surround the first wavelength converter in a top view of the surface of the support member on which the wavelength converter is disposed. The ratio of the intensity of fluorescence to that of scattered light is lower in the second wavelength converter than in the first wavelength converter.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: June 8, 2021
    Assignee: PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD.
    Inventors: Kazuhiko Yamanaka, Hideki Kasugai
  • Patent number: 11024500
    Abstract: A low-pressure discharge lamp having a discharge vessel and a coating structure. The coating structure is formed on an inner side of the discharge vessel. The coating structure has nanoscale phosphate particles and/or nanoscale functional oxide. Alternatively or in addition, the phosphate particles are free or at least approximately free of rare earth metals. The nanoscale phosphate particles range in size from 5 nm to 800 nm.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: June 1, 2021
    Assignee: LED VANCE GMBH
    Inventor: Armin Konrad
  • Patent number: 10920139
    Abstract: A phosphor layer composition, phosphor member, light source device, and projection device are provided that are capable of restraining reflection or scattering at interfaces between phosphor particles and a binder to improve the excitation-light absorption by, and the external quantum efficiency of, the phosphor particles. The present invention, in an aspect thereof, is directed to a phosphor layer composition including: phosphor particles 111 absorbing excitation light and emitting prescribed fluorescence; and a binder 112 composed of a translucent gel containing a metal alkoxide or a mixture of a metal alkoxide and a metal oxide, wherein the phosphor particles 111 are dispersed in the binder 112, and the phosphor particles 111 and the binder 112 differ in refractive index by 0.3 or less.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: February 16, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Shigeru Aomori, Hideomi Yui, Mutsuko Yamamoto, Hidetsugu Matsukiyo
  • Patent number: 10879136
    Abstract: A method for producing an optoelectronic device is disclosed. The method include preforming an inductive excitation of a current by an inductive component of the optoelectronic device such that the optoelectronic device emits electromagnetic radiation, measuring of at least one electro-optical characteristic of the optoelectronic device and applying a converter material to an emission side of the optoelectronic device, wherein a quantity of the converter material is determined from the measurement of the electro-optical characteristic.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: December 29, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Robert Schulz, Christian Leirer, Korbinian Perzlmaier
  • Patent number: 10701776
    Abstract: The present disclosure provides methods for generating tunable white light with controllable circadian energy performance. The methods use a plurality of LED strings to generate light with color points that fall within blue, yellow/green, red, and cyan color ranges, with each LED string being driven with a separately controllable drive current in order to tune the generated light output. Different light emitting modes can be selected that utilize different combinations of the plurality of LED strings in order to tune the generated white light. One or more of the LED strings can have ultraviolet or violet LEDs.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 30, 2020
    Assignee: EcoSense Lighting, Inc.
    Inventors: Raghuram L. V. Petluri, Paul Kenneth Pickard
  • Patent number: 10677399
    Abstract: The present disclosure provides methods for generating white light. The methods use a plurality of LED strings to generate light with color points that fall within blue, yellow/green, red, and cyan color ranges, with each LED string being driven with a separately controllable drive current in order to tune the generated light output.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 9, 2020
    Assignee: ECOSENSE LIGHTING INC.
    Inventors: Raghuram L. V. Petluri, Paul Kenneth Pickard
  • Patent number: 10669479
    Abstract: A light-emitting device 1 includes: a solid-state light-emitting element 10 that radiates a laser beam L; and a wavelength converter 50 including a plurality of types of phosphors which receive the laser beam L and radiate light. The phosphors 50 included in the wavelength converter are substantially composed of a Ce3+-activated phosphor. Then, output light of the light-emitting device 1 has a light component across a wavelength range of at least 420 nm or more and less than 700 nm. The light-emitting device 1 is capable of radiating light with high color rendering properties over a wide wavelength range.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 2, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shozo Oshio, Takeshi Abe
  • Patent number: 10600633
    Abstract: The present design includes a gas discharge lamp having a base, a closed top cylindrical envelope fixedly mounted to the base, the closed top cylindrical envelope comprising an integrally formed partition defining a pair of openings on opposite sides of the partition, and two electrodes positioned proximate the base, each electrode on an opposite side of the partition. Sides of the partition contact the closed top cylindrical envelope and the partition includes a notch formed proximate an upper edge of the partition thereby establishing an exclusive gas passageway between the pair of openings.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: March 24, 2020
    Assignee: Jelight Company, Inc.
    Inventor: Marinko Jelic
  • Patent number: 10529900
    Abstract: A solid state lighting device includes at least one electrically activated solid state light emitter configured to stimulate emissions of first through third lumiphoric materials having peak wavelengths in ranges of from 485 nm to 530 nm, from 575 nm to 595 nm, and from 605 nm to 640 nm, respectively (or subranges thereof defined herein), with the third peak having a full width half maximum value of less than 60 nm. The resulting device generates aggregated emissions having a suitably high color rendering index (e.g., CRI Ra) value (e.g., at least 70), and also having a spectral power distribution with a Melanopic/Photopic ratio within a specified target range as a function of correlated color temperature, thereby providing increased perceived brightness.
    Type: Grant
    Filed: May 5, 2018
    Date of Patent: January 7, 2020
    Assignee: IDEAL Industries Lighting LLC
    Inventors: Fan Zhang, Ryan Gresback, James Ibbetson, Bernd Keller, Antony Paul Van De Ven
  • Patent number: 10438776
    Abstract: An electrode assembly for use in a dielectric barrier discharge plasma source comprises a base metal plate, an enamel layer on a surface of the base metal plate and embedded electrodes embedded in the enamel layer. The electrode assembly may be made by depositing a one or more layers of powdered glass over a surface of the base metal plate, fusing the powdered glass the one or more layers each in a separate heating step for the relevant layer. To form the embedded electrodes, a pattern of electrode material is provided over the powdered glass of the one or more layers after fusing the one or more layers. Subsequently one or more further layers of powdered glass are deposited over the electrodes and the layer(s) below it, and the powdered glass in each of the one or more further layers is fused in a separate heating step.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: October 8, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Marcel Simor, André Schilt
  • Patent number: 10236422
    Abstract: Green emitting phosphors have the empirical composition RE1?wAwMxEy, where RE may be one or more Rare Earth elements (for example, Eu or Gd), A may be one or more elements selected from the group Mg, Ca, Sr, or Ba, M may be one or more elements selected from the group Al, Ga, B, In, Sc, Lu or Y, E may be one or more elements selected from the group S, Se, O, or Te, w is greater than or equal to zero, or greater than or equal to 0.01, or greater than or equal to 0.05, and less than or equal to about 0.8, 2?x?4, and 4?y?7.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: March 19, 2019
    Assignee: EIE MATERIALS, INC.
    Inventors: Robert Nordsell, Evan Thomas, Yong Bok Go, Kristen Baroudi, Jonathan Melman, Yuming Xie
  • Patent number: 10224466
    Abstract: Embodiments of the invention include a semiconductor light emitting device, a first wavelength converting member disposed on a top surface of the semiconductor light emitting device, and a second wavelength converting member disposed on a side surface of the semiconductor light emitting device. The first and second wavelength converting members include different wavelength converting materials.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 5, 2019
    Assignee: Lumileds LLC
    Inventors: Kenneth Vampola, Han Ho Choi
  • Patent number: 10190046
    Abstract: A luminescent material mixture has a first luminescent material and a second luminescent material, wherein, under excitation with blue light, an emission spectrum of the first luminescent material has a relative intensity maximum in a yellowish-green region of the spectrum at a wavelength of greater than or equal to 540 nm and less than or equal to 560 nm and an emission spectrum of the second luminescent material has a relative intensity maximum in an orange-red region of the spectrum at a wavelength of greater than or equal to 600 nm and less than or equal to 620 nm.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 29, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Rebecca Römer, Barbara Huckenbeck, Stefan Lange, Hailing Cui
  • Patent number: 10168464
    Abstract: A backlight unit (lighting device) 12 includes LEDs (light source) 17, a light guide plate 19 including a light entry end surface 19b on at least a part of an outer peripheral end surface and a light output plate surface 19a on a plate surface, and a wavelength conversion sheet (wavelength conversion member) 20 disposed so as to overlap the light output plate surface 19a of the light guide plate 19 and containing a phosphor for wavelength-converting the light from the LEDs 17. Light from the LED 17 enters through the light entry end surface 19b and exits through the light output plate surface 19a. The wavelength conversion sheet 20 includes an increased phosphor portion 27 on at least a part of outer peripheral side portions 20OP thereof and the increased phosphor portion 27 has a phosphor content per unit area that is greater than that in a central portion 20IP.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 1, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masanobu Harada, Keitaro Matsui
  • Patent number: 10158057
    Abstract: Packaged chip-on-board (COB) LED arrays are provided where a color conversion medium is distributed within a glass containment plate, rather than silicone, to reduce the operating temperature of the color conversion medium and avoid damage while increasing light output. A lighting device is provided comprising a chip-on-board (COB) light emitting diode (LED) light source, a light source encapsulant, a distributed color conversion medium, and a glass containment plate. The COB LED light source comprises a thermal heat sink framework and at least one LED and defines a light source encapsulant cavity in which the light source encapsulant is distributed over the LED. The glass containment plate is positioned over the light source encapsulant cavity and contains the distributed color conversion medium. The light source encapsulant is distributed over the LED at a thickness that is sufficient to encapsulate the LED and define encapsulant thermal conduction paths.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Timothy James Orsley, William Richard Trutna, Nicholas Francis Borrelli, Lisa Ann Lamberson, Robert Michael Morena
  • Patent number: 10151868
    Abstract: A backlight module includes a light source, a light guide plate and a light-adjusting member. A light source chromaticity is measured from light generated by the light source. The light guide plate has a light-incident surface and a light-emitting surface. Light generated by the light source enters the light guide plate and emits out from the light-emitting surface. With the light-adjusting member, a first light guide plate chromaticity is measured from the light-emitting surface. There is a first difference value between the first light guide plate chromaticity and the light source chromaticity. Without the light-adjusting member, a second light guide plate chromaticity is measured from the light-emitting surface. There is a second difference value between the second light guide plate chromaticity and the light source chromaticity. The first difference value is different from the second difference value.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 11, 2018
    Assignees: Radiant Opto-Electronics (Suzhou) Co., Ltd., Radiant Opto-Electronics Corporation
    Inventors: Jui-Lin Chen, Chao-Min Su, Jing-Siang Jhang, Hung-Pin Cheng, Wei-Hsiang Chiu, Bo-Lan Fang, Wei Yi, Kuan-Tun Chen, Li-Hui Chen, Wei-Chung Lu
  • Patent number: 10139546
    Abstract: A display device is disclosed. The display device includes a display panel, a light guide plate located in a rear of the display panel, a light assembly located on a side of the light guide plate and providing the light guide plate with light, and a light absorbing portion formed on a back surface or a front surface of the light guide plate and absorbing the light provided by the light assembly in a predetermined wavelength range.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: November 27, 2018
    Assignee: LG ELECTRONICS INC.
    Inventors: Geunhwan Kim, Sujin Sim, Woosuk Lee, Juyoung Joung, Minho Kim
  • Patent number: 10120123
    Abstract: According to one embodiment, a container case accommodating an optical member includes a bottom wall, sidewalls provided to stand along side edges of the bottom wall, and flanges extending from the sidewalls. The container case is formed of a reflective sheet or reflective film.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 6, 2018
    Assignee: Japan Display Inc.
    Inventors: Tetsuro Ochi, Hiroyuki Sakakura
  • Patent number: 10120110
    Abstract: A wavelength conversion sheet includes a phosphor, and one or more barrier films that seal the phosphor. At least one of the barrier films includes a coating layer having an optical function. The coating layer is provided to a surface of the barrier film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 6, 2018
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Osamu Tokinoya, Ikuno Higashi
  • Patent number: 10029116
    Abstract: This application is directed to a method of treating a patient with acne by applying a photodynamic agent to skin having acne lesions, waiting at least 12 hours, and then exposing the skin to which the photodynamic agent has been applied to light that causes an activation reaction.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: July 24, 2018
    Assignee: DUSA PHARMACEUTICALS, INC.
    Inventor: Scott Lundahl
  • Patent number: 9991237
    Abstract: A light emitting device includes a base, a first light emitting element, a second light emitting element, and a sealing member. The first light emitting element has an active layer of a nitride semiconductor and has a first emission peak wavelength in a blue region. The second light emitting element has an active layer of a nitride semiconductor and has a second emission peak wavelength longer than the first emission peak wavelength of the first light emitting element. The sealing member includes a first region and a second region. The first region contains a phosphor to be excited by light from the first light emitting element. The first region is provided on an element mounting surface. A first upper surface of the first light emitting element is located in the first region. The second region does not substantially contain the phosphor and is provided on the first region.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: June 5, 2018
    Assignee: NICHIA CORPORATION
    Inventors: Shimpei Sasaoka, Kazuto Okamoto
  • Patent number: 9980347
    Abstract: The invention relates to a lighting system for lighting a space (R) which lighting system has means (4) for producing space illumination over a large area, and means (5) for producing concentrated local lighting. Furthermore the lighting system has a presence detector (6) for detecting the presence of at least one person (P) in the space (R) and a control device (8) for controlling the means (4) for producing the space illumination and the means (5) for producing the local lighting. To this end the control device (8) is configured to control the space illumination over a large area automatically as a function of the daylight or as a function of the daytime and to control the local lighting automatically as a function of the presence of at least one person (P) in the space (R). Because the space illumination is controlled automatically as a function of the daylight or of the daytime, the illumination can be prevented from being reduced so much that a lighting mood is produced which has a negative effect.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 22, 2018
    Assignee: ZUMTOBEL LIGHTING GMBH
    Inventors: Manfred Petschulat, Sebastian Schubnell
  • Patent number: 9969932
    Abstract: The invention provides a lighting device (1) comprising (a) a light source (10) configured to generate light source light (11), and (b) a light converter (100) configured to convert at least part of the light source light (11) into visible converter light (111), wherein the light converter (100) comprises a matrix (120) containing an organic luminescent material (140) of the benzoxanthene derivative type. The lighting device may further comprise a further luminescent material (130).
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 15, 2018
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Johan Lub, Rifat Ata Mustafa Hikmet, Dirk Veldman
  • Patent number: 9759855
    Abstract: Hybrid nanoparticles and transparent light guides using the hybrid nanoparticles are disclosed. In some examples, a hybrid nanoparticle may include an organic blue-light emitting material, and an inorganic material bonded to the organic blue-light emitting material.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 12, 2017
    Assignee: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Hidekazu Hayama
  • Patent number: 9684483
    Abstract: A device and method of providing a versatile illuminated panel for walls, product displays, and other surfaces is described. Panels are constructed from a variable number of rectangular illuminated tiles, where the tiles mate edge-to-edge so as to create a nearly seamless visual panel effect. Illumination within each tile is uniform to also create a nearly seamless visual panel effect. End-users may create panels of varying sizes and shapes by using different quantities of a standard tile. The software within the invention automatically determines the number and arrangement of tiles within each assembled panel. Each tile comprises a plurality of illuminators, an optical means to distribute light from the illuminators uniformly across the tile, and at least one communication interface. In one embodiment the tiles are linked into a communications tree-structure; and the location of each tile within the tree constitutes its logical address.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: June 20, 2017
    Assignee: Lellan, Inc.
    Inventors: Dean Ekkaia, Frank Halasz, Richard Alfons Wimmer
  • Patent number: 9644817
    Abstract: A light converter, and lights and displays incorporating the light converter are disclosed together with methods of making the light converter. The light converter has a substrate having a first layer of phosphor particles disposed on an area of one surface of the substrate. The first layer has a thickness of about 1 monolayer of phosphor particles, and the phosphor particles in the first layer form a uniform and dense layer. The thickness of the substrate can be between about 25 ?m and about 500 ?m in embodiments intended to be flexible and between about 0.5 mm and 2 mm in embodiments that can be formed into rigid shapes. The screen weight of the phosphor particles is between about 0.5 mg/cm2 and about 40 mg/cm2. The substrate can include a base layer and an adhesive layer.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 9, 2017
    Inventor: Hisham Menkara
  • Patent number: 9620486
    Abstract: A light-emitting diode module for emitting white light includes a first light emitting diode chip for generating radiation in the blue spectral range having a first peak wavelength, a second light emitting diode chip for generating radiation in the blue spectral range having a second peak wavelength, a third light emitting diode chip for generating radiation in the red spectral range having a third peak wavelength, a first and a second phosphors disposed downstream of the first and the second light emitting diode chips, respectively. The first light emitting diode chip with the first phosphor generates a first mixed radiation and the second light emitting diode chip with the second phosphor generates a second mixed radiation. The first phosphor exhibits a first absorption maximum at a wavelength greater than the first peak wavelength. The second phosphor exhibits a second absorption maximum at a wavelength less than the second peak wavelength.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 11, 2017
    Assignee: OSRAM GMBH
    Inventors: Reiner Windisch, Krister Bergenek
  • Patent number: 9620659
    Abstract: A preparation method of a glass film, a photoelectric device and a packaging method thereof, and a display device are provided, and the preparation method of a glass film includes: forming a sacrificial layer on a base substrate; forming a glass frit film on the sacrificial layer; solidifying the glass frit film; and removing the sacrificial layer, so as to obtain a glass film. The method can bring an individual glass film, which is helpful to a narrow-bezel design of a photoelectric device.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 11, 2017
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Dan Wang
  • Patent number: 9580650
    Abstract: A method of manufacturing Ce:YAG polycrystalline phosphor with the formula (Y1-x-mAxCem)3(Al1-yBy)5O12; 0?x?1, 0?y?1, 0?m?0.05; wherein A is one of Lu, Tb, Pr, La and Gd; and wherein B is one of Ga, Ti, Mn, Cr and Zr.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: February 28, 2017
    Inventors: Dun-Hua Cao, Yong-Jun Dong, Yue-Shan Liang
  • Patent number: 9541271
    Abstract: A bulb head structure and an LED bulb comprising the same are provided. The bulb head structure includes a hollow-shaped member which is a hollow cup-shaped structure, and an outer surface of an end is disposed with a lampholder connecting part, an inner insulating member, a substrate, two flexible electrode members which are respectively disposed at side edge and one end of the substrate, and a conduction member. The inner insulating member and the substrate are disposed in the hollow-shaped member, the inner insulating member is adjacent to one end of the hollow-shaped member, and the substrate and the conduction member are respectively disposed at two sides of the inner insulating member. Wherein, one flexible electrode member contacts with the hollow-shaped member and the other flexible electrode member contacts with the conduction member to enable the substrate electrically connecting to the hollow-shaped member and the conduction member respectively.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: January 10, 2017
    Assignee: KUNSHAN NANO NEW MATERIAL TECHNOLOGY CO., LTD
    Inventor: Hung-Tu Lu
  • Patent number: 9416941
    Abstract: A light-extraction apparatus for an optical-film lighting set having a visible-light coating include a transparent sealed body, a wide AOR (0 degree to 90 degrees) optical film for reflecting ultraviolet lights and a visible light layer. The transparent sealed body is formed as a hollow shell body to accommodate an ultraviolet light source. A supporting member coated with the optical film and the visible light layer is constructed to a wall of the shell body or inside the shell body. The visible light layer is consisted of monolayered fluorescent or phosphorescent particles, and the particles are evenly distributed to coat on the interior wall of the shell body or the supporting member inside the shell body in a sparse scattering manner. A fixed area ratio of the coverage of the particles to that of the inter-particle spacing is then provided to the visible light layer for obtaining a higher illumination performance.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 16, 2016
    Inventor: Jenn-Wei Mii
  • Patent number: 9401462
    Abstract: A light emitting device comprising: a base; a light emitting element arranged on a surface of the base; a first resin layer arranged to surround a side portion of the light emitting element and to be spaced apart from the side portion; and a second resin layer arranged on the surface of the base, the second resin layer being present at least on a top of the light emitting element, on a top of the first resin layer, and in an area between the light emitting element and the first resin layer, wherein the first resin layer comprises a light transmissive resin and a first fluorescent material, wherein the second resin layer comprises a light transmissive resin and a second fluorescent material, and wherein the second fluorescent material exhibits higher heat resistance than that of the first fluorescent material.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: July 26, 2016
    Assignee: NICHIA CORPORATION
    Inventor: Yuji Akazawa
  • Patent number: 9399731
    Abstract: A blue phosphor having an emission peak wavelength different from that of conventional blue phosphors, a method for producing the same, and a high-intensity luminescent device using the phosphor are provided. The phosphor of the present invention is represented by a general formula MeaRebAlcSidOeNf (Me may contain one or more elements selected from Mg, Ca, Sc, Y, and La as second elements, provided that Sr or Ba is contained as an essential first element, and Re may contain one or more elements selected from Mn, Ce, Tb, Yb, and Sm as second elements, provided that Eu is contained as an essential first element), where the composition ratio represented by a, b, c, d, e, and f has the following relations: a+b=1, 0.005<b<0.25, 1.60<c<2.60, 2.50<d<4.05, 3.05<e<5.00, and 2.75<f<4.40.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: July 26, 2016
    Assignee: DENKA COMPANY LIMITED
    Inventors: Go Takeda, Ryo Yoshimatsu, Naoto Hirosaki
  • Patent number: 9334442
    Abstract: The invention provides a a luminescent material comprising particles of UV-luminescent material having a coating, wherein the coating (a “multi-layer coating”) comprises a first coating layer and a second coating layer, wherein the first coating layer is between the luminescent material and the second coating layer, and wherein in a specific embodiment the second coating layer comprises an alkaline earth oxide, especially MgO. Further, the invention provides a lighting unit comprising such luminescent material.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 10, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Georg Greuel, Thomas Juestel, Jagoda Magdalena Kuc
  • Patent number: 9312435
    Abstract: An optoelectronic semiconductor device includes a first light source that emits green, white or white-green light and includes a semiconductor chip that emits in the blue spectral range, and a first conversion element attached directly to the semiconductor chip, a second light source that emits red light, having a semiconductor chip, that emits in a blue spectral range, and having a second conversion element attached directly to the semiconductor chip, and/or having a semiconductor chip that emits in a red spectral range, a third light source that emits blue light and has a semiconductor chip emitting in the blue spectral range, and a filler body having a matrix material into which a conversion agent is embedded, wherein the filler body is disposed downstream of the light sources collectively.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 12, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Gärtner, Ales Markytan, Albert Schneider, Stephan Kaiser
  • Patent number: 9313858
    Abstract: A phosphor-enhanced light source and a luminaire is provided comprising a light exit window, a light emitter, a luminescent layer. The light emitter emits light of a first color distribution towards the light exit window. The luminescent layer comprises first second areas, forming a pattern. A first characteristic of the first area is similar to a second characteristic of the second area to obtain a first light emission by the first area into the ambient and a second light emission by the second area into the ambient. The respective light emissions are experienced as similar by the viewer if the light emitter is in operation. A first reflection characteristic of the first area is different from a second reflection characteristic of the second area to obtain a first ambient light reflection by the first area that is different from a second ambient light reflection by the second area.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 12, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ties Van Bommel, Rifat Ata Mustafa Hikmet
  • Patent number: 9312451
    Abstract: The efficiency and color contrast of a lighting device may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A double-notch reflective filter may pass desired wavelengths such as red and green, while returning or reflecting less desired wavelengths (blue and yellow) away from an optical exit back toward wavelength shifting material and re-emitted as light of more desirable wavelengths.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 12, 2016
    Assignee: EXPRESS IMAGING SYSTEMS, LLC
    Inventors: William G. Reed, John O. Renn
  • Patent number: 9279549
    Abstract: A light-emitting module includes a light-emitting element, a first wavelength converter and a second wavelength converter. The first wavelength converter is located in an optical pathway of emitted light, and converts a portion of the emitted light to light in a first visible wavelength band. The second wavelength converter is located in the optical pathway on an opposite side of the first wavelength converter relative to the light-emitting element, and converts at least a portion of light passing unconverted through the first wavelength converter to light in a second visible wavelength band, differing from the first visible wavelength band. The light-emitting module also includes a light-absorbing substance, absorbing light in at least a wavelength band from 570 nm to 590 nm, which is present in the optical pathway between the light-emitting element and the second wavelength converter, the second wavelength converter not containing the light-absorbing substance.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 8, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Kenji Sugiura