Pluse Width Modulation Or Chopping Patents (Class 318/811)
  • Patent number: 8729838
    Abstract: A controller for an electric actuator includes a reference model that generates position and speed reference signals in response to a position command signal and employs a feed forward model that accounts for dynamic loading of the electric actuator. The feed forward model receives the position and speed reference signals provided by the reference model, and in response generates feed forward signals that account for mechanical characteristics of the electric actuator.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 20, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Matthew L. Wilhide, Jacek F. Gieras
  • Patent number: 8704482
    Abstract: A power conversion device includes a converter-inverter controller for controlling a converter and an inverter. The power conversion device further includes a DC capacitor connected between the converter and the inverter and a DC capacitor voltage detector for detecting a DC capacitor voltage Efc between the connection ends of the DC capacitor. The converter-inverter controller provides variable control on the DC capacitor voltage Efc to the converter on the basis of the motor frequency of an AC motor, the DC capacitor voltage Efc, and a pulse mode. Within a predetermined range of motor frequencies, the converter-inverter controller fixes the PWM modulation factor of the inverter to a value m0 and provides operation control to the inverter, where the value m0 being to reduce a harmonic of a predetermined order included in the output voltage from the inverter.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takafumi Maruyama, Takeo Matsumoto
  • Patent number: 8680801
    Abstract: A rotating electrical machine system includes a stator that has stator windings of a plurality of phases, and that generates a stator magnetomotive force in accordance with stator current of different phases, which is supplied to the stator windings of the plurality of phases; a rotor on which rotor windings are wound such that rotor current is generated in accordance with the stator magnetomotive force generated by the stator and a magnetic pole is formed by the rotor current; and a control unit that controls an output torque from the rotor, by controlling the stator current. In a case where a predetermined torque is output from the rotor, the control unit applies a pulse to the stator current so as to increase the stator current and reduce the rotor current, when a temperature of the rotor is high as compared with when the temperature of the rotor is low.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiji Yamada, Kenji Hiramoto, Hideo Nakai, Norimoto Minoshima
  • Patent number: 8680807
    Abstract: A motor control apparatus for controlling a DC motor includes a first detection unit configured to detect an angular velocity of the DC motor, a driven member configured to be driven by the DC motor, a control unit configured to perform, during start-up of the DC motor, feed forward control for changing a control value used for controlling drive of the DC motor from a first control value corresponding to an angular velocity smaller than a target angular velocity to a second control value corresponding to the target angular velocity, and to change the feed forward control to feedback control for controlling the control value based on a detection result by the first detection unit to keep the DC motor at the target angular velocity, and a second detection unit configured to detect whether the driven member has been replaced.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoritsugu Maeda
  • Patent number: 8674652
    Abstract: A motor control device includes an inverter circuit including a plurality of switching elements connected into a three-phase bridge configuration and converting a direct current into a three-phase alternate current, a current detecting element connected to a direct current side of the inverter circuit, thereby generating a signal corresponding to a current value, a PWM signal generating unit which determines a rotor position based on phase currents of the motor and generates a three-phase PWM signal pattern so that the signal pattern follows the rotor position, and a current detecting unit detecting phase currents based on the signal generated by the current detecting element and the PWM signal pattern. The PWM signal generating unit generates the three-phase PWM signal pattern so that the current detecting unit is capable of detecting two phase currents in synchronization with advent of two fixed time-points within a carrier period of the PWM signal respectively.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Sari Maekawa
  • Patent number: 8664901
    Abstract: Methods, systems and apparatus are provided for estimating electrical angular speed of a permanent magnet machine based on two-phase stationary reference frame feedback stator current samples, and a dimensionless gain (K) that is computed based on a sampling time (T) and machine parameters.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: March 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Yo Chan Son, Gabriel Gallegos-Lopez, Silva Hiti
  • Patent number: 8653783
    Abstract: A circuit switching element is provided that switches a step-up/step-down bidirectional chopper circuit, arranged between a DC bus and a power storage element, to a first chopper circuit or to a second chopper circuit, whose step-up and step-down characteristics are in a complementary relation. The first and second chopper circuits are used together at a time of charge and discharge. Accordingly, an AC motor drive device having mounted therein a power storage system is obtained, in which the power storage system can perform charge and discharge to and from the power storage element, regardless of a bus voltage and can increase energy use efficiency.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Manabu Ohashi, Kazuya Nakamura
  • Patent number: 8653782
    Abstract: In a motor driving device, a driving switching element is connected in series with a motor between a power source and a ground, and operated by a PWM signal outputted from a control circuit. A return current path forming unit is connected in parallel with the motor to allow a return current when the driving switching element is turned off. A series circuit of a current flow restriction element and a switch is connected in parallel with the return current path forming unit. A disconnection determination unit prohibits output of the PWM signal and closes the switch of the series circuit when a voltage applied to the motor does not fluctuate according to the PWM signal, and determines the disconnection of the motor on condition that the voltage detected in that state indicates a change across a second threshold.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: February 18, 2014
    Assignee: DENSO CORPORATION
    Inventor: Hironori Iwamiya
  • Patent number: 8649923
    Abstract: A pulse width modulation (PWM) Frequency Adaptation Mechanism (PFAM) is configured to receive vehicle state input, and in response to the vehicle state input, provide a PWM parameter for PWM switching of electronics in a power conversion circuit of an electric drive system (EDS) for a hybrid electric vehicle. In one example, a PWM parameter that reduces the audible noise generated by PWM switching can be designated by the PFAM. A PFAM can be configured to receive user input regarding user preference for a default mode or a noise reduction mode. Vehicle state input can include input related to vehicle motion, climate control system state, engine state, EDS state, vehicle body state and audio system state. By way of example, a PWM noise reduction parameter can comprise a high PWM switching frequency, or a random frequency hopping about a low PWM switching frequency.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Venkateswa Sankaran, Joe Xiang
  • Patent number: 8648559
    Abstract: The system comprises a first motor for applying rotational energy to a respective first wheel of the vehicle. A second motor is arranged for applying rotational energy to a respective second wheel of the vehicle. A first inverter is coupled to the first motor, where the first inverter is capable of receiving direct current electrical energy from the direct current bus. The first inverter is configured to provide a first group of alternating currents with a corresponding reference phase. A second inverter is coupled to the second motor. The second inverter is capable of receiving direct current electrical energy from the direct current bus. The second inverter is configured to provide a second group of alternating currents with a phase shift with respect to the reference phase, such that the phase shift is effective to reduce the direct current ripple on the direct current bus.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Deere & Company
    Inventor: Brij N. Singh
  • Patent number: 8633662
    Abstract: A control method for a sensor-less, brushless, three-phase DC motor. The effects of commutation on the motor may be minimized using a sinusoidal current drive on each electromagnet. The “off” times and/or the “on” times of the drive transistors controlling the electromagnets in a full “H-bridge” configuration drive scheme may be delayed. By overlapping the drive signals to the electromagnets with respect to a commutation command, the effects of switching between electromagnets may be minimized. In addition, the “on” and “off” times may also be adjusted during the overlapping to further ensure that the coils continuously conduct current, and that the current does not change direction during the switching. The delays, and hence the overlap times of the coil drive signals may be dynamically controlled, for example by using digital timers, making the response predictable and easily controlled.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: January 21, 2014
    Assignee: Standard Microsystems Corporation
    Inventors: Lynn R. Kern, James P. McFarland
  • Patent number: 8629634
    Abstract: A method for is disclosed for using pulse-width modulated (PWM) signals in the control of a plurality of electric motors or of at least one electric motor with multiple windings. The method comprises steps of: measuring the current being drawn by each of said electric motors; transmitting signals corresponding to the current being drawn said plurality of motors to a central controller; transmitting from said central controller signals corresponding to the amount of current to be drawn by each motor, whereby the relative phases and durations of said signals are distributed according to a predetermined protocol; and repeating steps (a) through (c) while said electric motors are in operation. The distribution of PWM signals defines the total current drawn from said source of electricity as a function of time.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 14, 2014
    Inventor: Yesaiahu Redler
  • Patent number: 8629637
    Abstract: A three-phase regenerative drive (20) is operated based upon power from a single-phase AC source (12) and power from a DC source (14). The single-phase AC input power and the DC input power are converted to DC voltage on a DC bus (24) by a three-phase converter (22). DC power is provided from the DC bus (24) to a three-phase inverter having outputs connected to a motor (34). A controller (44) controls operation of the three-phase converter (22) based upon contribution factors of the AC and DC sources (12, 14) during motoring and regeneration. The controller (44) also controls an AC component of current from the DC source to reduce ripple current on the DC bus (24).
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: January 14, 2014
    Assignee: Otis Elevator Company
    Inventors: Vladimir Blasko, Ismail Agirman, Stella M. Oggianu, Robert K. Thornton
  • Patent number: 8624538
    Abstract: A motor driving apparatus is provided that performs AC/DC conversion by suppressing harmonics of the input at the time of normal operation, while on the other hand, allowing system operation to continue in the event of an overload by avoiding system stoppage.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 7, 2014
    Assignee: FANUC Corporation
    Inventors: Tomokazu Yoshida, Takashi Harada, Shinichi Horikoshi, Yasusuke Iwashita
  • Patent number: 8624543
    Abstract: A method of controlling a motor is provided. The method may determine a speed of the motor, and engage a soft chopping routine on a first switch and a second switch of each phase if the motor speed is relatively low. The first switch may be driven by a first pulse width modulated PWM signal and the second switch being driven by a second PWM signal. The first and second PWM signals may be alternatingly configured such that at least one of the first switch and the second switch is closed at any point during the distributed soft chopping routine and both the first switch and the second switch are never simultaneously open.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 7, 2014
    Assignee: Caterpillar Inc.
    Inventors: Ahmed Khalil, Jackson Wai, Jesse Gerdes, James Siegle, Mark Hartman, Joshua Williams
  • Patent number: 8624533
    Abstract: An inverter includes a voltage command generator generating a voltage command value according to an externally specified voltage value, a PWM signal generator generating a PWM signal according to the voltage command value and frequency command value, and a switching unit generating a three-phase AC power according to the PWM signal. The voltage command generator decreases the voltage command value if the output current increases, to prevent the rotation speed of a prime move from suddenly changing. If the output current exceeds a preset upper current threshold, the voltage command value is clamped at a preset minimum output voltage, thereby securing the minimum output voltage for an increase in the output current.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 7, 2014
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Narutoshi Yokokawa, Tomoyuki Hoshikawa, Kazumi Murata, Junichi Kanai, Naoyuki Mashima
  • Patent number: 8618764
    Abstract: Methods, systems, and apparatus include, in one aspect, a method including receiving from a controller a signal for controlling a device for rotating a machine-readable medium; and increasing a bandwidth of a transfer function corresponding to the controller by at least filtering the signal to compensate for a pole of the transfer function.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: December 31, 2013
    Assignee: Marvell International Ltd.
    Inventors: Edward Ying, Pantas Sutardja
  • Patent number: 8618681
    Abstract: In a control apparatus for an inverter generator having a generator unit driven by an engine, a converter connected to the generator unit to convert an alternating current from the generator unit to a direct current, and an inverter connected to the converter to invert the direct current from the converter to an alternating current and output it to an electric load, it is configured to detect an overload condition based on the alternating current from the inverter to the electric load; stop outputting from the inverter to the electric load with the engine being kept operating when the overload condition is detected; output a release command to release a stop condition where the outputting to the electric load is stopped upon manipulation by an operator; and restart the outputting to the electric load by releasing the stop condition when the release command is outputted.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 31, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoichi Yamamura, Shoji Hashimoto
  • Patent number: 8618763
    Abstract: The invention provides a motor with a low speed start function and a soft start function. The motor includes a first pulse generation circuit generating a first pulse signal of which a first duty ratio of one of logic levels is increased as a drive voltage corresponding the target rotation speed of the motor is increased, a second pulse generation circuit generating a second pulse signal of which a second duty ratio of one of logic levels is different from the first duty ratio, and a drive control circuit supplying a drive current to a motor coil at the second duty ratio in order to start the rotation of the motor that is stopping and supplying a drive current to the motor coil at the first duty ratio after a predetermined time passes from the start of the rotation of the motor in response to a rotation signal corresponding to the rotation of the motor.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 31, 2013
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Joji Noie, Toshiyuki Imai, Takahiro Iida, Tetsuya Yoshitomi
  • Patent number: 8610389
    Abstract: Disclosed here is a speed control apparatus for a switched reluctance motor (SRM) including: a current control unit generating command currents for each period; a driving unit generating a pulse width modulation (PWM) signal to allow a voltage to be applied to the SRM; a magnetic flux error calculating unit calculating a magnetic flux error; a rotor position estimating unit calculating an estimation position using the magnetic flux error to output the estimation position to the magnetic flux error calculating unit; and a mode change-over unit allowing a command position corresponding to a command speed to be input to the magnetic flux error calculating unit.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Hee Lee, Jin Woo Ahn, Geun Min Lim, Byeong Han Kim
  • Patent number: 8606429
    Abstract: An electronic device and a method for controlling fan speed of the electronic device include setting a speed range corresponding to a variety of pulse-width modulation (PWM) duty cycles of the fan, and setting a speed variation value of the fan. The method further includes reading the PWM duty cycle and detecting an actual speed of the fan, and adjusting the PWM duty cycle in the PWM duty cycle instruction according to the speed variation value.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 10, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Meng-Hsien Lin, Yao-Ting Chang
  • Patent number: 8593100
    Abstract: A motor drive circuit is configured to drive a motor coil based on duty ratio of a PWM signal, and includes a first pulse signal generating circuit configured to generate a first pulse signal for each time period, the time period being equal to 1/n of a time period during which the PWM signal is at one logic level, a counter configured to change a count value based on the first pulse signal, a drive signal output circuit configured to output a drive signal of one logic level when the count value is not a predetermined value and output the drive signal of the other logic level when the count value reaches the predetermined value, a drive circuit configured to perform PWM driving for the motor coil based on the duty ratio of the drive signal, and a setting circuit.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 26, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Masahiro Nakahata, Toshiyuki Imai
  • Patent number: 8593099
    Abstract: Provided is an electric compressor whose manufacturing cost is reduced and in which a motor driving circuit can be positively protected. A temperature sensor is provided in the vicinity of a power semiconductor element whose temperature becomes highest among a plurality of power semiconductor elements and control of the number of revolutions of a motor is performed on the basis of temperatures detected by the temperature sensor, whereby it is possible to change the number of revolutions of the motor by using a temperature in the vicinity of a power semiconductor element in a position under the worst temperature conditions as a reference, and it becomes possible to positively protect an inverter circuit without the need for a plurality of temperature sensors.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 26, 2013
    Assignee: Sanden Corporation
    Inventors: Makoto Shibuya, Atsushi Saito
  • Patent number: 8593096
    Abstract: Analog control of the pulse width used to control the speed of a voice coil motor may be implemented using a “constant-current-charging-capacitor” configuration where the time needed to charge the capacitor is directly related to how far the actual motor speed is from the target speed. The BEMF voltage, indicative of motor speed, is sampled, and then stored in a storage capacitor, which is allowed to charge/discharge to a target voltage level. The time required to charge/discharge the capacitor to the target voltage is directly proportional to the difference between the BEMF voltage and the target voltage, and may be used directly as the pulse width (i.e., the charging time) in the PWM velocity control system. To avoid larger capacitors, a pulse multiplier circuit can be added, allowing charging/discharging the sampled voltage to the target voltage to be repeated by a number, N, of times.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 26, 2013
    Assignee: Marvell International Ltd.
    Inventors: Jye Sheng Hong, Siew Yong Chui
  • Patent number: 8593098
    Abstract: The present invention there is provides a method of determining the rotor position in an electric motor comprising the steps of: superimposing one or more alternating signals on to the driving waveform so as to generate one or more oscillating currents in the stator coils; monitoring the variation in magnitude of the oscillating currents and thereby determining the rotor position. Typically, two alternating signals are applied in opposition so as to have no net effect on the torque applied by the driving waveform. Using this technique rotor position estimation can be obtained at start-up from stand-still and at low to medium speeds. The method can be used in applications where a fast motor start is needed under unknown load conditions and can be used to detect when the rotor has passed a certain position that coincides with the commutation instance.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 26, 2013
    Assignee: Melexis Technologies NV
    Inventors: Christian Paintz, Thomas Freitag
  • Patent number: 8587228
    Abstract: A remote and receiver system that allows user control over current output to a direct current motor. The control of current output grants users the ability to control the speed of rotation of a direct current motor. A speed controlled direct current motor can be utilized to control motor speeds within system such as a salt spreader. This can give users control over the flow rate and the spreading area of the salt.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: November 19, 2013
    Inventor: Gregory Paul Anderson
  • Patent number: 8558501
    Abstract: The command signal processing unit outputs, when a first PWM frequency command signal is received, a high-PWM frequency command signal such that an asynchronous PWM control is performed at a PWM frequency of a predetermined constant frequency. The command signal processing unit outputs, when a second PWM frequency command signal is received, a low-PWM frequency command signal such that an asynchronous or synchronous PWM control is performed at a frequency lower than the above-described frequency. The PWM frequency control unit controls the PWM frequency such that an asynchronous PWM control is performed if a motor has a rotational speed less than a predetermined rotational speed and that a synchronous PWM control is performed if the motor has a rotational speed greater than or equal to the predetermined rotational speed, when a low-PWM frequency command signal is input.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 15, 2013
    Assignee: Nabtesco Corporation
    Inventors: Tokuji Tsunematsu, Kazushige Nakajima, Hiroyuki Kitazwa, Tomoyuki Yokogawa
  • Patent number: 8558490
    Abstract: It is presented a control device for driving an electric motor, wherein a drive control signal for the electric motor is arranged to be determined using a calculated rotor flux. A direct quadrature, dq, coordinate system relating to a rotor of the electric motor is used. The control device comprises a flux estimator arranged to determine the calculated rotor flux using a quadrature axis voltage, a measured direct axis current, a measured quadrature axis current, an angular velocity, stator resistance and a direct axis inductance and an actual torque calculator arranged to obtain an actual torque estimation using the calculated rotor flux, the measured direct axis current and the measured quadrature axis current. A corresponding method is also presented.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 15, 2013
    Assignee: Danaher Motion Stockholm AB
    Inventor: Per Rickard Johansson
  • Patent number: 8553432
    Abstract: Method and apparatus for controlling an apparatus transmitting power between two electricity networks or between an electricity network and a polyphase electric machine), and including low-voltage power cells (C), which include a single-phase input/output connection (IN/OUT). The power cells are arranged into groups (G1-GN, GP1-GPN1, GS1-GSN2, G1??-GN??) such that at least one power cell per each phase of the electricity network or of the electric machine belongs to each group, and the input terminals (IN) of all the power cells belonging to the same group are connected to a common transformer, the transformer including its own separate winding that is galvanically isolated. The controllable power semiconductor switches connected to the input connectors (IN) of all the power cells supplying power to the same transformer are controlled cophasally with a 50% pulse ratio.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 8, 2013
    Assignee: Vacon OYJ
    Inventors: Risto Komulainen, Hannu Sarén
  • Patent number: 8547041
    Abstract: A power conversion device comprises a power conversion unit of a three phase full bridge type including upper arm switching devices and lower arm switching devices, and a controller that outputs drive signals to these switching devices. This power conversion device forms alternately a first interval in which the upper arm switching devices and the lower arm switching devices are switched to ON for different phases, and a second interval in which, for all phases, either the upper arm switching devices or the lower arm switching devices are switched to ON, according to electrical angle.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kimihisa Furukawa, Hideki Miyazaki, Shigeyuki Yoshihara, Yuichiro Takamune
  • Patent number: 8547052
    Abstract: A driving control apparatus includes an inverter circuit, a motor driving circuit and a motor control unit. In performing overlap energization, at a start time of an overlap time period, a pulse width of a first PWM signal at an energization side is widened to increase a number of pulses of a second PWM signal accordingly, and a first PWM signal at an energization side corresponding to a constant voltage side is also widened.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 1, 2013
    Assignee: Minebea Co., Ltd.
    Inventor: Masato Aoki
  • Patent number: 8541966
    Abstract: The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: September 24, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 8536816
    Abstract: A method of operating an electrical machine is provided. The method includes the steps of providing a brushless excitation system including a diode rectifier having at least one diode, sensing heat energy generated by at least one resistor connected in parallel with the at least one diode, wirelessly transmitting a signal representative of the heat energy, detecting a deviation of generated heat energy from the at least one resistor, and generating a signal indicating an error if the deviation in generated heat energy exceeds a predetermined threshold.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventor: William Earl Fish
  • Patent number: 8536818
    Abstract: A method for controlling a traction power inverter module (TPIM) in a vehicle includes determining a commanded output torque of the motor using a controller. The method further includes controlling the TPIM and motor using a discontinuous pulse width modulated (DPWM) signal when the commanded output torque is less than a calibrated torque threshold. A continuous pulse width modulated (CPWM) signal is used when the commanded output torque is greater than the threshold. The method may include determining a direction of a change in the commanded output torque, and controlling the TPIM, via the controller, using the DPWM signal only when the commanded output torque drops below a predetermined hysteresis level. A vehicle includes a traction motor producing a motor torque for propelling the vehicle, an ESS, a TPIM, and a controller configured as noted above.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 17, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven E. Schulz, Mohammad N. Anwar, Michael J. Grimmer, Silva Hiti
  • Patent number: 8531145
    Abstract: The methods and devices provided herein include methods and devices for controlling a permanent magnet motor. In one implementation, a method is provided that allows for the determination of the values of the phase back EMF voltage and of the phase inductances while the phases are powered with a PWM (Pulse Width Modulation) controlled current and/or voltage.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: September 10, 2013
    Assignee: Micro-Beam SA
    Inventors: Laurent Cardoletti, Thierry Bieler, Christain Koechli, Christian Fleury
  • Publication number: 20130229140
    Abstract: A regulating circuit that regulates rotary speed of a pulse-width modulated fan includes a measuring device that determines a period duration (TIst) of a tacho signal (TACH) of the fan, a digital regulating register that acquires a regulation value to drive the fan on the basis of a determined period duration (TIst) and a desired value (TSoll), a digital control register that adjusts a duty ratio to drive the fan, the digital control register having a smaller register width than the digital regulating register, and a controller that updates the digital control register by evaluating a predetermined number of more significant bits of the digital regulating register.
    Type: Application
    Filed: October 20, 2011
    Publication date: September 5, 2013
    Applicant: FUJITSU TECHNOLOGY SOLUTIONS INTELLECTUAL PROPERTY GMBH
    Inventor: Peter Busch
  • Patent number: 8525464
    Abstract: A rotation detecting apparatus for detecting a rotational state of a direct-current motor includes a driving device, a control device, an energization detecting device, an alternating-current component detecting device, and a rotational state detecting device. An impedance between brushes of the motor changes periodically in accordance with rotation of the motor. The alternating-current component detecting device detects change of an alternating-current component of electric current that is supplied to the motor based on an electrical quantity. The change of the alternating-current component is caused by change of the impedance caused in accordance with the rotation. The rotational state detecting device detects at least one of a rotation angle, a rotational direction, and a rotational speed of the motor based on a detection result of the alternating-current component detecting device.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 3, 2013
    Assignees: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Ken Tanaka, Yasuhiro Fukagawa, Masaru Touge
  • Patent number: 8525466
    Abstract: This inverter device includes a power portion performing PWM control on a voltage command to a motor for each set time period, converting direct-current power into alternating-current power, and outputting the same, a voltage command generation portion generating a voltage command in synchronization with a period N-times (N?1) longer than the time period, an interval determination portion generating an interval determination signal which is ON during a half period of the time period and OFF during the next half period, a current detection portion detecting the current of the motor at timing of change in the interval determination signal, and a voltage correction portion generating a voltage correction value such that the amount of change in the detected current when the interval determination signal is ON becomes equal to the amount of change in the detected current when it is OFF and correcting the voltage command.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: September 3, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Mamoru Takaki, Shinya Morimoto, Masaki Hisatsune
  • Patent number: 8519658
    Abstract: An electromechanical device includes: a magnet coil; a PWM driving circuit; and a control unit, wherein the control unit performs a first control of setting an excitation interval which is an interval in which a PWM drive signal is supplied to the magnet coil and a second control of changing a duty ratio of the PWM drive signal, and wherein the control unit performs an advance angle control of putting the phase of the center of the excitation interval earlier than the phase in which a counter-electromotive force generated in the magnet coil has the maximum value in the first control, and increases the duty ratio of the PWM drive signal in the second control so that a gain is greater than 100% when the gain is 100% at the time of generating the PWM drive signal so as to have a sinusoidal shape.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: August 27, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 8508178
    Abstract: Methods and systems of accelerating a brushless, DC electric motor based on torque may include determining a slope based on a maximum torque of the BLDC motor at a lower operating load and a maximum torque of the motor at a higher operating load, determining a period of the rotor based on sensor signals, and determining and applying a phase advance to a PWM pulse for a subsequent revolution of the rotor based on the period and the slope. In some embodiments, the amount of the phase advance is further based on maximum load optimum advance and/or maximum load speed. In some embodiments, a phase dwell is determined based on a positive torque zone and applied to the PWM pulse. In some embodiments, when the motor is operating below a given threshold, fixed-width PWM pulses are applied to subsequent revolutions of the rotor instead of phase-advanced PWM pulses.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 13, 2013
    Assignee: Shop Vac Corporation
    Inventor: Neil N. Norell
  • Patent number: 8502489
    Abstract: A motor control device, which receives at least two emergency stop signals, includes an LSI, a PWM signal transmission circuit, a drive circuit, and an inverter circuit. The LSI generates PWM signals. The PWM signal transmission circuit transmits the PWM signals. The drive circuit generates inverter drive signals. The inverter circuit includes a P-side power switching device and an N-side power switching device. The drive circuit includes a P-side drive circuit for driving the P-side power switching device, and an N-side drive circuit for driving the N-side power switching device. One of the emergency stop signals is inputted to the P-side drive circuit and the PWM signal transmission circuit. The other emergency stop signal is inputted to the N-side drive circuit and the PWM signal transmission circuit. In response to the receipt of an emergency stop signal, the PWM signal transmission circuit stops transmitting the PWM signals, and the drive circuit stops outputting the inverter drive signals.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 6, 2013
    Assignee: Panasonic Corporation
    Inventors: Hisashi Ooto, Taro Kishibe, Hiroshi Ozaki, Ryuhei Watabe, Satoru Doi
  • Patent number: 8497650
    Abstract: A fan delay control circuit includes a fan connector connected to a fan of an electronic device, a power supplying module connected to the fan connector, and a rotational speed controlling module connected to the power supplying module. The power supplying module is connected to a fan power source and a stand-by power source. The power supplying module may continue to supply power to the fan when the electronic device including the fan is powered off. The rotational speed controlling module includes a square wave generation circuit which generates a square wave signal to control a rotational speed of the fan even when the electronic device is powered off.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: July 30, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Xun-Chun Qiu, Guang-Dong Yuan
  • Patent number: 8497649
    Abstract: A motor driving control apparatus includes a motor driving unit which drives a motor and a driving control unit which supplies to the motor driving unit a command value for the motor driving unit to drive the motor. A power characteristic acquiring unit acquires a power characteristic of an AC power supply that supplies power to the motor. A control parameter determining unit determines based on a voltage characteristic of the AC power supply whether, during driving of the motor, the voltage of the AC power supply drops to a level that adversely affects the driving of the motor, and if positive, the control parameter determining unit sets a control parameter so that the voltage of the AC power supply does not drop below that level and supplies the control parameter to the driving control unit in order for the driving control unit to determine the command value.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 30, 2013
    Assignee: FANUC Corporation
    Inventors: Junichi Tezuka, Kazuyuki Sugiyama
  • Patent number: 8497652
    Abstract: A dynamoelectric machine assembly for connection to a system controller. The assembly includes at least one input contact for receiving a control signal from the system controller and a processor coupled to the input contact. The processor is configured to operate the assembly in a pulse width modulation (PWM) mode when the control signal is a PWM control signal and to operate the assembly in a serial mode when the control signal is a serial communication signal.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 30, 2013
    Assignee: Nidec Motor Corporation
    Inventors: Prakash B. Shahi, Arthur E. Woodward, Mark E. Carrier
  • Patent number: 8482231
    Abstract: A pulse width modulation (PWM) module is configured to adjust the input PWM control signal and the motor can be implemented in different rotation speed to enhance the flexibility of the implementation of the motor when the PWM control signals are the same. In addition, the PWM modulation block in the present invention includes a PWM direction control circuit, a PWM vector transfer circuit and a PWM signal generation circuit. Apparently, the PWM modulation block of the present invention is connected to a PWM control signal inputted by an external system and an external adjustment apparatus; by setting up the adjustment apparatus, the vector and the modulation direction of the PWM control signal can be adjusted, and the duty cycle of the PWM control signal can also be adjusted.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 9, 2013
    Assignee: Amtek Semiconductor Co., Ltd.
    Inventors: Teng-Hui Lee, Kuo-Yung Yu
  • Patent number: 8471516
    Abstract: The present techniques include methods and systems for operating an inverter to maintain a lifespan of the inverter. In some embodiments, the switching frequency and/or the output current of the inverter may be changed such that stress may be reduced on the inverter bond wires of the inverter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the inverter and determining whether the operating conditions result in aging the inverter to a point which reduces the inverter lifespan below a desired lifespan. If the operating conditions reduce the inverter lifespan below the desired lifespan, the switching frequency may be reduced to a lower or minimum switching frequency of the inverter and/or the output current of the inverter may be reduced to a maximum output current at the minimum switching frequency.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 25, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Lixiang Wei, Richard A. Lukaszewski, Russel J. Kerkman
  • Patent number: 8471505
    Abstract: A device for the change of the driving mode of an electromagnetic load from a first operating mode with pulse width modulation to a second operating mode that is linear by means of switching circuits. During a first operating mode, each of two outputs has a voltage value ranging from a first reference voltage to a second reference voltage. The device adapted to synchronize a change command signal from a first operating mode to a second operating mode of the electromagnetic load with the signal representative of the flow of current circulating within the load at substantially its average value and adapted to generate a first command signal in response to the synchronization.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 25, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ezio Galbiati, Roberto Peritore, Michele Bartolini, Agostino Mirabelli
  • Patent number: 8471515
    Abstract: An apparatus for operating a machine having electric axes includes a power module for supplying axis drives with electrical energy, an axis regulating module for regulating parameters of the axis drives, and an axis control module for controlling axis drives among one another. The modules are all interconnected with one another and located inside the apparatus as integral components of the apparatus. Synchronization is established between the functions of the modules, so that related courses of motion of a machine that is to be triggered are executed as precisely as possible.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 25, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Gerhard Bund
  • Patent number: 8466649
    Abstract: An electrical machine having a rotor component configured to rotate with respect to a stator component includes a sensing arrangement to sense electrical, magnetic, and/or mechanical machine parameters during machine operation. The electrical machine also includes a fluid sprayer coupled to a cooling controller. The cooling controller activates the fluid sprayer to spray cooling fluid on a portion of the electrical machine in response to in response to the sensed electrical, magnetic, and/or mechanical machine parameters.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: June 18, 2013
    Inventors: Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, Jr.
  • Patent number: 8462470
    Abstract: An automatic power-off and actuation circuit for a fan comprises a drive unit, a detection unit, a voltage-modulating unit, a comparison unit, an auto-restart unit, a regulation unit and a controlled IC, wherein the detection unit is electrically connected to the drive unit, the voltage-modulating unit is electrically connected to the detection unit, the comparison unit is electrically connected to the voltage-modulating unit, the auto-restart unit is electrically connected to the comparison unit, the regulation unit is electrically connected to the auto-restart unit and the drive unit, and the controlled IC is electrically connected to the regulation unit and the drive unit.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: June 11, 2013
    Assignee: ADDA Corp.
    Inventors: Ching-Cheng Ma, Ting-Cheng Lan