With Extraction Electrode Patents (Class 315/111.31)
  • Patent number: 8324591
    Abstract: A method for generating a pulsed flux of energetic particles comprises the following steps: —initiating an ion plasma at a first electrode (111) in a vacuum chamber (110) and allowing said plasma to develop towards a second electrode (112) in said vacuum chamber, —at a time at which said ion plasma is in a transitional state with a space distribution of ions or electrons at a distance from said second electrode, applying between said electrodes a short high voltage pulse so as to accelerate said distributed ions or electrons towards said second electrode, whereby a high-energy flux of charged particles is generated while overcoming the space charge current limit of a conventional vacuum diode, and —generating said energetic particles at said second electrode (112). A particle source is also disclosed. Application in particular to ultra-short pulse neutron generation.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 4, 2012
    Assignee: Sage Innovations Inc.
    Inventor: Peter Choi
  • Patent number: 8299714
    Abstract: The microwave plasma generator is applied to transmission of electromagnetic field into plasma. The invention consists of the fact that the guiding part (3) has two outputs (4, 4?) between which an input (2) of microwave is placed generated from the microwave power source (5). The input (2) is in the distance (A) from the separation (10) of the first output (4) and in the distance (B) from the separation (10?) of the second output (4?) while the absolute value of the difference of the distances A-B or B-A equals ?/2 where ? is the wave length of the microwave and distances A and B correspond to the trajectory of microwave propagation. A microwave plasma generator including microwave power source (magnetron) (5) is connected to the input (2) of the guiding part (3) of the applicator (1).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 30, 2012
    Inventor: Petr Spatenka
  • Patent number: 8288741
    Abstract: A method for treating a workpiece. The method includes directing a first ion beam to a first region of a workpiece, wherein the first ion beam has a first ion angular profile of first ions extracted through an aperture of an extraction plate. The method also includes directing a second ion beam to the first region of the workpiece, wherein the second ion beam has a second ion angular profile different than the first ion profile of second ions extracted through the aperture of the extraction plate.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 16, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Timothy J. Miller, Ludovic Godet
  • Patent number: 8263943
    Abstract: Provided is an ion beam device provided with a gas electric field ionization ion source which can prevent an emitter tip from vibrating in a non-contact manner. The gas electric field ionization ion source is comprised of an emitter tip (21) for generating ions; an emitter base mount (64) for supporting the emitter tip; an ionizing chamber which has an extraction electrode (24) opposed to the emitter tip and which is configured so as to surround the emitter tip (21); and a gas supply tube (25) for supplying gas to the vicinity of the emitter tip. The emitter base mount and a vacuum container magnetically interact with each other.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 11, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Shinichi Matsubara, Norihide Saho, Noriaki Arai, Tohru Ishitani
  • Patent number: 8217579
    Abstract: The present invention provides a device and a method for controlling a DC bias of a RF discharge system. Said device comprises a DC bias detection module (302), a mode selection module (301), a DC bias controlling module (303) and a RF power providing module (304). The mode selection module (301) receives a parameter and a type of the parameter. If the type of the parameter is representative of voltage, the DC bias controlling module (303) calculates a power value according to the voltage-related representative parameter and the detected DC bias value, and the RF power providing module (304) provides power according to the calculated power value. If the type of the parameter is representative of power, the RF power providing module (304) provides power according to the power-related representative parameter.
    Type: Grant
    Filed: February 3, 2008
    Date of Patent: July 10, 2012
    Assignee: Beijing NMC Co. Ltd.
    Inventor: Yi Zhao
  • Patent number: 8153993
    Abstract: The present invention relates to a front plate for an ion source that is suitable for an ion implanter. The front plate according to the invention comprises obverse and reverse sides, an exit aperture for allowing egress of ions from the ion source that extends substantially straight through the front plate between the obverse and reverse sides, and a slot penetrating through the front plate from obverse side to reverse side at a slant for at least part of its depth, the slot extending from a side of the front plate to join the exit aperture. The slot is slanted to occlude line of sight into the ion source when viewed from in front, yet provides an expansion gap.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: April 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Richard D. Goldberg, Christopher Burgess
  • Patent number: 8110992
    Abstract: A plasma power supply system for producing electrical power in the range between 1 kW and 100 kW for a plasma processing system and supplying the power to a plasma chamber through a power line connection, the plasma power supply system includes a power converter, a monitoring section, an arc diverter, a control section with an arc diverter control section and an arc detection section, and an input device wherein the input device is connected to the arc diverter.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 7, 2012
    Assignee: HUETTINGER Elektronik GmbH + Co. KG
    Inventor: Moritz Nitschke
  • Patent number: 8092750
    Abstract: A plasma system for generating a plasma is generated. The plasma system includes a tube, a positive electrode and a negative electrode. The tube has a plasma jet opening, a first end surface and a second end surface. The plasma jet opening penetrates the wall of the tube. The plasma passes through the plasma jet opening and is emitted to the outside of the tube. The positive electrode has a side surface facing and adjacent to the tube. The negative electrode is separated from the positive electrode by a first predetermined distance. The negative electrode has a negative electrode side surface facing and adjacent to the tube. The first positive electrode and the first negative electrode are disposed between the first end surface and the second end surface, and a portion of the plasma jet opening is disposed between the positive electrode and the negative electrode.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: January 10, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Hung Liu, Chen-Der Tsai, Chun-Hsien Su, Wen-Tung Hsu, Jen-Hui Tsai, Chun Huang
  • Patent number: 8089052
    Abstract: An ion implanter system including an ion source for use in creating a stream or beam of ions. The ion source has an ion source chamber housing that at least partially bounds an ionization region for creating a high density concentration of ions within the chamber housing. An ion extraction aperture of desired characteristics covers an ionization region of the chamber. In one embodiment, a movable ion extraction aperture plate is moved with respect to the housing for modifying an ion beam profile. One embodiment includes an aperture plate having at least elongated apertures and is moved between at least first and second positions that define different ion beam profiles. A drive or actuator coupled to the aperture plate moves the aperture plate between the first and second positions. An alternate embodiment has two moving plate portions that bound an adjustable aperture.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: January 3, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Daniel Tieger, William DiVergilio, Edward Eisner, Michael Graf
  • Patent number: 8063337
    Abstract: An apparatus for use in mass spectrometry comprising an injector body, an injection tube coupled to the injector body, and a shielding assembly disposed between the injector body and the injection tube. The shielding apparatus is suitable for shielding the injector body from heat generated by a plasma source.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 22, 2011
    Assignee: Elemental Scientific, Inc.
    Inventor: Daniel R. Wiederin
  • Publication number: 20110068691
    Abstract: A method for generating a plasma beam and a plasma source for carrying out the method, where the plasma beam is extracted from a plasma generated by electric and magnetic fields by means of a radiofrequency voltage being applied to an extraction electrode and an RF electrode device having an excitation electrode having an excitation area, where a plasma space is arranged between extraction electrode and excitation area and the plasma, relative to the extraction electrode, on average over time, is at a higher potential which accelerates positive plasma ions, and the plasma and the extracted plasma beam are influenced by a magnetic field, it is provided that at least one magnet north pole and one magnetic south pole are used for generating the magnetic field, which in each case are arranged on a side facing away from the plasma behind the excitation electrode and are directed into the interior of the plasma space, such that a curved magnetic field projecting into the interior of the plasma space is formed, and
    Type: Application
    Filed: April 22, 2010
    Publication date: March 24, 2011
    Applicant: LEYBOLD OPTICS GMBH
    Inventors: Michael SCHERER, Jurgen PISTNER
  • Patent number: 7898183
    Abstract: A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: March 1, 2011
    Assignee: Zond, Inc.
    Inventors: Roman Chistyakov, Bassam Hanna Abraham
  • Patent number: 7883601
    Abstract: An apparatus for controlling a plasma etching process includes plasma control structure that can vary a size of a plasma flow passage, vary a speed of plasma flowing through the plasma flow passage, vary plasma concentration flowing through the plasma flow passage, or a combination thereof.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Ming Chang, Chi-Lun Lu
  • Patent number: 7875867
    Abstract: An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: January 25, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Noah Hershkowitz, Benjamin Longmier, Scott Baalrud
  • Patent number: 7820981
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases (F or Cl), and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: October 26, 2010
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull
  • Patent number: 7812542
    Abstract: The object of an arrangement and a method for generating extreme ultraviolet radiation by an electrically operated gas discharge is to improve the adjustment of the layer thickness and, in particular, to prevent an uncontrolled accumulation of the metal layer to be applied to the rotary electrodes during pauses in the pulse operation for generating radiation when, e.g., liquid flows through these rotary electrodes for efficient cooling. In this connection, the rotating speed of the rotary electrodes can be increased in particular until there is always a freshly coated surface region of the electrodes in the discharge area at repetition frequencies of several kilohertz. An edge area to be coated on at least one electrode has at least one receiving area which extends in a closed circumference along the electrode edge on the electrode surface and which is formed so as to be wetting for the molten metal.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: October 12, 2010
    Assignee: XTREME technologies Gmbh
    Inventors: Guido Hergenhan, Christian Ziener, Mike Moeritz
  • Patent number: 7804073
    Abstract: An emitter of a Ga liquid metal ion source is constituted to include W12 of a base material and Ga9 of an ion source element covering a surface as construction materials. By making back-sputtered particles become elements (W and Ga) of the Ga liquid metal ion sour source, if back-sputtered particles attach to the Ga liquid metal ion source, contamination which may change physical characteristics of Ga9 does not occur. A W aperture is used as a beam limiting (GUN) aperture to place Ga of approx. 25 mg (of melting point of 30° C.) on a surface of a portion included in a beam emission region (Ga store). When emitting ions to the beam limiting (GUN) aperture, Ga in the emission region melts and diffuses on a surface of the beam emission region of the W aperture.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: September 28, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Kaga, Yuichi Madokoro, Shigeru Izawa, Tohru Ishitani, Kaoru Umemura
  • Patent number: 7804250
    Abstract: An apparatus and method to generate plasma which can be applied to semiconductor processing. The apparatus includes a chamber having a plasma generating space defined therein, a lower electrode positioned within the chamber, an upper electrode facing the lower electrode and disposed within the chamber to constitute a first plasma generating source, a second plasma generating source positioned at a higher location than that of a lower surface of the upper electrode and disposed at an outer circumference of the upper electrode, and a power supply to supply power to the first and second plasma generating sources.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Andrey Ushakov, Yuri Tolmachev, Vladimir Volynets, Won Ceak Pak, Vasily Pashkovskiy, Sung Chang Park, Yung Hee Lee
  • Patent number: 7795817
    Abstract: A plasma power supply system for producing electrical power in the range between 1 kW and 100 kW for a plasma processing system and supplying the power to a plasma chamber through a power line connection, the plasma power supply system includes a power converter, a monitoring section, an arc diverter, a control section with an arc diverter control section and an arc detection section, and an input device wherein the input device is connected to the arc diverter.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 14, 2010
    Assignee: HUETTINGER Elektronik GmbH + Co. KG
    Inventor: Moritz Nitschke
  • Patent number: 7718978
    Abstract: An ion source is provided that can generate an ion beam in which the width is wide, the beam current is large, and the uniformity of the beam current distribution in the width direction is high, and that can prolong the lifetime of a cathode. The ion source 2a has: a plasma generating chamber 6 having an ion extraction port 8 extending in the X direction; a magnet 14 which generates a magnetic field 16 extending along the X direction, in the plasma generating chamber 6; indirectly-heated cathodes 20 which are placed respectively on the both sides of the plasma generating chamber 6 in the X direction, and which are used for generating a plasma i0 in the chamber 6, and increasing or decreasing the density of the whole of the plasma 10; and plural filament cathodes 32 which are juxtaposed in the X direction in the plasma generating chamber 6, and which are used for generating the plasma i0 in the chamber 6, and controlling the density distribution of the plasma 10.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Nissin Ion Equipment Co., Ltd.
    Inventor: Takatoshi Yamashita
  • Patent number: 7667197
    Abstract: The present invention relates to a mass analyzing apparatus, comprising a first metal electrode plate, a second metal electrode plate, an RF power supply, a reactant gas and a mass spectrometry. The second metal electrode plate is grounded. There is a gap between the first metal electrode plate and the second metal electrode plate. The RF power supply is electrically connected to the first metal electrode plate. Electric discharge is caused between the first metal electrode plate and the second metal electrode plate, so that the reactant gas becomes dissociation plasma. The dissociation plasma reacts with a gas analyte from a sample and then enters the mass spectrometry for a mass analysis. In addition, since the dissociation plasma is generated under low temperature and atmospheric pressure, the mass analyzing apparatus of the present invention is applicable for biological samples that need to be analyzed at a low temperature.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 23, 2010
    Assignee: National Sun Yat-Sen University
    Inventors: Che-Hsin Lin, Jen-Taie Shiea, Wei-Jen Hsu, Liang-Tsuen Chen
  • Patent number: 7667209
    Abstract: It is an object of the present invention to provide a focused ion beam apparatus capable of prolonging a service life of an aperture, preventing contaminants from increasing when a column valve is closed, and being quickly restarted. A high-voltage power supply controller lowers an extraction voltage applied to an extraction electrode or lowers a control voltage applied to a control electrode to set an emission to 0 ?A when a column valve is closed. The high-voltage power supply controller returns the extraction voltage applied to the extraction electrode to an original extraction voltage or returns the control voltage applied to the control electrode to an original control voltage when a column valve is opened.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: February 23, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Hiroyasu Kaga
  • Patent number: 7663319
    Abstract: A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.
    Type: Grant
    Filed: April 22, 2007
    Date of Patent: February 16, 2010
    Assignee: Zond, Inc.
    Inventors: Roman Chistyakov, Bassam Hanna Abraham
  • Patent number: 7629589
    Abstract: An apparatus and/or method for controlling an ion beam may be provided, and/or a method for preparing an extraction electrode for the same may be provided. In the apparatus, a plurality of extraction electrodes may be disposed in a path of an ion beam. At least one extraction electrode may include a plurality of sub-grids.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: December 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Wook Hwang, Do-Haing Lee, Chul-Ho Shin, Jong-Woo Sun
  • Patent number: 7629590
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: December 8, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull
  • Patent number: 7622721
    Abstract: A focused ion source based on a Hall thruster with closed loop electron drift and a narrow acceleration zone is disclosed. The ion source of the invention has an ion focusing system consisting of two parts. The first part is a ballistic focusing system in which the aperture through which the beam exits the discharge channel is tilted. The second is a magnetic focusing system which focuses the ion beam exiting the discharge channel by canceling a divergent magnetic field present at the aperture through which the beam exits the discharge channel. The ion source of the invention also has an in-line hollow cathode capable of forming a self-sustaining discharge. The invention further reduces substrate contamination, while increasing the processing rate. Further the configuration disclosed allows the ion source to operate at lower operational gas pressures.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: November 24, 2009
    Inventors: Michael Gutkin, Alexander Bizyukov, Vladimir Sleptsov, Ivan Bizyukov, Konstantin Sereda
  • Patent number: 7598500
    Abstract: An ion source is capable of generating and/or emitting an ion beam which may be used to deposit a layer on a substrate or to perform other functions. In certain example embodiments, techniques for reducing the costs associated with producing ion sources and/or elements thereof are provided. Such techniques may include, for example, forming the inner and/or outer cathode(s) from 1018 mild steel and/or segmented pieces. Such techniques also or instead include, for example, forming the ion source body from a single steel U-channel, or from segmented pieces making up the same. These techniques may be used alone or in various combinations.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 6, 2009
    Assignee: Guardian Industries Corp.
    Inventors: Nestor P. Murphy, David E. Rock, Hugh A. Walton, Maximo Frati
  • Patent number: 7595594
    Abstract: The present invention is directed to an arrangement for switching high electric currents by way of a gas discharge at high voltages or for generating gas discharge plasma emitting EUV radiation. It is the object of the invention to find a novel possibility for generating a hollow cathode plasma that permits a longer life of the cathodes of short wavelength-emitting gas discharge radiation sources and pseudospark switches, also in high-power operation. This object is met in that the metal wall between the hollow cathode space and the discharge space has a thickness on the order of the centimeter range so that the openings of the metal wall change into relatively long channels and in that substantially radially extending cooling channels are introduced in the metal wall to reduce the ion erosion of the metal wall of the hollow cathode through efficient cooling.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 29, 2009
    Assignee: XTREME technologies GmbH
    Inventors: Vladimir Korobochko, Alexander Keller, Juergen Kleinschmidt
  • Patent number: 7569837
    Abstract: It is a technical challenge to provide a small-sized ion source excellent in operability.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: August 4, 2009
    Assignee: Kyoto Institute of Technology
    Inventors: Nishino Shigehiro, Ono Ryoichi
  • Patent number: 7564042
    Abstract: An ion beam apparatus includes a plasma chamber with a grid assembly installed at one end of the plasma chamber and a plasma sheath controller disposed between the plasma chamber and the grid assembly. The grid assembly includes first ion extraction apertures. The plasma sheath controller includes second ion extraction apertures smaller than the first ion extraction apertures. When the plasma sheath controller is used in this configuration, the surface of the plasma takes on a more planar configuration adjacent the controller so that ions, extracted from the plasma in a perpendicular direction to the plasma surface, pass cleanly through the apertures of the grid assembly rather than collide with the sidewalls of the grid assembly apertures. A semiconductor manufacturing apparatus and method for forming an ion beam are also provided.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: July 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do-Haing Lee, Sung-Wook Hwang, Chul-Ho Shin
  • Patent number: 7498592
    Abstract: An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: March 3, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Noah Hershkowitz, Benjamin Longmier, Scott Baalrud
  • Patent number: 7486758
    Abstract: A novel arrangement that combines in a single compact embodiment a plasma flow switch source of ultrahigh speed plasma and an electromagnetically-imploded cylindrical shell. The shell, known as a liner, forms the wall of a cavity that receives and stagnates the plasma flow. The plasma and the liner are connected electrically in series so that a single multi-megampere current serves both elements and operates from the same power source and switch. The operation is timed so that the plasma is injected into the cavity once the liner has attained sufficient implosion speed. The liner then continues to implode, reducing the cavity volume and compressing the plasma further to very high temperatures and densities, thereby creating a compact, intense pulsed neutron source generated by thermonuclear reactions in the compressed plasma. Such a neutron source has application for neutralizing bio/chemical warfare agents, radiography, and material processing.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: February 3, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Peter J. Turchi
  • Patent number: 7476849
    Abstract: An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: January 13, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Ludovic Godet, Vassilis Panayotis Vourloumis, Vikram Singh, Ziwei Fang
  • Patent number: 7476868
    Abstract: An ion generator of an ion implanter, the ion generator includes: an arc chamber provided with a slit for ion extraction and forming an equipotential surface with a first voltage; a filament installed inside of the arc chamber, heated to a predetermined temperature and generating electrons; magnetic field devices provided outside of the arc chamber and supplied with a current from a current source and generating a magnetic field in the arc chamber; a gas discharge device injecting a predetermined gas into the arc chamber; and an electrode positioned opposite to the slit and supplied with a second voltage having a high voltage than the first voltage from a voltage source and generating a magnetic field in the arc chamber.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: January 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong Gu Kim, Jai Kwang Shin, Jae Joon Oh
  • Patent number: 7453059
    Abstract: A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: November 18, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Ziwei Fang, Ludovic Godet, Vikram Singh, Vassilis Panayotis Vourloumis, Bernard G. Lindsay
  • Patent number: 7420181
    Abstract: An emitter of a Ga liquid metal ion source is constituted to include W12 of a base material and Ga9 of an ion source element covering a surface as construction materials. By making back-sputtered particles become elements (W and Ga) of the Ga liquid metal ion sour source, if back-sputtered particles attach to the Ga liquid metal ion source, contamination which may change physical characteristics of Ga9 does not occur. A W aperture is used as a beam limiting (GUN) aperture to place Ga of approx. 25 mg (of melting point of 30° C.) on a surface of a portion included in a beam emission region (Ga store). When emitting ions to the beam limiting (GUN) aperture, Ga in the emission region melts and diffuses on a surface of the beam emission region of the W aperture.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: September 2, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Kaga, Yuichi Madokoro, Shigeru Izawa, Tohru Ishitani, Kaoru Umemura
  • Patent number: 7405415
    Abstract: An ion source (1) to be used in optical thin film deposition by IAD process includes a discharge chamber (10), a gas source, an actuator (11), a grid assembly (20) and an outer shell (30). The grid assembly includes a screen grid (21), an accelerator grid (22) and a decelerator grid (23). The screen grid is kept at anode potential and is disposed near the ions. The accelerator grid is kept at cathode potential and is spaced from the screen grid. The decelerator grid is equal to the ground and is disposed beyond the accelerator grid. Each grid has a curved central portion (24) defining a plurality of apertures aligned with those of the other two grids to form extraction channels for an ion beam (40).
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 29, 2008
    Assignee: Asia Optical Co., Inc.
    Inventor: Chang Chen E Shang
  • Patent number: 7372059
    Abstract: Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 13, 2008
    Assignee: The University of Washington
    Inventors: Uri Shumlak, Raymond Golingo, Brian A. Nelson
  • Patent number: 7342361
    Abstract: A plasma source is described. The source includes a reactive impedance element formed from a plurality of electrodes. By providing such a plurality of electrodes and powering adjacent electrodes out of phase with one another, it is possible to improve the characteristics of the plasma generated.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: March 11, 2008
    Assignee: Dublin City University
    Inventor: Albert Rogers Ellingboe
  • Patent number: 7321198
    Abstract: An ion source, comprising: a discharge chamber, in which is formed an opening; a coil, provided outside said discharge chamber, for generating plasma within said discharge chamber; an extraction electrode, which extracts ions in said plasma generated in said discharge chamber from said opening and generates an ion beam; a power supply device, which supplies power to said coil; and a control device, which can repeatedly halt output power output from said power supply device over prescribed intervals, while maintaining a value of said output power at a value, set in advance, which renders radial direction distribution of ion beam intensity of said ion beam uniform.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: January 22, 2008
    Assignee: TDK Corporation
    Inventors: Naoki Kubota, Akihiro Horita
  • Patent number: 7279845
    Abstract: A method and apparatus for processing a target substance by using atmospheric-pressure plasma produced by a composite waveform generated by superimposing a high-frequency sine wave and a high-frequency square wave at the same or substantially the same frequency and at the same or substantially the same phase are provided.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 9, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koji Yamaguchi, Toshiji Nishiguchi
  • Patent number: 7244475
    Abstract: A frequency control circuit (45) controls an oscillation frequency of a second high frequency power source 51 based on a phase difference between a voltage component and a current component measured by a phase difference sensor (41) and an input impedance to an impedance matching device (34) measured by an impedance sensor (42). An amplitude control circuit (44) controls a level of a high frequency electricity output by the second high frequency power source (51) based on an electricity (effective electricity) which is measured by a power sensor (40) and is to be supplied to the impedance matching device (34).
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 17, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Tsutomu Higashiura
  • Patent number: 7235945
    Abstract: A device comprising a massfree energy receiver and means to convert massfree energy into ordinary electricity or mechanical work, including a pulsed plasma reactor driving an inertially damped drag motor.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 26, 2007
    Inventors: Paulo N. Correa, Alexandra N. Correa
  • Patent number: 7204921
    Abstract: A vacuum apparatus which can easily regenerate plasma is provided. A matching box used in the vacuum apparatus can vary the impedance thereof by varying the magnitudes of the inductance of variable inductance elements. Controlling the magnitude of direct current makes it possible to control the magnitudes of inductance of the variable inductance elements so that it is possible to carry out matching operation at high speed.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: April 17, 2007
    Assignee: ULVAC Inc.
    Inventors: Taro Yajima, Minoru Akaishi, Yoshikuni Horishita
  • Patent number: 7196337
    Abstract: This invention relates to an apparatus for processing particles. The apparatus comprises a particle source having an exist aperture; an extraction electrode located at the exist aperture; an acceleration electrode adjacent to the extraction electrode; a processing compartment adjacent to the acceleration electrode; and a deceleration electrode located adjacent to the processing compartment. The invention also relates to methods of processing particles and to particles processed by the apparatus and methods of the invention.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: March 27, 2007
    Assignee: Cabot Microelectronics Corporation
    Inventor: David G. Mikolas
  • Patent number: 7078862
    Abstract: A beam source has a plasma generating chamber, an antenna for generating plasma in the plasma generating chamber, a first electrode disposed in the plasma generating chamber, and a second electrode disposed in the plasma generating chamber. Both of the antenna and the second electrode face the first electrode. The beam source also includes a power supply for applying a voltage between the first electrode and the second electrode to extract particles from the plasma generated by the antenna. The beam source applies various kinds of beams having a large diameter, such as a positive ion beam, a negative ion beam, and a neutral particle beam, uniformly to a workpiece.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: July 18, 2006
    Assignees: Ebara Corporation, Tohoku University
    Inventors: Akira Fukuda, Akio Shibata, Hirokuni Hiyama, Katsunori Ichiki, Kazuo Yamauchi, Seiji Samukawa
  • Patent number: 7071626
    Abstract: Disclosed herein is a plasma generator, in which a plasma forming space, into which the air is introduced, is provided, band plate-like first and second electrodes are arranged in opposed relation to each other through a dielectric in the plasma forming space, and plasma is generated by discharge caused by applying voltage between the first and second electrodes, wherein the first and second electrodes are arranged in a state relatively displaced in a surface direction of the dielectric so as to satisfy the specific relationship.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: July 4, 2006
    Assignee: Kabushiki Kaisha Marukomu
    Inventor: Manabu Harada
  • Patent number: 7045793
    Abstract: A multi-grid ion beam source has an extraction grid, an acceleration grid, a focus grid, and a shield grid to produce a highly collimated ion beam. A five grid ion beam source is also disclosed having two shield grids. The extraction grid has a high positive potential and covers a plasma chamber containing plasma. The acceleration grid has a non-positive potential. The focus grid is positioned between the acceleration grid and the shield grid. The combination of the extraction grid and the acceleration grid extracts ions from the plasma. The focus grid acts to change momentum of the ions exiting the acceleration grid, focusing the ions into a more collimated ion beam than previous approaches. In one embodiment, the focus grid has a large positive potential. In another embodiment, the focus grid has a large negative potential.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 16, 2006
    Assignee: Veeco Instruments, Inc.
    Inventor: Erik Karl Kristian Wåhlin
  • Patent number: 7038403
    Abstract: A technique is provided for the alignment of an H/D puller for use in a cyclotron. One aspect of the technique comprises magnetically attaching a pair of feeler gages to an alignment tool for use in aligning the H/D puller. The magnetic retention of the feeler gages allows a field engineer to make the desired adjustments to align the H/D puller. Another aspect of the present technique provides for the H/D puller to include a replaceable tip such that the tip may be replaced without removing the H/D puller. Because the H/D puller is not removed and replaced, the alignment of the H/D puller to the ion source is maintained.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: May 2, 2006
    Assignee: GE Medical Technology Services, Inc.
    Inventors: Edward J. Mastrangeli, Nevin R. Johns, Roger Deane Smith, Timothy E. Erickson
  • Patent number: 7005782
    Abstract: A charged particle apparatus, with multiple electrically conducting semispheric grid electrodes, the grid electrodes mounted in a dielectric mounting ring, with hidden areas or regions to maintain electrical isolation between the grid electrodes as sputter deposits form on the grid electrodes and mounting ring. The grid electrodes are mounted to the mounting ring with slots and fastening pins that allow sliding thermal expansion and contraction between the grid electrodes and mounting ring while substantially maintaining alignment of grid openings and spacing between the grid electrodes. Asymmetric fastening pins facilitate the sliding thermal expansion while restraining the grid electrodes. Electrical contactors supply and maintain electrical potentials of the grid electrodes with spring loaded sliding contacts, without substantially affecting the thermal characteristics of the grid electrodes.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: February 28, 2006
    Assignee: VEECO Instruments, Inc.
    Inventors: Viktor Kanarov, Alan V. Hayes, Rustam Yevtukhov, Daniel Yakovlevitch