With Program Recording Or Composing Means Patents (Class 318/568.1)
  • Patent number: 8666522
    Abstract: A controller for a machine tool has a program storage section in which an NC program is stored, a program analyzing section analyzing the NC program block by block in sequence and extracts operation commands for a feed mechanism, an execution control section executing the extracted operation commands and thereby controlling the feed mechanism, e program editing section changing the NC program, and a change information storage section in which change information relating to the changed portion of the NC program is stored. The execution control section, when executing the operation commands, checks whether the block of each operation command is the block immediately preceding a block relating to the changed portion, and when judging that it is the immediately preceding block, temporarily stops the operation of the feed mechanism before or after the execution of the operation command.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 4, 2014
    Assignee: Mori Seiki Co., Ltd.
    Inventors: Takayuki Nakamura, Tetsushi Asada, Takaaki Soga
  • Patent number: 8655488
    Abstract: A position control method for controlling a position of a movable portion, includes: performing control of allowing the movable portion to approach a predetermined position by moving the movable portion; and performing control of moving the movable portion to the predetermined position by moving the movable portion and detecting a relative position of the movable portion with respect to the predetermined position by using an imaging unit.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: February 18, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Izumi Iida
  • Publication number: 20140015466
    Abstract: A programming tool provides an interface between an industrial controller and a motor drive that allows the logic development tool used to program the industrial controller to be used to configure the motor drive and its supported components directly. This allows a programmer to configure the topology for the motor drive and provide configuration data that can be verified directly from within the controller programming software rather than requiring separate programming and diagnostic tools.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 16, 2014
    Applicant: Rockwell Automation Technologies, Inc.
    Inventor: Michael R. Keller
  • Patent number: 8624537
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 7, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 8612084
    Abstract: An autonomous navigation system for a tracked or skid-steer vehicle is described. The system includes a path planner (54) that computes a series of waypoint locations specifying a path to follow and vehicle location sensors (82). A tramming controller (60) includes a waypoint controller (62) that computes vehicle speed and yaw rate setpoints based on vehicle location information from the vehicle location sensor and the locations of a plurality of neighboring waypoints, and a rate controller (64) that generates left and right track speed setpoints from the speed and yaw rate setpoints. A vehicle control interface actuates the vehicle controls in accordance with the left and right track speed setpoints.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: December 17, 2013
    Assignee: The University of Sydney
    Inventors: Ross Hennessy, Florian Oppolzer, Xiuyi Fan, Surya P. N. Singh, Hugh Durrant-Whyte
  • Patent number: 8588973
    Abstract: Provided is an apparatus for executing a robot task using a robot model definition. A task execution apparatus include: a storage unit to store at least one robot model, at least one robot behavior, and at least one robot task; and a task execution unit to generate at least one execution object from the stored at least one robot model, at least one robot behavior, and at least one robot task, and to execute a task of a robot from a corresponding execution object among the generated at least one execution object in response to an execution command input from a user.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Rock-Won Kim, Seung-Ik Lee, Jun-Yong Sung, Sung-Hoon Kim
  • Patent number: 8588958
    Abstract: A computer program product and an apparatus for preparing a moving program for controlling the operation of a working robot which can move a known working apparatus relative to a workpiece and which can perform desired work on the workpiece. Movement information of the working apparatus may be input to a text entry screen on a character basis. Movement information of the working apparatus may also be input via a figure entry screen as a path on a two-dimensional plane in correlation with height information. The movement information that is input on the text entry screen is output in real time as the path on the two-dimensional plane and the height information thereof on the figure entry screen. The movement information that is input on the figure entry screen is output in real time to the text entry screen on the character basis.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: November 19, 2013
    Assignee: Musashi Engineering, Inc.
    Inventor: Kazumasa Ikushima
  • Patent number: 8577501
    Abstract: A remote control unit configured to wirelessly control a mobile robot moving through an environment and having a robot camera. The remote control unit comprises a privacy button operable by a local user and configured to engage a privacy mode of the mobile robot, and a wireless transmitter configured to emit a wireless control signal to the mobile robot based on input from a keypad of the RC unit. The wireless control signal is configured to cause the robot camera to block the field of view of the robot camera such that the environment of the mobile robot is obscured when the privacy mode of the mobile robot is engaged.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 5, 2013
    Assignee: iRobot Corporation
    Inventors: Matthew Cross, Tony Campbell
  • Patent number: 8565921
    Abstract: Provided is a method for determining a grounding timing of a biped walking robot. Firstly, a ZMP equation which represents a trajectory of a center of gravity including a first single-leg grounded period in which the robot stands only with a first leg and a second single-leg grounded period in which the robot stands only with a second leg, following the first single-leg grounded period, is solved using a predetermined grounding timing. A second leg ZMP position representing a ZMP position in the second single-leg grounded period is then calculated. When the calculated second leg ZMP position is out of the second leg ZMP permissible area, the grounding timing is modified so that the second leg ZMP position is located in a second leg ZMP permissible area which is defined corresponding to a possible grounding area of the second leg.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 22, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiro Doi
  • Publication number: 20130264988
    Abstract: An arithmetic coefficient setting unit sets a feedback control arithmetic coefficient to a value between a first feedback control arithmetic coefficient value for a cutting-feed and a second feedback control arithmetic coefficient value for a rapid-traverse operation smaller than the first feedback control arithmetic coefficient value. An arithmetic coefficient change unit continuously changes the feedback control arithmetic coefficient from the second feedback control arithmetic coefficient value to the first feedback control arithmetic coefficient value over a first period between a first time, which is an arbitrary time during the rapid-traverse operation, and the second time after the first time or a second period between a third time after the first time and before the second time, and the second time if it is predicted at the first time that the operating command switches from the rapid-traverse operation command to the cutting-feed command at the second time.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Applicant: FANUC CORPORATION
    Inventors: Yasusuke IWASHITA, Satoshi IKAI
  • Patent number: 8541970
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 24, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 8527137
    Abstract: A vehicle behavior data recording control system is disclosed. The system comprises a vehicle abnormality detector for detecting a vehicle abnormality and a recorder for acquiring vehicle abnormality information from the vehicle abnormality detector. In response to occurrence of an unexpected behavior, the recorder determines whether or not a cause of the unexpected behavior is the vehicle abnormality. When the cause of the unexpected behavior is the vehicle abnormality, the recorder is prohibited from recording a behavior data relating to the unexpected behavior. When the cause of the unexpected behavior is not the vehicle abnormality, the recorder records the behavior data relating to the unexpected behavior in the memory as an unexpected behavior data.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 3, 2013
    Assignee: Denso Corporation
    Inventor: Tadaaki Sakakibara
  • Patent number: 8504200
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 6, 2013
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 8498744
    Abstract: A surgical robotic system is disclosed that provides a combination of a programmed control, when a high degree of accuracy is required and manual control when a high degree of accuracy is not required.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 30, 2013
    Assignee: Mako Surgical Corporation
    Inventors: Daniel Odermatt, Renen Bassik, Chunyan Wu, Danielle Landeck, Jason Wojcik
  • Patent number: 8483879
    Abstract: A robotic system includes a robot adapted for moving a payload in proportional response to an input force from an operator, sensors adapted for measuring a predetermined set of operator input values, including the input force, and a controller. The controller determines a changing stiffness value of the operator using set of operator input values, and automatically adjusts a level of control sensitivity over the robot using the stiffness value. The input values include the input force, a muscle activation level of the operator, and a position of the operator. A method of controlling the robot includes measuring the operator input values using the plurality of sensors, processing the input values using the controller to thereby calculate the stiffness value, and automatically adjusting the level of control sensitivity over the robot using the stiffness value. A specific operator may be identified, with control sensitivity being adjusted based on the identity.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Dalong Gao, Roland J. Menassa, Robin Stevenson
  • Patent number: 8478438
    Abstract: A main control process is made common to all machine tools by describing in a NC program a tool trajectory including a change in posture in a coordinate system (30) fixed to a machining object (W), fixedly arranging a preparatory reference coordinate system (20) on a machine table (2), representing an installation position of the machining object (W) and a position of a spindle (91) on which a tool (11) is mounted in the preparatory reference coordinate system (20), and containing portions relating to a configuration of axes in a conversion function group of correlation between the position (q) of the spindle (91) and an axis coordinate (r). Thus, the processes of reading the NC program, correction of the tool trajectory and conversion into the trajectory of a spindle position based on the installation position of the machining object, the tool shape, and tool dimensions are made completely common.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: July 2, 2013
    Assignee: Shin Nippon Koki Co., Ltd.
    Inventor: Nobutaka Nishibashi
  • Patent number: 8473202
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 25, 2013
    Assignee: C.H.I. Development Mgmt. Ltd. XXIV, LLC
    Inventor: John R. Lapham
  • Patent number: 8452449
    Abstract: A position control method for controlling a position of a movable portion, includes: performing control of allowing the movable portion to approach a predetermined position by moving the movable portion; and performing control of moving the movable portion to the predetermined position by moving the movable portion and detecting a relative position of the movable portion with respect to the predetermined position by using an imaging unit.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 28, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Izumi Iida
  • Patent number: 8452447
    Abstract: Telerobotic, telesurgical, and surgical robotic devices, systems, and methods selectively calibrate end effector jaws by bringing the jaw elements into engagement with each other. Commanded torque signals may bring the end effector elements into engagement while monitoring the resulting position of a drive system, optionally using a second derivative of the torque/position relationship so as to identify an end effector engagement position. Calibration can allow the end effector engagement position to correspond to a nominal closed position of an input handle by compensating for wear on the end effector, the end effector drive system, then manipulator, the manipulator drive system, the manipulator/end effector interfacing, and manufacturing tolerances.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 28, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Tom Nixon
  • Patent number: 8444224
    Abstract: A seat controlling mechanism includes motors for actuating a plurality of seat sections, a position detecting apparatus detecting positions of the seat sections and a controlling apparatus controlling the seat sections to move to a predetermined position, wherein an interfering range, an interference avoidable range in which an interference avoidance control is executed and a normal operation range are set in the controlling apparatus, and when at least one of the seat sections positions in the interference avoidable range, the controlling apparatus prohibits the movement of the at least one of the seat sections toward the interfering range.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: May 21, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Misato Maeda, Kazuyuki Kashiwabara
  • Patent number: 8401701
    Abstract: A substrate transfer robot sets an interference region in advance in the range of motion of the substrate transfer robot; stores a plurality of patterns of a combination of a starting position, a target position, and the interference region, the starting position and the target position being among taught positions; determines which pattern among the plurality of patterns a movement of the substrate transfer robot from the starting position to the target position matches when the substrate transfer robot moves between the plurality of taught positions; and determines a movement path from the starting position to the target position so as to avoid the interference region in accordance with the determined pattern so that the substrate transfer robot avoids the interference region.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventor: Yoshiki Kimura
  • Patent number: 8392021
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: March 5, 2013
    Assignee: iRobot Corporation
    Inventors: Stefanos Konandreas, Andrew Ziegler, Christopher John Morse
  • Patent number: 8386078
    Abstract: Methods and systems for robot cloud computing are described. Within examples, cloud-based computing generally refers to networked computer architectures in which application execution and storage may be divided, to some extent, between client and server devices. A robot may be any device that has a computing ability and interacts with its surroundings with an actuation capability (e.g., electromechanical capabilities). A client device may be configured as a robot including various sensors and devices in the forms of modules, and different modules may be added or removed from robot depending on requirements. A robot may interact with the cloud to perform any number of actions, such as to share information with other cloud computing devices. A robot's performance of a task can be augmented by a cloud service which contains a data library of elements which are delivered to the robot to help the robot execute actions.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: February 26, 2013
    Assignee: Google Inc.
    Inventors: Ryan Hickman, Damon Kohler, Anthony Gerald Francis, Jr., James J. Kuffner, Jr.
  • Patent number: 8374721
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 12, 2013
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8352072
    Abstract: The invention is a system that is integrated with an existing robotic system in order to extend its observation, surveillance, and navigational capabilities. The system comprises: a sensor module comprising imaging and other types of sensors that is attached to the robotic device of the robotic system and a system control station comprising a communication link to the robot control station of the existing robotic system. Both the system control station and the sensor module comprise processing units that are configured to work in complete harmony. These processing units are each supplied with software that enables using information supplied by the sensors and other components in the sensor module to provide the robotic systems with many advanced capabilities that could not be achieves prior to attachment of the sensor module to the robot.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: January 8, 2013
    Assignees: Wave Group Ltd., O.D.F. Optronics Ltd.
    Inventors: Ehud Gal, Gennadiy Berinsky, Yosi Wolf
  • Patent number: 8295979
    Abstract: A method for scheduling mowing tasks by a robotic mower is provided. An estimated height of grass cut by the robotic mower is determined for a predetermined number of past mowing tasks. The estimated height of grass cut is compared with a predicted height of grass in an operating environment for the robotic mower. Then, a mowing schedule for the robotic mower is adjusted by decreasing a time between mowing tasks in response to the estimated height of grass cut being greater than the predicted height of grass. Alternatively, the mowing schedule for the robotic mower is adjusted by increasing the time between mowing tasks in response to the estimated height of grass cut being less than the predicted height of grass.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 23, 2012
    Assignee: Deere & Company
    Inventors: Russell Thacher, Kirk Eisenbeis, David August Johnson, Noel Wayne Anderson, Joshua D. Hoffman
  • Patent number: 8271129
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 18, 2012
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8265818
    Abstract: A command and control system is provided including a core unit, with a processor and a map display engine. The core unit is configured to exchange information with a multi-domain heterogeneous unmanned vehicle command and control module, a multi-sensor command and control module, and an asset tracking module. The asset tracking module estimates a location of an indeterminate object. A control unit exchanges information with an input device. A detecting unit detects modules that are associated with the core unit. A subscription unit logs parameters associated with the detected modules and determines types of data to send to the detected units based on the parameters. A script unit receives and implements command and control scripts for the detected modules. A display output provides display information of a combined representation of information from the detected modules and map information, including locations of the vehicles and sensors under control and the estimated location of the indeterminate object.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Defense Technologies, Inc.
    Inventor: Christopher Samuel Allport
  • Patent number: 8265789
    Abstract: A network-based robot system includes an activity creating device creating activities in hierarchical structure, and a robot downloading the activity tree over a communication network and executing an activity selected in the activity tree. The activities describe action execution procedures to be run by the robot and are arranged in an activity tree.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 11, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Ik Lee, Sung Hoon Kim
  • Patent number: 8260443
    Abstract: A method for the optimized movement co-ordination of measuring machines or machine tools having redundant axles having at translatory action, wherein the longer partial axles in each case permit a relatively slowly accelerated partial movement over a relatively large measuring or processing space and the shorter partial axles in each case essentially carry out the movement components of a total movement at a substantially altogether constant measuring or processing speed, which require an acceleration beyond a maximum set or stipulated for the respective longer partial axles, wherein, when approaching positions that in an undivided movement would otherwise not be attainable, the base axles correspondingly decelerate and can even come to a complete standstill, wherein by simultaneous displacement of the neutral starting point of the additional axles, the respective movement component of the base axles missing from the total movement is compensated.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: September 4, 2012
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventor: Andreas Ehlerding
  • Patent number: 8237390
    Abstract: A drive unit comprising of a driving motor and of at least two flexible linking members, which twist on each other when a rotational shaft of the driving motor rotates and thus produce a pulling force on a motion element that is attached to or is a part of link of a legged robot's leg mechanism is disclosed. A control method to control the invented drive unit so that a passive, a passive-dynamic or an active walking modes and transition between the modes of a legged robot is achieved without any additional mechanical means is disclosed.
    Type: Grant
    Filed: February 13, 2010
    Date of Patent: August 7, 2012
    Inventor: Ivan Godler
  • Publication number: 20120187889
    Abstract: The disclosure relates to a method for generating a variable motion profile for a drive unit of a machine, comprising predetermining a plurality of boundary conditions in order to define the variable motion profile, wherein at least one of the boundary conditions is defined using at least one variable or formula relationship. The method further comprises graphically displaying a motion profile based on the plurality of boundary conditions, and mapping the plurality of boundary conditions to a program code, wherein the program code comprises at least one placeholder associated with the variables or the resolved system of equations of the formula relationship.
    Type: Application
    Filed: May 27, 2010
    Publication date: July 26, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Sebastian Krauskopf, Bartosz Korajda, Oliver Stickel
  • Patent number: 8224486
    Abstract: There is provided a device for evaluating and correcting a robot operation program for evaluating an appropriateness for the robot operation program and correcting the robot operation program, comprising a computer including a simulation function for confirming a robot operation. The computer includes a load calculation section for calculating a load given to a motor for driving an operating portion of the robot by a simulation conducted by a computer; and an evaluation section for evaluating, by an evaluation function, whether or not the load exceeds a predetermined allowed value.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 17, 2012
    Assignee: Fanuc Ltd
    Inventors: Yoshiharu Nagatsuka, Toshiya Takeda
  • Patent number: 8217762
    Abstract: There is described method for using a mobile control device that serves for controlling a machine within an assigned effective range which is only partially delimited by one or more RFID transponders and has protective measures. Control commands of the control device are also executed when it does not receive any valid transponder data, but the controller has received a corresponding signal.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: July 10, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Gerhard Griessnig
  • Patent number: 8180487
    Abstract: A method of calibrating a vision based robotic system. The method includes engaging a calibration pin with a robotic tool and moving the calibration pin to a calibration block that includes at least one set of optical sensors having an optical transmitter to transmit an optical beam and an optical receiver to receive the optical beam. Further, the transmitted optical beam includes a center point. The method further includes: moving the calibration pin to the center point of the transmitted optical beam; determining a calibration pin center position relative to the robotic tool; and commanding a machine vision assembly having a camera to capture an image of a plurality of camera reading points of the calibration block and to determine a camera center position.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 15, 2012
    Assignee: Western Digital Technologies, Inc.
    Inventors: Jambunathan Vangal-Ramamurthy, Robert E. Foster
  • Patent number: 8155789
    Abstract: An offline programming device for preparing an operation program for making a robot with a hand perform a handling operation for an object with respect to a machine tool.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 10, 2012
    Assignee: Panuc Ltd
    Inventors: Yoshiharu Nagatsuka, Kozo Inoue
  • Patent number: 8121732
    Abstract: A target position detection apparatus for a robot includes: a robot including an arm configured to be freely moved in at least two directions of X and Y axes, the arm having a wrist axis provided at a distal end of the arm and configured to be freely moved in a horizontal direction, and the wrist axis being provided with an end effector; and a control unit adapted for driving a memory to store a teaching point therein and controlling an operation of the robot such that the end effector will be moved toward the teaching point stored in the memory.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 21, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Yasuhiko Hashimoto, Nobuyasu Shimomura, Takao Yamaguchi, Tetsuya Yoshida
  • Patent number: 8115439
    Abstract: A system for moving robots in accordance with a predetermined algorithm. The system includes: a surface having a position-coding pattern which identifies the surface; mobile robots for moving across the surface, each robot being configured for sensing and decoding the position-coding pattern; and a computer system in communication with the mobile robots. The computer system is configured to send instructions for moving each mobile robot relative to the surface in response to position information corresponding to that mobile robot. Further, the computer system is configured to determine instructions for moving each mobile robot using a predetermined algorithm. The predetermined algorithm is selected on the basis of the identity of the surface.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: February 14, 2012
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Patent number: 8103153
    Abstract: In a method for reliably monitoring the speed of a moveable coordinate measuring device, a first value of the speed is calculated from measured values of the coordinate measurement system. The measured values contain information on positions of the coordinate measuring device. The measured values are further used to determine the coordinates of a measurement object. A second value of the speed is ascertained from measurement signals of at least one additional movement sensor. The measurement signals can also be used for controlling a drive device of the coordinate measuring device. A fault signal can be generated if the first value and/or the second value deviate from one another, from a predetermined value and/or a limit value according to a predefined criterion.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: January 24, 2012
    Assignee: Carl Zeiss Industrielle Messtechnik GmbH
    Inventors: Peter Uhl, Günter Grupp, Thomas Maier
  • Patent number: 8099192
    Abstract: A method is provided for teaching a transfer robot used in conjunction with a workpiece processing system including a pedestal assembly, a light sensor having an optical input fixedly coupled to the pedestal assembly, a transfer robot having an end effector, and a processing chamber containing the pedestal assembly and light sensor. The method includes the steps of producing light within the processing chamber, moving the end effector over the optical input such that amount of light reaching the light sensor varies in relation to the position of the end effector, and recording the signal gain as the end effector is moved over the optical input. The method also includes the step of establishing from the recorded signal gain a desired position of the end effector relative to the pedestal assembly.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 17, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Heinrich Von Bunau, Tarek Radwan, Karen Townsend
  • Patent number: 8095239
    Abstract: A robot movement control device is connected to a communications network in a remote location relative to a robotic device that is also connected to the communications network. The robot movement control device is an electronic device with a video display for displaying a real-time video image sent to it by a camera associated with the robot. A robot movement control overlay is displayed in the field of the real-time video image at the robot control device and robot control commands are generated by selecting locations within the boundary of the movement control overlay which include speed and directional information. The control commands are sent by the robot control device over the network to the robot which uses the commands to adjust its speed and direction of movement.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 10, 2012
    Assignee: North End Technologies, Inc
    Inventors: Timothy D. Root, Jeffrey T Muller
  • Patent number: 8068924
    Abstract: A coordinative control method for adjusting the back and knee bottom sections of an adjustable bed or the like, and a computer program for implementing the method, are provided. Specifically, a method for adjusting the back and knee bottom section is provided, in which the angular positions thereof are adjusted according to a preset action pattern. The initial starting positions of the adjustable sections are taken into account, and adjusted to a position corresponding to the closest point on a curve representing angular movement of the sections during the adjustment process. Then, the sections are adjusted in a manner that prevents exertion of uncomfortable pressure upon the torso of a user, and prevents sliding of a user relative to the foot of the bed.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 29, 2011
    Assignee: Paramount Bed Company, Ltd.
    Inventors: Hiroshi Nagaoka, Masao Horitani, Satoru Inoue
  • Patent number: 8024067
    Abstract: Immediately before a robot 20 starts to move at a high speed, a monitoring area 53 is expanded in a returning direction Y, and absence of an obstacle in the monitoring area 53 is confirmed. During the high speed movement of the robot 20, the monitoring area 53 is expanded forward, so that a safety of an operator is secured, an effective use of a working station area can be made, and an improvement of productivity can be achieved.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: September 20, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Sakai, Tetsuya Ozawa, Kazuyoshi Fukuzawa, Yoshito Ohtake, Hiroki Baba
  • Patent number: 8022655
    Abstract: A robot controller including a control unit and a portable device (TPU) for teaching and manually operating the robot. The TPU includes safety equipment, a safety TPU-part having a first communication unit and a main TPU-part having a third communication unit. The control unit includes a safety control part having a second communication unit and a main control part having a forth communication unit. The first and second communication units form a first communication channel for transferring data from the TPU to the control unit. The third and fourth communication units form a second communication channel for transferring data between the TPU and the control unit. Each of the main TPU-part, safety TPU-part, main control part, and safety control part includes a processor for generating and/or handling the data. Each communication unit is connected to a network and forms a node in the network.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: September 20, 2011
    Assignee: ABB Research Ltd.
    Inventors: Jan Endresen, Erik Carlson, Ralph Sjöberg, Olov Nylén
  • Patent number: 8024070
    Abstract: The present disclosure provides a fixed point stabilization device for a legged mobile body having a generating mechanism for generating a fixed point. The present disclosure also provides a fixed point stabilization device for a legged mobile body comprising a stabilizing device for stabilizing the fixed point in accordance with a leg grounding position of the legged mobile body. The fixed point is generated by inputting a predetermined constant torque to a joint of a leg of the legged mobile body on the basis of the energy balance in the legged mobile body, leg switching, and a leg swinging motion. The fixed point is stabilized globally by keeping the leg grounding position of the legged mobile body constant using a stopper.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: September 20, 2011
    Assignee: Nagoya Institute of Technology
    Inventors: Akihito Sano, Hideo Fujimoto, Yoshito Ikemata
  • Patent number: 8019145
    Abstract: A robot capable of performing appropriate movement control while reducing arithmetic processing for recognizing the shape of a floor. The robot sets a predetermined landing position of steps of the legs on a present assumed floor, which is a floor represented by floor shape information used for a current motion control of the robot, during movement of the robot. An image projection area is set, and is projected on each image captured by cameras mounted on the robot for each predetermined landing position in the vicinity of each of the predetermined landing positions. Shape parameters representing the shape of an actual floor partial area are estimated, forming an actual floor whose image is captured in each partial image area, based on the image of the partial image area generated by projecting the set image projection area on the images captured by the cameras for each partial image area.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 13, 2011
    Assignees: Honda Motor Co., Ltd., Tokyo Institute of Technology
    Inventors: Minami Asatani, Masatoshi Okutomi, Shigeki Sugimoto
  • Patent number: 8018194
    Abstract: When application software running on a PC is in the state of being terminated, a switch unit is turned OFF with the control of a CPU and individual motors, and in this state, a light source is not supplied with a motor/lamp-use power source. In this state, however, the CPU and individual I/Fs are supplied with a logic-use power source. Therefore, the switch unit is turned ON when the application software is started, and an initialization process for an individual electrically driven unit is no longer required.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: September 13, 2011
    Assignee: Olympus Corporation
    Inventor: Hiroshi Watanabe
  • Patent number: 8014897
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: September 6, 2011
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 8010229
    Abstract: Provided are a method and apparatus for ensuring a cleaning robot to return to a charge station. The method includes the steps of: (a) measuring a battery usable time, a running speed, and an actual return distance of a cleaning robot during a cleaning operation; (b) calculating an allowable return distance on the basis of the battery usable time and the running speed; (c) comparing the actual return distance with the allowable return distance; and (d) returning the cleaning robot to the charge station when the actual return distance is larger than the allowable return distance as a result of the comparison. Therefore, it is possible to prevent the cleaning robot from being not returned to the charge station, thereby providing convenience to a user.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: August 30, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Joo Kim, Chang Gyu Lim, Sung Ho Im, Dong Sun Lim
  • Patent number: 7977907
    Abstract: In a system for driving a mobile robot having a body, a plurality of legs each comprising a thigh link and a shank link, a first electric motor and a second motor for driving the thigh link in a forwarding direction, a power line connecting a power source to the first and the second motors, and a motor driver that supplies drive voltage to the first and second motors, a booster that boosts the drive voltage to be supplied to the first and second motors is provided such that the booster and the motor driver are installed in the thigh link where the first and second motors are installed, thereby enabling to satisfy both the low-voltage demand and high-voltage demand and to supply drive voltage to the motors effectively.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 12, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tsukasa Sugino, Masakazu Kawai, Kenro Udono