Speed Or Rate-of-movement Patents (Class 318/461)
  • Patent number: 7362071
    Abstract: In an electric rotary excavator (construction machine) 1, when earth pressure acts on a rotary body 4 in an opposite direction to an instructed direction of a lever, a control-system changing means 150 of a rotation control device 100 increases a torque output of an electric motor 5 that drives the rotary body 4. Accordingly, the torque output can properly react against the acting earth pressure, thereby preventing the rotary body from continuing to be rotated in the opposite direction. Therefore, even when the earth pressure becomes large, the work will not be affected. In addition, when the rotary body is rotated on a slope, the rotary body can be prevented from being rotated back greatly due to the weights of the boom and the arm.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 22, 2008
    Assignee: Komatsu Ltd.
    Inventors: Jun Morinaga, Tadashi Kawaguchi
  • Publication number: 20080088267
    Abstract: In a method for monitoring a stationary condition of a drive device, a monitoring device provides the drive device with a temporally varying monitoring signal which, when a sensor device connected to the drive device functions properly, modulates a sensor output signal of the sensor device in accordance with the monitoring input signal. The monitoring device receives the sensor signal and monitors it for the presence of a corresponding signal component. In the absence of such a signal component, the monitoring device controls a safety device which converts the drive device into a safe state. When the drive device is controlled by means of at least two phase-shifted current regulators, it is possible for the monitoring device to monitor an output signal of at least one of the current regulators for constancy and to control the safety device when the output signal of the at least one current regulator changes.
    Type: Application
    Filed: October 10, 2005
    Publication date: April 17, 2008
    Inventors: Ulrich Hahn, Gunter Schwesig
  • Patent number: 7348751
    Abstract: A hauling unit hauls a subject to bend or rotate the subject. A control unit outputs a control signal that corresponds to a target value that is input by an operating unit. The control unit controls a variation amount of the control signal output in a predetermined range including a position of the hauling unit in a state before the hauling unit hauls to be greater than a variation amount of the control signal output outside the predetermined range. A driving unit drives the hauling unit based on the control signal.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: March 25, 2008
    Assignee: Olympus Corporation
    Inventors: Toshimasa Kawai, Masahito Kobayashi, Shinya Imura
  • Publication number: 20080042605
    Abstract: An electric motor drive control method includes deriving a target current from a target torque to apply electric current corresponding to the target current to an electric motor. When a rotation speed of the motor is in a predetermined speed region, including a zero rotation speed at which the target current for driving the motor allocated to the target torque is switched discontinuously, the target current corresponding to the rotation speed is obtained through a linear interpolation using the rotation speed and target currents at a traction side and a regeneration side allocated to the target torque such that the electric current corresponding to the target current is applied to the motor.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 21, 2008
    Applicant: AISIN AW CO., LTD.
    Inventors: Saha Subrata, Zhigian Chen
  • Publication number: 20080036409
    Abstract: The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.
    Type: Application
    Filed: July 27, 2007
    Publication date: February 14, 2008
    Inventor: Dirk Schaefer
  • Patent number: 7327117
    Abstract: The invention is applied to the field of industrial controls for electric motors and more precisely refers to a process for measuring phase currents of an inverter or a DC controller consisting in detecting the temperature of a copper path made with IMS (Insulated Metal Substrate) technology and the like, used as shunt and that is the extension of a pre-existing adduction line towards a motor or towards the supply line or towards power devices, and in compensating through software the path drop in order to have an accurate measure of the current crossing it. A heat sensor is applied next to or over such copper path to detect its temperature. This latter one will also be assumed, with an acceptable degree of approximation, as the power transistors temperature.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: February 5, 2008
    Assignee: Zapi S.p.A.
    Inventor: Maurizio Iotti
  • Patent number: 7315145
    Abstract: A system of controlling a sliding member for a vehicle includes a motor, a pulse generating device, a counting device and a control device. The system has a range for movement of the sliding member between a position short of a first lock position and a position short of a second lock position. Also, the system has an error range within the range for movement of the sliding member and memorizes in advance a range of pulse count representative of the error range. If a pulse count counted by the counting device falls within the range of pulse count when the sliding member discontinues movement due to detection of an overload of the motor, the system resets a pulse count counted by the counting device at one of the first and second lock positions.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: January 1, 2008
    Assignees: Honda Motor Co., Ltd., Yachiyo Kogyo Kabushiki Kaisya
    Inventors: Tatsuaki Uehara, Yuki Honjo, Yoshiki Noro
  • Patent number: 7312590
    Abstract: Control over velocity of a model train may be determined based upon the speed of rotation of a control knob. A processor receives electronic pulses indicating rotation of the knob beyond a predetermined increment of angular distance. The processor calculates the amount of power ultimately conveyed to the model train based not only upon the number of pulses received, but also upon the elapsed time between these pulses. The shorter the elapsed time between pulses, the greater the change in power communicated to the train. Initially, a user can rapidly rotate the knob to attain coarse control over a wide range of velocities, and then rotate the knob more slowly to achieve fine-grained control over the coarse velocity. Utilizing the control scheme in accordance with embodiments of the present invention, in a compact and uninterrupted physical motion, a user can rapidly exercise both coarse and fine control over velocity of a model train.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: December 25, 2007
    Assignee: The Creative Train Company, LLC
    Inventors: Louis G. Kovach, II, Neil P. Young
  • Patent number: 7307394
    Abstract: A control and motor arrangement in accordance with the present invention includes a motor configured to generate a locomotive force for propelling the model train. The control and motor arrangement further includes a command control interface configured to receive commands from a command control unit wherein the commands correspond to a desired speed. The control and motor arrangement still further includes a plurality of detectors configured to detect speed information of the motor, and a process control arrangement configured to receive the speed information from the sensors. The process control arrangement is further configured and arranged to generate a plurality of motor control signals based on the speed information for controlling the speed of said motor. The control and motor arrangement yet still further includes a motor control arrangement configured to cause power to be applied to the motor at different times in response to the motor control signals.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 11, 2007
    Assignee: Lionel L.L.C.
    Inventors: Dennis J. Denen, Neil P. Young, Gary L. Moreau, Martin Pierson, Robert Grubba
  • Patent number: 7291995
    Abstract: An air fan rotation speed control method and a structure thereof aim to provide an automatic control mode and a manual control mode at the same time to control rotation speed regulation of an air fan to achieve instant heat dissipation for an environment and reduce temperature rising of the environment efficiently. The present invention has a rotation speed determination mechanism that adopts the higher rotation speed request at a higher priority to regulate the rotation speed of the air fan in either control mode. Hence the temperature of the environment can be reduced at the higher rotation speed.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 6, 2007
    Assignee: Zippy Technology Corp.
    Inventor: Tsung-Chun Chen
  • Publication number: 20070247099
    Abstract: Control systems and speed estimation systems are presented having a transient-based speed estimation system that provides a rotor speed estimate based on a measured speed-related motor transient signal, and a transient excitation system which selectively modifies at least one switch control signal to excite the measured motor transient.
    Type: Application
    Filed: April 28, 2007
    Publication date: October 25, 2007
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Haihui Lu, Thomas A. Nondahl, David M. Messersmith
  • Patent number: 7282888
    Abstract: A driving circuit of an AC fan motor has an AC to DC converter, a current detecting unit, a step-down divider, a motor driving unit, two windings each having many coils and a harmonic wave elimination unit. The AC to DC converter converts AC power to high voltage DC power. The motor driving unit is connected to the step-down divider to obtain low voltage DC power to operate. The two windings are directly connected to the AC to DC converter through the current wave detect unit to obtain the high voltage DC power. Therefore, the current wave detecting unit can response current changes of windings and then an operator can simulate present current wave of the windings to determine the present operating status of the AC fan motor.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 16, 2007
    Assignee: ADDA Corp.
    Inventor: Hsin-Mao Hsieh
  • Patent number: 7268514
    Abstract: A method and apparatus for stopping an AC motor that is controlling a load while detecting mechanical brake slippage of a mechanical brake for holding the load against movement includes a controller for decreasing torque-producing current commands from the drive while a speed regulator is commanding zero speed, sensing movement of the load while the speed regulator is commanding zero speed, detecting movement of the load past a pre-determined distance limit, and increasing torque to support the load and prevent further movement of the load. The controller will again decrease torque-producing current commands from the drive, and again checking for movement of the load, and upon sensing no load movement upon reaching zero torque, then shutting off the motor.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: September 11, 2007
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Robert J. DeLange, Timothy M. Rowan, Roman W. Lichon, Glenn E. Frazier, Lynn J. Cooksey
  • Patent number: 7268506
    Abstract: The power window system moves a window glass in opening and closing directions in response to operation of an opening and closing instruction switch. The power window system includes a measurement device for obtaining an open degree of the window glass and a control device for controlling movement of the window glass in response to operation of the switch. The control device moves the window glass in the closing direction when an open degree obtained by the measurement device is not less than a predetermined degree and in the opening direction when the open degree is less than the predetermined degree.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: September 11, 2007
    Assignee: Yazaki Corporation
    Inventors: Satoshi Nakagawa, Yoshimitsu Maejima, Yasuyuki Mochizuki, Katsuyuki Iwasaki, Susumu Yamamoto
  • Patent number: 7227326
    Abstract: AC motor control systems and speed controllers are presented, including a transient-based speed estimation system that provides a rotor speed estimate based on a measured speed-related motor transient signal, and a transient excitation system which selectively modifies at least one switch control signal to excite the measured motor transient. The measured speed-related transient may include a phase error signal, a phase lag signal, a peak current signal, a voltage integral signal, a motor winding voltage signal, a switching device voltage, and a voltage zero crossing signal, and the switching signal modification can comprise removal of select pulse(s) from a switching control pulse stream or selective modification of spacings between pulses to re-excite the motor transient.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: June 5, 2007
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Haihui Lu, Thomas A. Nondahl, David M. Messersmith
  • Patent number: 7218073
    Abstract: A fan motor speed control circuit is disclosed. The circuit includes a digital/analog converting unit and a driving unit. The digital/analog converting unit takes charge of receiving a pulse width modulation (PWM) signal and converting it into a voltage signal. The driving unit is connected with the digital/analog converting unit in series for receiving the voltage signal, while the driving unit provides a first predetermined voltage level and a second predetermined voltage level as references. The fan motor is kept to run with a low constant rotation speed when the voltage signal level is higher than the first predetermined voltage level, with a full constant rotation speed when the voltage signal level is lower than the second predetermined voltage level, and with a variable rotation speed when the voltage signal level is lower than the first predetermined voltage level and higher than the second predetermined voltage level.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: May 15, 2007
    Assignee: Delta Electronics Inc.
    Inventors: Wen-shi Huang, Ming-shi Tsai, Cheng-chieh Liu, Tsung-jung Hsieh, Yuch-lung Huang
  • Patent number: 7208910
    Abstract: A method, computer-readable code, and controller are provided for configuring a cycle-skipping control system having two or more cycle skippers connected to a common multi-phase AC (alternating current) power source to drive a variable frequency load. One or more circuit architectures (modified relative to a baseline circuit architecture) are provided. The modified circuit architectures enable at least some interconnections not enabled by the baseline circuit architecture when connected between the phases of the power source and the load phases. A respective firing sequence is generated to be applied to a plurality of power switches to the two or more cycle skippers with a modified circuit architecture for implementing a desired mode of operation.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Ajith K. Kumar, Bret D. Worden, Emil Nikolaev Nikolov
  • Patent number: 7208907
    Abstract: A system and method of restarting a switched reluctance motor after a cycling of power provided to the motor is provided that includes receiving at the motor a power-off signal followed by a power-on signal, determining a rotational speed of a rotor, and energizing a stator only when the rotational speed of the rotor is determined to be less than a threshold speed.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: April 24, 2007
    Assignee: Shop Vac Corporation
    Inventors: Neil N. Norell, James M. Robitaille, Mark E. Baer
  • Patent number: 7208911
    Abstract: A method, computer-readable code, and controller are provided for controlling a cycle-skipping control system having at least one cycle skipper connected to a multi-phase AC (alternating current) power source to drive a variable frequency load. A respective firing sequence is generated to be applied to a plurality of power switches in the cycle skipper for implementing a desired mode of operation. The stream of pulses may be arranged to form a grouping of two or more closely adjacent pulses over a time interval, wherein each pulse grouping contributes a desired spectral power over the time interval, and further wherein each pulse grouping enables to spread the power over the time interval as compared to a single pulse having the desired spectral power, thereby reducing harmonic components in currents supplied by the power source.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Ajith K. Kumar, Bret D. Worden, Emil Nikolaev Nikolov
  • Patent number: 7208902
    Abstract: A digital speed controlling apparatus includes: a target speed calculator that calculates a target speed of a driven conveyor belt, based on a sampling time; a current speed calculator that calculates a current speed of the conveyor belt, based on displacement and a difference of a sampling time; a target speed determining unit that determines whether a target speed is smaller than a predetermined value; a speed corrector that replaces the current speed with a set value, when the target speed is smaller than the predetermined value and also when the current speed is the minimum unit displacement per the sampling cycle; a speed error calculator that calculates an error between a replaced set value and the target speed; and an automatic controller that controls the drive motor based on a speed error.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 24, 2007
    Assignee: Ricoh Company, Ltd.
    Inventor: Jun Yamane
  • Patent number: 7205738
    Abstract: A motor control circuit uses a stored commutation table to effect time-based commutation of a brushless dc motor. Each entry in the commutation table defines a motor winding commutation state, and an exemplary method of open-loop motor control based on the commutation table comprises commutating the motor based on sequentially selecting table entries at a desired selection rate. That is, motor speed is controlled precisely by controlling the sequential selection rate rather than by relying on feedback from the motor. However, motor feedback for closed-loop control may be used in some modes of operation. For example, the method may include closed-loop control or open-loop control depending on the motor speed range, and may transition from closed-loop to open-loop control.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: April 17, 2007
    Assignee: Lexmark International, Inc.
    Inventors: Danny Keith Chapman, Thomas Austin Fields, Steven Michael Turney
  • Patent number: 7205734
    Abstract: A control device for a vehicular opening/closing body is provided with a duty ratio calculator (78), which calculates a duty ratio when power supplied to a door drive motor (48) allowing an opening/closing body to open/close is subjected to duty control based on a result of adding first second multiplication values, the first multiplication value being obtained by multiplying a speed difference between a target opening/closing body speed and an actual opening/closing body speed by a negative proportional gain, and the second multiplication value being obtained by multiplying an integral value of the speed difference by an integral gain.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: April 17, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Hitoshi Kidokoro
  • Patent number: 7202619
    Abstract: Two apparatuses are disclosed for controlling the speed of an AC synchronous motor-pump utilizing a series of stepped voltage pulses at the driving frequency. The first apparatus is an isolated variable frequency drive comprising step-down transformer 100, full wave rectifier and filter 101, micro-controller 108, driving-voltage array generator 102, gate driver 107, inverter bridge 103 and step-up transformer 104. The second apparatus is a non-isolated high voltage variable frequency drive comprising full wave rectifier and filter 201, low voltage, dual output power supply 205, micro-controller 208, driving-voltage array generator 202, gate driver 207 and inverter bridge 203. Methods are given to determine voltage array values and pulse times to generate a stepped voltage approximation of a sine wave driving waveform.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 10, 2007
    Inventor: Gary Randolph Fisher
  • Patent number: 7202624
    Abstract: A self-calibrating, continuous variable speed fan for use in cooling electronic circuitry is disclosed. Upon initial power-up, in an environment of known temperature, the self-calibrating fan accommodates for the tolerances of its electronic components by reading a voltage from its thermistor array and comparing the actual value to an expected value for the given temperature. The difference is then stored in the non-volatile memory of a microcontroller for use in adjusting future voltage readings from the thermistor array. During normal operation, adjusted readings from the thermistor array are then converted by the microcontroller into a control signal for driving the motor of a cooling fan. A quickly cycling stochastic process between adjustments to fan motor speed and temperature readings is then established, thereby maintaining a high degree of control over the device to be cooled.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: April 10, 2007
    Assignee: Minebea Co., Ltd.
    Inventors: Eric Hardt, Scott Frankel
  • Patent number: 7196486
    Abstract: An apparatus for detecting an obstacle to a power regulated window, which can detect existence of an obstacle by a method of differential current at low rotating speed of a motor and reduce a force of biting an obstacle and prevent from detecting an obstacle unexpectedly at high rotating speed, includes current detecting means for detecting a value of load current flowing through the motor, reference-value generating means for generating a reference value correspondingly to rotating speed of the motor for judging when the value of load current exceeds a predetermined value of over-load current, and comparing means for judging whether or not the value of load current exceeds the reference value.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: March 27, 2007
    Assignee: Yazaki Corporation
    Inventors: Yasushi Nakamura, Yasuyuki Mochizuki, Yuichi Nakazawa
  • Patent number: 7170254
    Abstract: A stepper motor driving apparatus, includes a stepper motor; a driven member interlocked with a rotation of a rotor of the stepper motor, a stopper stopping the driven member in a zero position, a controller controlling the excitation state of an excitation coil of the stepper motor, an induced voltage waveform detector detecting an induced voltage waveform generated on the basis of change of magnetic flux in accordance with the rotation of the rotor, and a zero position detector detecting whether the driven member is stopped in the zero position. The zero position detector includes a comparator which compares a time T2 in which each induced voltage waveform exceeds a predetermined threshold value with a predetermined contact determining reference time Tref, and a determinant which determines whether the driven member is stopped in the zero position by the stopper based on a result of the comparison by the comparator.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Yazaki Corporation
    Inventor: Yoshihisa Yamada
  • Patent number: 7170244
    Abstract: A power closure system with anti-pinch having a closure, a motor operatively connected to the closure, a sensor operatively producing signals indicative of motor speed, an anti-pinch activator coupled to the sensor and the motor, the anti-pinch activator including a predetermined trigger value; a measured value; a stored value; a comparator for comparing the measured value with the stored value and initiating a pinch response when the difference between the measured value and the stored value is greater than the trigger value; and a predetermined modifying calculation for changing the stored value when the measured value indicates a motor speed less than the motor speed indicated by the stored value.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: January 30, 2007
    Assignee: Dura Global Technologies, Inc.
    Inventor: David A. Choby
  • Patent number: 7164251
    Abstract: A vibration controller controls vibrations generated in a driven object included in a system subject to vibrations due to the dynamic unbalance or eccentricity of a rotating member driven for rotation by an electric motor. An angular position transforming unit (45) and an angular velocity transforming unit (47) transform the output signal of a rotating motion measuring means (C1) into an angular position and an angular velocity, respectively. A sine calculating unit (55) calculates the sine of an angle obtained by adding up the angular position and a predetermined phase angle provided by a phase adjusting unit (49) by an adder (53). A multiplier (61) calculates the product of the output of a gain adjusting unit (57) that multiplies the output of the sine calculating unit (55) by a predetermined gain and the output of a multiplier (59) that calculates the square of the angular velocity. Again adjusting unit (57?) multiplies the output of a sine calculating unit (55?) by a predetermined gain.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: January 16, 2007
    Assignee: Toshiba Elevator Kabushiki Kaisha
    Inventor: Mimpei Morishita
  • Patent number: 7161320
    Abstract: There is provided a control device for driving a movable member such as a power window of a vehicle under control, in which the action of the movable member (including the manual operation) at an action velocity corresponding to the intention of the user is achieved by operating only a operating knob for issuing a command relating to the action of the movable member. The control device includes a detecting unit which can generate an output value varying in accordance with the action of the operating knob, and a control unit for determining the operating velocity of the operating knob based on the output value, deciding the action velocity according to the determined operating velocity, and driving the motor under control so that the movable member moves at the decided action velocity.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: January 9, 2007
    Assignee: Omron Corporation
    Inventors: Keiichi Shimizu, Yasuhide Tanaka, Hideyo Kakuno
  • Patent number: 7154241
    Abstract: There are provided a wiper control method and a wiper control device in which unnecessary wiping operation is not performed. When a fixed amount of water passing through a detection area 4, the water being carried by the wiping operation of a wiper 5b, is detected, the presence of impact of a raindrop on the detection area 4 is judged. When there is no impact of a raindrop on the detection area 4, it is judged that water that is carried by the wiper 5b and passes through the detection area 4 is caused by a factor other than rainfall, and control is carried out to decrease the frequency of wiping operation of the wiper.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: December 26, 2006
    Assignee: Niles Co., Ltd.
    Inventors: Kazuto Kokuryo, Shinji Nagao, Satoshi Furusawa
  • Patent number: 7151352
    Abstract: A motor controller having the electronic cam function that makes it smooth operation even if the number of operation patterns is lessened is provided. The electronic gear function included in a servo-amplifier and a divider are used to vary the gear ratio of an electronic gear in a previously provided ratio in accordance with an external rotation position so that the electronic cam function is realized. The motor controller further includes a program execution unit so that the electronic gear is operated in accordance with programs. Since the electronic gear function and the divider is included in an inexpensive servo-amplifier and is used to realize the electronic cam function, the inexpensive and intelligent system can be realized. Since the divider is provided in the system, the number of data and the reading frequency of the cam pattern can be decreased and accordingly the inexpensive system is realized.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: December 19, 2006
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hironori Ohashi, Shinji Yonemoto, Yuri Takano, Yutaka Matsumoto, Hideto Takada
  • Patent number: 7109676
    Abstract: A control for an electric motor in a vehicle. The control ascertains whether an obstacle is interfering with rotation of the motor. The control establishes a baseline speed, representing normal free running speed of the motor. This baseline speed will be different, in different operating environments. Then the control determines whether measured motor speed drops below the baseline speed by a predetermined amount. If so, then the motor is shut down, or reversed.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: September 19, 2006
    Assignee: Valeo Electrical Systems, Inc.
    Inventor: Thierry Roger Caussat
  • Patent number: 7067999
    Abstract: In a neutral range preset, there are set a zone for stopping and holding a rotating body only by a mechanical brake, a zone for holding the body only by performing position holding control, and a zone for simultaneously exerting both effects, i.e., the effect of the mechanical brake and the effect of the holding control. On-the-spot holding torque generated when the position holding control is performed is stored. The higher of the on-the-spot holding torque stored and accelerating torque according to an operation amount of the body at a rotation starting time is set as electric motor torque for acceleration. When performing a pressing work including pressing a bucket against an object for work, torque control is carried out according to the operation amount.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: June 27, 2006
    Assignees: Kobelco Construction Machinery Co., Ltd., Kobe Steel, Ltd.
    Inventors: Naoki Sugano, Koji Inoue, Hideaki Yoshimatsu, Mamoru Uejima
  • Patent number: 7026775
    Abstract: Method and apparatus for controlling a moving speed of a moving body, wherein at least one transient target speed value in addition to a final target speed value is used to control the moving speed in an accelerating period between a moment of initiation of a movement of the moving body and a moment at which the moving speed should coincide with the final target speed value. The transient target speed is updated at a predetermined timing, or changed to the final target speed value, or from one transient value to another transient value before it is changed to the final target speed value, so that the moving speed is smoothly increased to the final target speed value, without an overshoot beyond the final target speed value.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 11, 2006
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Masatoshi Kokubo, Shigeki Akiyama
  • Patent number: 7027721
    Abstract: An electric fan temperature-rated variable speed control circuit, includes a D.C. current source and fan activation IC. There are, between the current source positive and negative poles serially connected transistor, regulation tube, with the regulation tube negative pole linked to the current source negative pole, and its positive pole, incorporated to form the primary current. Between triode base and collector lies a serially connected resistor. The triode collector is linked to the current source positive pole, and between its base and collector lies a serially connected rectifying resistor, which bypasses through the base to connect with the fan activation IC for sending out fan rotation speed control signals with which to form a circuit that adopts a straightforward, easy-to-implement method that offers low-cost and dependable temperature-control characteristics.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: April 11, 2006
    Inventor: Chin-Ping Wu
  • Patent number: 7012400
    Abstract: A control circuitry, electrically connected to a DC motor and a variable voltage source for modulating a rotational speed of the DC motor. The control circuitry includes a voltage reference component and a switching circuit. The voltage reference component is electrically connected with the variable voltage source and provides a predetermined reference voltage. The switching circuit is electrically connected with the DC motor and the voltage reference component. The switching circuit is “OFF” when a voltage given by the variable voltage source is lower than the predetermined reference voltage so that the DC motor operates with a first operation mode, and the switching circuit is “ON” when the voltage given by the variable voltage source is higher than the predetermined reference voltage so that the DC motor operates with a second operation mode.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 14, 2006
    Assignee: Delta Electronics, Inc.
    Inventor: Shou-Te Yu
  • Patent number: 7009355
    Abstract: A wiper control system is provided which comprises a rain droplet detector, a multiplexer, a count register, and a wiper control unit. The rain droplet detector has a plurality of switches that are configured to be electrically connected by rain droplets, and each switch outputs one of two different signals according to an electrical connection thereof. The multiplexer receives signals from each of the plurality of the switches, and it is configured to repeatedly perform a process of selecting one of the received signals and outputting the selected signal. The count register is connected to the multiplexer to receive the signal output from the multiplexer, and it counts a number of the signals corresponding to the electrical connection of the switches of the rain droplet detector and outputs a counted value. The wiper control unit controls a speed of a wiper based on the counted value.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: March 7, 2006
    Assignee: Hyundai Motor Company
    Inventor: Jea Sung Heo
  • Patent number: 7005818
    Abstract: In a motor actuator, e.g., a valve actuator, comprising a reversible electrical motor, a drive circuit is providing a stop function, when the torque of the motor exceeds a predetermined maximum torque. The drive circuit is constructed as a two-terminal circuit connected in series with the reversible electrical motor, and the electrical power is supplied to the series connection with a mainly fixed voltage VCC and a polarity which provides the desired rotational direction of the motor. This provides the possibility of having the drive circuit positioned close to the motor and maintaining full torque control and stop function with two wire connections.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: February 28, 2006
    Assignee: Danfoss A/S
    Inventor: Jens Moeller Jensen
  • Patent number: 6998810
    Abstract: A position controller for controlling a position of a feed shaft of a machine having a motor and the feed shaft driven by the motor is provided. A subtractor calculates a difference between a speed instruction and a speed detection value of a motor and outputs as a speed difference. An adder 20 adds the speed difference and a speed instruction compensation value and a speed difference proportion calculator calculates a proportional component of the speed difference based on the added result and a proportional gain. A speed difference integral calculator calculates an integral component of the speed difference based on the speed difference and an integral gain. An adder 6 adds the proportional component of the speed difference and the integral component of the speed difference to output a torque instruction.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: February 14, 2006
    Assignee: Okuma Corporation
    Inventor: Tomohisa Kameyama
  • Patent number: 6979968
    Abstract: The present invention includes a method for managing processor execution time in a motor controller. The method includes receiving motor speed data, comparing the received motor speed data to predetermined motor speed ranges, determining a motor speed range based on the comparison, and modulating an inverter switching frequency of the motor controller processor based on the motor speed range. The step of receiving motor speed data may include receiving machine terminal information, processing the received machine terminal information utilizing a sensorless control algorithm, and determining motor speed data based on the processed information. The step of modulating the inverter switching frequency may include determining a modified inverter switching frequency value based on the determined motor speed range and providing the modified inverter switching frequency value to a processor control algorithm.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: December 27, 2005
    Assignee: General Motors Corporation
    Inventors: James M. Nagashima, Thomas P. O'Meara, Nitinkumar R. Patel, Steven E. Schulz
  • Patent number: 6979972
    Abstract: A method for detecting a state of an electric motor includes: energizing the motor with electrical power such that an associated current applied to the electric motor rises over time toward a reference level; determining an amount of time that elapses between when the motor is energized and the reference level is reached; and, evaluating a state of the motor based upon the determined amount of time.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: December 27, 2005
    Assignee: Xerox Corporation
    Inventor: Kevin M. Carolan
  • Patent number: 6970643
    Abstract: A radiator includes a voltage regulator for providing a reference voltage, a fan including a power end connected to the reference voltage via a first resistor and a feedback end for outputting a pulse signal indicating the rotation speed of the fan, an integration circuit including an output end, and an input end connected to the feedback end of the fan for converting the pulse signal from the feedback end into a voltage signal, and a thermistor connected between the output end of the integration circuit and the reference voltage, for detecting temperature changes in order to adjust the rotation speed of the fan.
    Type: Grant
    Filed: July 4, 2004
    Date of Patent: November 29, 2005
    Assignee: BenQ Corporation
    Inventor: Wei-Chun Chang
  • Patent number: 6963184
    Abstract: A spatial notch filter is described that adapts in accordance with changes to an angular velocity of a rotating component within a manufacturing system. In a manufacturing system, noise may appear in feedback signals due to spatially distributed physical features in the system, such as imperfections in the components or sensors. This noise may be concentrated in a frequency band that changes as the angular velocity of rotating system components changes. The invention provides techniques for filtering this noise with one or more notch filters, and for adapting the center frequency of the notch filter as a function of angular velocity. The center frequency of the notch filter tracks the noise when the noise frequency changes.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: November 8, 2005
    Assignee: 3M Innovative Properties Company
    Inventor: Daniel H. Carlson
  • Patent number: 6960895
    Abstract: A brush type DC motor 10 having an armature 15 and positive and negative power leads is provided. The motor includes an RFI choke 12 as a transformer in series with at least one of the positive and negative power leads to amplify current such that rotation of the armature 15 can be detected based on monitoring a voltage relating to the amplified current. Conditioning circuitry 14 is constructed and arranged to condition the voltage for detecting rotation of the armature.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: November 1, 2005
    Assignee: Siemens VDO Automotive Inc.
    Inventor: John E. Makaran
  • Patent number: 6960894
    Abstract: A powered tool for performing surgical procedures. The tool includes a handpiece in which a power generating unit is housed. A control member is mounted to the handpiece. The control member is mounted to the handpiece so that the orientation of the control member can be selectively set relative to the point to which it is mounted to the handpiece and so it can move relative to a reference point on the handpiece. A control module monitors the orientation of the control member and its position relative to the reference point. Based on the control member orientation and position, the control module generates signals to regulate the operation of the power generating unit. When the power generating unit is a motor, the control module generates signals to ensure that the maximum speed at which the motor can be driven is less than the no load speed.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: November 1, 2005
    Assignee: Stryker Corporation
    Inventors: Steve Carusillo, David M. Nic, Chris Philipp, James G. Walen
  • Patent number: 6949899
    Abstract: A brushless dc motor includes a conversion circuit and a dc motor drive circuit. The conversion circuit includes a rectifier unit, a pulse-wave-absorbing unit, a filter unit, a voltage-stabilizing control unit and a voltage-stabilizing unit. The rectifier unit, the pulse-wave-absorbing unit and the filter unit are serially connected between an ac power source and the dc motor drive circuit. The ac power source is rectified, stabilized and filtered to thereby supply with a dc voltage to the dc motor drive circuit. The voltage-stabilizing control unit and the voltage-stabilizing unit are serially connected between the rectifier unit and the dc motor drive circuit so as to limit a passage of a high voltage and to allow a passage of a low voltage through the dc motor drive circuit. Thereby, the voltage-stabilizing control unit and the voltage-stabilizing unit are commonly in control of the operation of the dc motor drive circuit.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: September 27, 2005
    Assignee: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventors: Alex Horng, Wen-Chung Wu, Chung-Ken Cheng
  • Patent number: 6933694
    Abstract: A control for an electric motor in a vehicle. The control ascertains whether an obstacle is interfering with rotation of the motor. The control establishes a baseline speed, representing normal free running speed of the motor. This baseline speed will be different, in different operating environments. Then the control determines whether measured motor speed drops below the baseline speed by a predetermined amount. If so, then the motor is shut down, or reversed.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: August 23, 2005
    Assignee: Valeo Electrical Systems, Inc.
    Inventor: Thierry Roger Caussat
  • Patent number: 6906487
    Abstract: An antipinch circuit prevents the motor driven closure of an automotive window if a soft obstacle is compressed between the window and the top of the door frame, and the window is opened in response to the sensing of the obstacle. The circuit measures the motor torque (by measuring motor current) and the motor shaft speed (by measuring motor back EMF). The torque and motor speed are compared to “signatures” of these values in the case of the window closing normally against the top of the door frame, or against an obstacle, and either stopping or reversing the motor rotation accordingly.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: June 14, 2005
    Assignee: International Rectifier Corporation
    Inventor: Xavier de Frutos
  • Patent number: 6891347
    Abstract: Various systems and methods are provided for cooling a cabinet. In one embodiment, a method is provided that comprises the steps of controlling a speed of the at least one cooling fan in response to a temperature of the cabinet, and, controlling the speed of the at least one cooling fan in response to a position of an access panel relative to the cabinet.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: May 10, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert W. Dobbs, James K. Koch, Jeremy I. Wilson
  • Patent number: 6876167
    Abstract: A non-invasive apparatus and method for measuring the speed of a rotating device that includes a sensor that measures a dynamic characteristic of the rotating device. A sample of the signal is transformed from the time domain into a frequency spectrum. The frequency spectrum is then analyzed to determine the motor speed. The resulting motor speed can be combined with other motor data by an order analysis to identify malfunctioning or improperly installed components.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: April 5, 2005
    Assignee: TRW Automotive U.S. LLC
    Inventor: Michael A. Jones